
Kernel Methods for Strings and Graphs

Jean-Philippe Vert
Jean-Philippe.Vert@ensmp.fr

Centre for Computational Biology
Ecole des Mines de Paris, ParisTech

Kyoto University, Bioinformatics Center, February 8th, 2007

Jean-Philippe Vert (Ecole des Mines) Kernels for Strings and Graphs 1 / 126



Outline

1 Kernels and kernel methods

2 Kernels for biological sequences
Motivations
Feature space approach
Using generative models
Derive from a similarity measure
Application: remote homology detection

3 Kernels on graphs
Motivations
Construction by regularization
The diffusion kernel
Harmonic analysis on graphs
Applications

Jean-Philippe Vert (Ecole des Mines) Kernels for Strings and Graphs 2 / 126



Outline

1 Kernels and kernel methods

2 Kernels for biological sequences
Motivations
Feature space approach
Using generative models
Derive from a similarity measure
Application: remote homology detection

3 Kernels on graphs
Motivations
Construction by regularization
The diffusion kernel
Harmonic analysis on graphs
Applications

Jean-Philippe Vert (Ecole des Mines) Kernels for Strings and Graphs 2 / 126



Outline

1 Kernels and kernel methods

2 Kernels for biological sequences
Motivations
Feature space approach
Using generative models
Derive from a similarity measure
Application: remote homology detection

3 Kernels on graphs
Motivations
Construction by regularization
The diffusion kernel
Harmonic analysis on graphs
Applications

Jean-Philippe Vert (Ecole des Mines) Kernels for Strings and Graphs 2 / 126



Part 1

Kernels and Kernels Methods
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Overview

Motivations
Develop versatile algorithms to process and learn from data
No hypothesis made regarding the type of data (vectors, strings,
graphs, images, ...)

The approach
Develop methods based on pairwise comparisons.
By imposing constraints on the pairwise comparison function
(positive definite kernels), we obtain a nice general framework for
learning from data.
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Representation by pairwise comparisons
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Idea
Define a “comparison function”: K : X × X 7→ R.

Represent a set of n data points S = {x1, x2, . . . , xn} by the n × n
matrix:

[K ]ij := K
(
xi , xj

)
.
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Positive Definite (p.d.) Kernels

Definition
A positive definite (p.d.) kernel on the set X is a function
K : X × X → R symmetric:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
= K

(
x′, x

)
,

and which satisfies, for all N ∈ N, (x1, x2, . . . , xN) ∈ XN et
(a1, a2, . . . , aN) ∈ RN :

N∑
i=1

N∑
j=1

aiajK
(
xi , xj

)
≥ 0 .
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General remarks

Remark
Equivalently, a kernel K is p.d. if and only if, for any N ∈ N and
any set of points (x1, x2, . . . , xN) ∈ XN , the similarity matrix
[K ]ij := K

(
xi , xj

)
is positive semidefinite.

Complete modularity between the kernel (mapping a set of points
to a matrix) and the algorithm (processing the matrix)
Poor scalability w.r.t to the dataset size (n2?)
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Examples

Kernels for vectors
Classical kernels for vectors (X = Rp) include:

The linear kernel
Klin

(
x, x′

)
= x>x′ .

The polynomial kernel

Kpoly
(
x, x′

)
=

(
x>x′ + a

)d
.

The Gaussian RBF kernel:

KGaussian
(
x, x′

)
= exp

(
−‖x− x′ ‖2

2σ2

)
.
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Geometric interpretation: Kernels are inner products

Theorem (Aronszajn, 1950)
K is a p.d. kernel on the set X if and only if there exists a Hilbert space
H and a mapping

Φ : X 7→ H ,

such that, for any x, x′ in X :

K
(
x, x′

)
=

〈
Φ (x) ,Φ

(
x′

)〉
H .

φ
X F
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Corollary: The kernel trick

Kernel trick
Any algorithm to process finite-dimensional vectors that can be
expressed only in terms of pairwise inner products can be applied to
potentially infinite-dimensional vectors in the feature space of a p.d.
kernel by replacing each inner product evaluation by a kernel
evaluation.

Remark
The proof of this proposition is trivial, because the kernel is
exactly the inner product in the feature space.
This trick has huge practical applications, in particular to extend
linear methods to non-linear settings and non-vector data.
Vectors in the feature space are only manipulated implicitly,
through pairwise inner products.
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Kernel trick example: computing distances in the
feature space

φ
X F

x1

x2

x1

x2φ(     )

φ(    )d(x1,x2)

dK (x1, x2)
2 = ‖Φ (x1)− Φ (x2) ‖2

H

= 〈Φ (x1)− Φ (x2) ,Φ (x1)− Φ (x2)〉H
= 〈Φ (x1) ,Φ (x1)〉H + 〈Φ (x2) ,Φ (x2)〉H − 2 〈Φ (x1) ,Φ (x2)〉H

dK (x1, x2)
2 = K (x1, x1) + K (x2, x2)− 2K (x1, x2)
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Distance for the Gaussian kernel

The Gaussian kernel with
bandwidth σ on R is:

K (x, y) = e−
(x−y)2

2σ2 ,

K (x, x) = 1 = ‖Φ (x) ‖2
H, so all

points are on the unit sphere in
the feature space.
The distance between the
images of two points x and y in
the feature space is given by:

dK (x, y) =

√
2

[
1− e−

(x−y)2

2σ2

] −4 −2 0 2 4

0.
0

0.
4

0.
8

1.
2

||x−y||

d(
x,

y)
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Functional interpretation: RKHS

RKHS definition
To each p.d. kernel on X is associated a unique Hilbert space of
function X → R, called the reproducing kernel Hilbert space
(RKHS) H.
Typical functions are:

f (x) =
n∑

i=1

αiK (xi , x) ,

with norm

‖ f ‖2
H =

n∑
i=1

n∑
j=1

αiαjK
(
xi , xj

)
.
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Example: Linear kernel


Klin (x, x′) = x>x′ .
f (x) = w>x ,

‖ f ‖H = ‖w ‖2 .

||f||=1||f||=2 ||f||=0.5
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Examples: Gaussian RBF kernel

KGaussian
(
x, x′

)
= exp

(
−‖x− x′ ‖2

2σ2

)
,

f (x) =
n∑

i=1

αi exp
(
−‖x− xi ‖2

2σ2

)
,

‖ f ‖2
H =

n∑
i=1

n∑
j=1

αiαj exp
(
−‖x− xi ‖2

2σ2

)
=

∫ ∣∣∣ f̂ (ω)
∣∣∣2 e

σ2ω2
2 dω .
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Smoothness functional

A simple inequality
The norm of a function in the RKHS controls how fast the function
varies over X with respect to the geometry defined by the kernel:∣∣ f (x)− f

(
x′

) ∣∣ ≤ ‖ f ‖H × dK
(
x, x′

)
.

f is Lipschitz with constant ‖ f ‖H w.r.t. dK .

An important message
The RKHS norm is therefore a smoothness functional:

Small norm =⇒ slow variations.
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Pattern recognition

APPLE

APPLE

APPLE
APPLE

APPLE

PEAR

PEAR
PEAR

??? ???

???

Input variables x ∈ X
Output y ∈ {−1, 1}.
Training set S = {(x1, y1) , . . . , (xn, yn)}.
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Learning from data

General setting
Observation: {z1, . . . , zn} where zi = (xi , yi) ∈ X × Y
Goal: learn a function f : X → R
Examples: density estimation, pattern recognition, regression,
outlier detection, clustering, compression, embedding...
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Learning from data

Empirical risk minimization (ERM)
1 Define a loss function l(f , z) and a space of functions F .
2 Minimize the empirical average loss over F :

f̂ ∈ arg min
f∈F

1
n

n∑
i=1

l(f , zi) .

General properties of ERM

If F is not “too large” then the ERM is consistent (f̂ is close to the
best possible f ∈ F as the number of observations increases).
If F is not “too small” then the best possible f ∈ F is a “good”
solution.
Challenge: choose a “small” F that contains “good” functions.
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Learning with kernels

ERM in RKHS
Take F to be a ball in the RKHS:

FB = {f ∈ H : ‖ f ‖H ≤ B} .

Advantage: by controlling the “size” of F (related to B) the ERM
principle works (consistency and theoretical rates of
convergence).
The kernel should be chosen s.t. some “good” functions have a
small RKHS norm.
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Large-margin classifiers

General setting
For pattern recognition Y = {−1, 1}.
Goal: estimate a function f : X → R to predict y from the sign of
f (x)

The margin for a pair (x, y) is yf (x).
Focusing on large margins ensures that f (x) has the same sign
as y and a large absolute value (confidence).
Leads to a loss function

l (f , (x, y)) = φ (yf (x)) ,

where φ : R → R is non-increasing.
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ERM in for large-margin classifiers: Theory

Theoretical results

The ERM estimator f̂n solves:{
minf∈H

1
n

∑n
i=1 φ (yi f (xi))

subject to ‖ f ‖H ≤ B .

Let P an unknown distribution over X × Y, assume
S = (xi , yi)i=1,...,n i.i.d. according to P.
Assume K upper bounded by κ and φ Lipschitz with constant Lφ.
For the φ-risk Rφ(f ) = Eφ (Yf (X )) we have:

ERφ

(
f̂n

)
≤ inf

f∈FB
Rφ(f ) +

8LφκB√
n

.
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ERM in for large-margin classifiers: Practice

Reformulation as penalized minimization
We must solve the constrained minimization problem:{

minf∈H
1
n

∑n
i=1 φ (yi f (xi))

subject to ‖ f ‖H ≤ B .

To make this practical we assume that φ is convex.
The problem is then a convex problem in f for which strong duality
holds. In particular f solves the problem if and only if it solves for
some dual parameter λ the unconstrained problem:

min
f∈H

{
1
n

n∑
i=1

φ (yi f (xi)) + λ‖ f ‖2
H

}
,

and complimentary slackness holds (λ = 0 or ‖ f ‖H = B).
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Optimization in RKHS

By the representer theorem, the solution of the unconstrained
problem can be expanded as:

f (x) =
n∑

i=1

αiK (xi , x) .

Plugging into the original problem we obtain the following
unconstrained and convex optimization problem in Rn:

min
α∈Rn

1
n

n∑
i=1

φ

yi

n∑
j=1

αjK
(
xi , xj

) + λ

n∑
i,j=1

αiαjK
(
xi , xj

) .

This can be implemented using general packages for convex
optimization or specific algorithms (e.g., for SVM).
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Loss function examples

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

u

ph
i(u

)

1−SVM
2−SVM
Logistic
Boosting

Method φ(u)

Kernel logistic regression log (1 + e−u)
Support vector machine (1-SVM) max (1− u, 0)

Support vector machine (2-SVM) max (1− u, 0)2

Boosting e−u
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Example: Support vector machines

yf(x)

l(f(x),y)

1

The loss function is the hinge loss:

φhinge(u) = max (1− u, 0) .

SVM solve the problem:

min
f∈H

{
1
n

n∑
i=1

φhinge (yi f (xi)) + λ‖ f ‖2
H

}
.
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Problem reformulation (2/2)

Finite-dimensional expansion

Replacing f̂ by

f̂ (x) =
n∑

i=1

αiK (xi , x) ,

the problem can be rewritten as an optimization problem in α:

min
α∈Rn,ξ∈Rn

1
n

n∑
i=1

ξi + λα>Kα ,

subject to:{
yi

∑n
j=1 αjK

(
xi , xj

)
+ ξi − 1 ≥ 0 , for i = 1, . . . , n ,

ξi ≥ 0 , for i = 1, . . . , n .
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Solving the problem

Remarks
This is a classical quadratic program (minimization of a convex
quadratic function with linear constraints) for which any
out-of-the-box optimization package can be used.
The dimension of the problem and the number of constraints,
however, are 2n where n is the number of points. General-purpose
QP solvers will have difficulties when n exceeds a few thousands.
Solving the dual of this problem (also a QP) will be more
convenient and lead to faster algorithms (due to the sparsity of the
final solution).
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Geometric interpretation
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Geometric interpretation

f(x
)=

−1

f(x
)=

+1

f(x
)=

0
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Geometric interpretation

0<α

α=0

y<1/2n

αy=1/2nλ

λ
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Kernel methods: Summary

Positive definite kernels can be thought of as:
Embedding the data to a Hilbert space,
Defining a Hilbert space of real-valued functions over the data.

The kernel trick allows to extend many linear algorithms to
non-linear settings and to general data (even non-vectorial).
The norm in the RKHS can be used as regularization for empirical
risk minimization. This is theoretically justified and leads to
efficient algorithms (often finite-dimensional convex problem
thanks to the representer theorem).
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Further reading
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Further reading

Learning with kernels
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Part 2

Kernels for biological
sequences
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Proteins

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Méthionine

E : Acide glutamique K : Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine

H : Histidine V : Thyrosine W : Tryptophane

I : Isoleucine S : Sérine Q : Glutamine

D : Acide aspartique G : Glycine
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Challenges with protein sequences

A protein sequences can be seen as a variable-length sequence
over the 20-letter alphabet of amino-acids, e.g., insuline:
FVNQHLCGSHLVEALYLVCGERGFFYTPKA

These sequences are produced at a fast rate (result of the
sequencing programs)
Need for algorithms to compare, classify, analyze these
sequences
Applications: classification into functional or structural classes,
prediction of cellular localization and interactions, ...
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Example: supervised sequence classification

Data (training)
Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA...
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW...
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...
...

Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG...
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG...
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP..
...

Goal
Build a classifier to predict whether new proteins are secreted or
not.
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Supervised classification with vector embedding

The idea
Map each string x ∈ X to a vector Φ(x) ∈ Rp.
Train a classifier for vectors on the images Φ(x1), . . . ,Φ(xn) of the
training set (nearest neighbor, linear perceptron, logistic
regression, support vector machine...)

mahtlg...

φ
X F

maskat...
msises

marssl...

malhtv...
mappsv...
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Kernels for protein sequences

Generalities
Kernel methods have been widely investigated since Jaakkola et
al.’s seminal paper (1998).
What is a good kernel?

it should be mathematically valid (symmetric, p.d. or c.p.d.)
fast to compute
adapted to the problem (give good performances), e.g., the
unknown decision function should be smooth w.r.t. to the norm
induced by the kernel.
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Kernel for protein sequences

Kernel engineering strategies
Define a (possibly high-dimensional) feature space of interest

Physico-chemical kernels
Spectrum, mismatch, substring kernels
Pairwise, motif kernels

Derive a kernel from a generative model
Fisher kernel
Mutual information kernel
Marginalized kernel

Derive a kernel from a similarity measure
Local alignment kernel
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Vector embedding for strings

The idea
Represent each sequence x by a fixed-length numerical vector
Φ (x) ∈ Rp. How to perform this embedding?

Physico-chemical kernel
Extract relevant features, such as:

length of the sequence
time series analysis of numerical physico-chemical properties of
amino-acids along the sequence (e.g., polarity, hydrophobicity),
using for example:

Fourier transforms (Wang et al., 2004)
Autocorrelation functions (Zhang et al., 2003)

rj =
1

n − j

n−j∑
i=1

hihi+j
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Substring indexation

The approach
Alternatively, index the feature space by fixed-length strings, i.e.,

Φ (x) = (Φu (x))u∈Ak

where Φu (x) can be:
the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)
the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)
the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)
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Example: spectrum kernel (1/2)

Kernel definition
The 3-spectrum of

x = CGGSLIAMMWFGV

is:
(CGG,GGS,GSL,SLI,LIA,IAM,AMM,MMW,MWF,WFG,FGV) .

Let Φu (x) denote the number of occurrences of u in x. The
k -spectrum kernel is:

K
(
x, x′

)
:=

∑
u∈Ak

Φu (x) Φu
(
x′

)
.
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Example: spectrum kernel (2/2)

Implementation

The computation of the kernel is formally a sum over |A|k terms,
but at most |x | − k + 1 terms are non-zero in Φ (x) =⇒
Computation in O (|x |+ |x′ |) with pre-indexation of the strings.
Fast classification of a sequence x in O (|x |):

f (x) = w · Φ (x) =
∑

u

wuΦu (x) =

| x |−k+1∑
i=1

wxi ...xi+k−1 .

Remarks
Work with any string (natural language, time series...)
Fast and scalable, a good default method for string classification.
Variants allow matching of k -mers up to m mismatches.
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Example 2: Substring kernel (1/5)

Definition
For 1 ≤ k ≤ n ∈ N, we denote by I(k , n) the set of sequences of
indices i = (i1, . . . , ik ), with 1 ≤ i1 < i2 < . . . < ik ≤ n.
For a string x = x1 . . . xn ∈ X of length n, for a sequence of indices
i ∈ I(k , n), we define a substring as:

x (i) := xi1xi2 . . . xik .

The length of the substring is:

l (i) = ik − i1 + 1.
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Example 2: Substring kernel (2/5)

Example

ABRACADABRA

i = (3, 4, 7, 8, 10)

x (i) =RADAR

l (i) = 10− 3 + 1 = 8
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Example 2: Substring kernel (3/5)

The kernel
Let k ∈ N and λ ∈ R+ fixed. For all u ∈ Ak , let Φu : X → R be
defined by:

∀x ∈ X , Φu (x) =
∑

i∈I(k ,| x |): x(i)=u

λl(i) .

The substring kernel is the p.d. kernel defined by:

∀
(
x, x′

)
∈ X 2, Kk ,λ

(
x, x′

)
=

∑
u∈Ak

Φu (x) Φu
(
x′

)
.
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Example 2: Substring kernel (4/5)

Example

u ca ct at ba bt cr ar br
Φu(cat) λ2 λ3 λ2 0 0 0 0 0
Φu(car) λ2 0 0 0 0 λ3 λ2 0
Φu(bat) 0 0 λ2 λ2 λ3 0 0 0
Φu(bar) 0 0 0 λ2 0 0 λ2 λ3


K (cat,cat) = K (car,car) = 2λ4 + λ6

K (cat,car) = λ4

K (cat,bar) = 0
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Example 2: Substring kernel (5/5)

Kernel computation
We need to compute, for any pair x, x′ ∈ X , the kernel:

Kn,λ

(
x, x′

)
=

∑
u∈Ak

Φu (x) Φu
(
x′

)
=

∑
u∈Ak

∑
i:x(i)=u

∑
i′:x′(i′)=u

λl(i)+l(i′) .

Enumerating the substrings is too slow (of order |x |k ).
The kernel can be factorized and computed by dynamic
programming in O (|x | × |x′ |).
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Dictionary-based indexation

The approach
Chose a dictionary of sequences D = (x1, x2, . . . , xn)

Chose a measure of similarity s (x, x′)
Define the mapping ΦD (x) = (s (x, xi))xi∈D

Examples
This includes:

Motif kernels (Logan et al., 2001): the dictionary is a library of
motifs, the similarity function is a matching function
Pairwise kernel (Liao & Noble, 2003): the dictionary is the training
set, the similarity is a classical measure of similarity between
sequences.
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Further reading

Substring kernels

C. Leslie, E. Eskin, and W.S. Noble.
The spectrum kernel:a string kernel for SVM protein classification.
In PSB 2002, pages 564–575. World Scientific, 2002.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C.
Watkins.
Text classification using string kernels.
J. Mach. Learn. Res., 2:419–444, 2002.

C. S. Leslie, E. Eskin, A. Cohen, J. Weston, and W. S. Noble.
Mismatch string kernels for discriminative protein classification.
Bioinformatics, 20(4):467–476, 2004.

Jean-Philippe Vert (Ecole des Mines) Kernels for Strings and Graphs 52 / 126



Further reading

Dictionary-based string kernels

B. Logan, P. Moreno, B. Suzek, Z. Weng, and S. Kasif.
A Study of Remote Homology Detection.
Technical Report CRL 2001/05, Compaq Cambridge Research
laboratory, June 2001.

L. Liao and W.S. Noble.
Combining Pairwise Sequence Similarity and Support Vector
Machines for Detecting Remote Protein Evolutionary and
Structural Relationships.
J. Comput. Biol., 10(6):857–868, 2003.
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Outline

1 Kernels and kernel methods

2 Kernels for biological sequences
Motivations
Feature space approach
Using generative models
Derive from a similarity measure
Application: remote homology detection

3 Kernels on graphs
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Probabilistic models for sequences

Probabilistic modeling of biological sequences is older than kernel
designs. Important models include HMM for protein sequences, SCFG
for RNA sequences.

Parametric model
A model is a family of distribution

{Pθ, θ ∈ Θ ⊂ Rm} ⊂ M+
1 (X )
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Strategy 1: Fisher kernel

Definition
Fix a parameter θ0 ∈ Θ (e.g., by maximum likelihood over a
training set of sequences)
For each sequence x, compute the Fisher score vector:

Φθ0(x) = ∇θ log Pθ(x)|θ=θ0 .

Form the kernel (Jaakkola et al., 1998):

K
(
x, x′

)
= Φθ0(x)>I(θ0)

−1Φθ0(x
′) ,

where I(θ0) = Eθ0

[
Φθ0(x)Φθ0(x)>

]
is the Fisher information matrix.
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Fisher kernel properties

The Fisher score describes how each parameter contributes to
the process of generating a particular example
The Fisher kernel is invariant under change of parametrization of
the model
A kernel classifier employing the Fisher kernel derived from a
model that contains the label as a latent variable is, asymptotically,
at least as good a classifier as the MAP labelling based on the
model (Jaakkola and Haussler, 1998).
A variant of the Fisher kernel (called the Tangent of Posterior
kernel) can also improve over the direct posterior classification by
helping to correct the effect of estimation errors in the parameter
(Tsuda et al., 2002).
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Fisher kernel in practice

Φθ0(x) can be computed explicitly for many models (e.g., HMMs)
I(θ0) is often replaced by the identity matrix
Several different models (i.e., different θ0) can be trained and
combined
Feature vectors are explicitly computed
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Further reading

Fisher kernels

T. Jaakkola, M. Diekhans, and D. Haussler.
A Discriminative Framework for Detecting Remote Protein
Homologies.
J. Comput. Biol., 7(1,2):95–114, 2000.

K. Tsuda, M. Kawanabe, G. Rätsch, S. Sonnenburg, and K.-R.
Müller.
A new discriminative kernel from probabilistic models.
Neural Computation, 14(10):2397–2414, 2002.
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Strategy 2: Mutual information kernels

Definition
Chose a prior w(dθ) on the measurable set Θ

Form the kernel (Seeger, 2002):

K
(
x, x′

)
=

∫
θ∈Θ

Pθ(x)Pθ(x′)w(dθ) .

No explicit computation of a finite-dimensional feature vector
K (x, x′) =< φ (x) , φ (x′) >L2(w) with

φ (x) = (Pθ (x))θ∈Θ .
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Example: coin toss

Let Pθ(X = 1) = θ and Pθ(X = 0) = 1− θ a model for random
coin toss, with θ ∈ [0, 1].
Let dθ be the Lebesgue measure on [0, 1]

The mutual information kernel between x = 001 and x′ = 1010 is:{
Pθ (x) = θ (1− θ)2 ,

Pθ (x′) = θ2 (1− θ)2 ,

K
(
x, x′

)
=

∫ 1

0
θ3 (1− θ)4 dθ =

3!4!

8!
=

1
280

.
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Context-tree model

Definition
A context-tree model is a variable-memory Markov chain:

PD,θ(x) = PD,θ (x1 . . . xD)
n∏

i=D+1

PD,θ (xi | xi−D . . . xi−1)

D is a suffix tree
θ ∈ ΣD is a set of conditional probabilities (multinomials)
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Context-tree model: example

P(AABACBACC) = P(AAB)θAB(A)θA(C)θC(B)θACB(A)θA(C)θC(A) .
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The context-tree kernel

Theorem (Cuturi et al., 2004)
For particular choices of priors, the context-tree kernel:

K
(
x, x′

)
=

∑
D

∫
θ∈ΣD

PD,θ(x)PD,θ(x′)w(dθ|D)π(D)

can be computed in O(|x|+ |x′|) with a variant of the Context-Tree
Weighting algorithm.
This is a valid mutual information kernel.
The similarity is related to information-theoretical measure of
mutual information between strings.
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Further reading

Mutual information kernels

M. Seeger.
Covariance Kernels from Bayesian Generative Models.
In Adv. Neural Inform. Process. Syst., volume 14, pages 905–912,
2002.

M. Cuturi and J.-P. Vert.
The context-tree kernel for strings.
Neural Network., 18(4):1111–1123, 2005.

M. Cuturi, K. Fukumizu, and J.P. Vert.
Semigroup Kernels on Measures.
J. Mach. Learn. Res., 6:1169–1198, 2005.
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Strategy 3: Marginalized kernels

Definition
For any observed data x ∈ X , let a latent variable y ∈ Y be
associated probabilistically through a conditional probability
Px (dy).
Let KZ be a kernel for the complete data z = (x, y)

Then the following kernel is a valid kernel on X , called a
marginalized kernel (Tsuda et al., 2002):

KX
(
x, x′

)
:= EPx(dy)×Px′ (dy′)KZ

(
z, z′

)
=

∫ ∫
KZ

(
(x, y) ,

(
x′, y′

))
Px (dy) Px′

(
dy′

)
.
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Marginalized kernels: proof of positive definiteness

KZ is p.d. on Z. Therefore there exists a Hilbert space H and
ΦZ : Z → H such that:

KZ
(
z, z′

)
=

〈
ΦZ (z) ,ΦZ

(
z′

)〉
H .

Marginalizing therefore gives:

KX
(
x, x′

)
= EPx(dy)×Px′ (dy′)KZ

(
z, z′

)
= EPx(dy)×Px′ (dy′)

〈
ΦZ (z) ,ΦZ

(
z′

)〉
H

=
〈
EPx(dy)ΦZ (z) , EPx(dy′)ΦZ

(
z′

)〉
H ,

therefore KX is p.d. on X . �
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Example: HMM for normal/biased coin toss

S

B

0.5

0.5

0.1
0.1

0.05

0.05N

E

0.85

0.85

Normal (N) and biased (B)
coins (not observed)

Observed output are 0/1 with probabilities:{
π(0|N) = 1− π(1|N) = 0.5,

π(0|B) = 1− π(1|B) = 0.8.

Example of realization (complete data):

NNNNNBBBBBBBBBNNNNNNNNNNNBBBBBB
1001011101111010010111001111011
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1-spectrum kernel on complete data

If both x ∈ A∗ and y ∈ S∗ were observed, we might rather use the
1-spectrum kernel on the complete data z = (x, y):

KZ
(
z, z′

)
=

∑
(a,s)∈A×S

na,s (z) na,s (z) ,

where na,s (x, y) for a = 0, 1 and s = N, B is the number of
occurrences of s in y which emit a in x.
Example:

z =1001011101111010010111001111011,
z′ =0011010110011111011010111101100101,

KZ
(
z, z′

)
= n0 (z) n0

(
z′

)
+ n0 (z) n0

(
z′

)
+ n1 (z) n1

(
z′

)
+ n1 (z) n1

(
z′

)
= 7× 15 + 9× 12 + 13× 6 + 2× 1 = 293.
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1-spectrum marginalized kernel on observed data

The marginalized kernel for observed data is:

KX
(
x, x′

)
=

∑
y,y′∈S∗

KZ ((x, y) , (x, y)) P (y|x) P
(
y′|x′

)

=
∑

y,y′∈S∗

 ∑
(a,s)∈A×S

na,s (z) na,s (z)

 P (y|x) P
(
y′|x′

)
=

∑
(a,s)∈A×S

Φa,s (x) Φa,s
(
x′

)
,

with
Φa,s (x) =

∑
y∈S∗

P (y|x) na,s (x, y)
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Computation of the 1-spectrum marginalized kernel

Φa,s (x) =
∑
y∈S∗

P (y|x) na,s (x, y)

=
∑
y∈S∗

P (y|x)

{
n∑

i=1

δ (xi , a) δ (yi , s)

}

=
n∑

i=1

δ (xi , a)

 ∑
y∈S∗

P (y|x) δ (yi , s)


=

n∑
i=1

δ (xi , a) P (yi = s|x) .

and P (yi = s|x) can be computed efficiently by forward-backward
algorithm!
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HMM example (DNA)
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HMM example (protein)
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SCFG for RNA sequences

SFCG rules
S → SS
S → aSa
S → aS
S → a

Marginalized kernel (Kin et al., 2002)
Feature: number of occurrences of each (base,state) combination
Marginalization using classical inside/outside algorithm
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Marginalized kernels in practice

Examples
Spectrum kernel on the hidden states of a HMM for protein
sequences (Tsuda et al., 2002)
Kernels for RNA sequences based on SCFG (Kin et al., 2002)
Kernels for graphs based on random walks on graphs (Kashima et
al., 2003)
Kernels for multiple alignments based on phylogenetic models
(Vert et al., 2006)
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Marginalized kernels: example

PC2

PC1

A set of 74 human tRNA
sequences is analyzed using
a kernel for sequences (the
second-order marginalized
kernel based on SCFG). This
set of tRNAs contains three
classes, called Ala-AGC
(white circles), Asn-GTT
(black circles) and Cys-GCA
(plus symbols) (from Tsuda
et al., 2002).
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Further reading

Marginalized kernels

K. Tsuda, T. Kin, and K. Asai.
Marginalized Kernels for Biological Sequences.
Bioinformatics, 18:S268–S275, 2002.

T. Kin, K. Tsuda, and K. Asai.
Marginalized kernels for RNA sequence data analysis.
In GIW 2002, pages 112–122, 2002.

H. Kashima, K. Tsuda, and A. Inokuchi.
Marginalized Kernels between Labeled Graphs.
In ICML’03, pages 321–328, 2003.

J.-P. Vert, R. Thurman, and W. S. Noble.
Kernels for gene regulatory regions.
In NIPS’05, volume 18, pages 1401–1408, 2006.
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Outline

1 Kernels and kernel methods

2 Kernels for biological sequences
Motivations
Feature space approach
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Sequence alignment

Motivation
How to compare 2 sequences?

x1 = CGGSLIAMMWFGV
x2 = CLIVMMNRLMWFGV

Find a good alignment:

CGGSLIAMM----WFGV
|...|||||....||||
C---LIVMMNRLMWFGV
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Alignment score

In order to quantify the relevance of an alignment π, define:
a substitution matrix S ∈ RA×A

a gap penalty function g : N → R
Any alignment is then scored as follows

CGGSLIAMM----WFGV
|...|||||....||||
C---LIVMMNRLMWFGV

sS,g(π) = S(C, C) + S(L, L) + S(I, I) + S(A, V ) + 2S(M, M)

+ S(W , W ) + S(F , F ) + S(G, G) + S(V , V )− g(3)− g(4)
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Local alignment kernel

Smith-Waterman score
The widely-used Smith-Waterman local alignment score is defined
by:

SWS,g(x, y) := max
π∈Π(x,y)

sS,g(π).

It is symmetric, but not positive definite...

LA kernel
The local alignment kernel:

K (β)
LA (x, y) =

∑
π∈Π(x,y)

exp
(
βsS,g (x, y, π)

)
,

is symmetric positive definite (Vert et al., 2004).
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LA kernel is p.d.: proof

If K1 and K2 are p.d. kernels for strings, then their convolution
defined by:

K1 ? K2(x, y) :=
∑

x1x2=x,y1y2=y

K1(x1, y1)K2(x2, y2)

is also p.d. (Haussler, 1999).
LA kernel is p.d. because it is a convolution kernel (Haussler,
1999):

K (β)
LA =

∞∑
n=0

K0 ?
(

K (β)
a ? K (β)

g

)(n−1)
? K (β)

a ? K0.

where K0, Ka and Kg are three basic p.d. kernels (Vert et al.,
2004).
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LA kernel in practice

Implementation by dynamic programming in O(|x| × |x′|)

a:0/1

a:0/1

a:0/1

a:0/1

0:a/1

0:a/1

0:a/1 0:a/1

0:a/1

0:0/1

0:0/1

0:0/1

0:0/1

0:0/1

0:0/1

0:a/1

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)
a:0/D

a:0/E

0:b/E

0:b/D

0:b/D

B M E

XX X

YY Y

1

1 2

2

In practice, values are too large (exponential scale) so taking its
logarithm is a safer choice (but not p.d. anymore!)
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Further reading

Convolution kernels

D. Haussler.
Convolution Kernels on Discrete Structures.
Technical Report UCSC-CRL-99-10, UC Santa Cruz, 1999.

C. Watkins.
Dynamic alignment kernels.
In A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans,
editors, Advances in Large Margin Classifiers, pages 39–50. MIT
Press, Cambridge, MA, 2000.

J.-P. Vert, H. Saigo, and T. Akutsu.
Local alignment kernels for biological sequences.
In B. Schölkopf, K. Tsuda, and J.P. Vert, editors, Kernel Methods in
Computational Biology, pages 131–154. MIT Press, 2004.
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Remote homology

Sequence similarity

Clo
se

 h
om

olo
gs

Tw
ili

ght z
one

N
on h

om
olo

gs

Homologs have common ancestors
Structures and functions are more conserved than sequences
Remote homologs can not be detected by direct sequence
comparison
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SCOP database

Remote homologs

Superfamily

Family

SCOP

Close homologs

Fold
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A benchmark experiment

Goal: recognize directly the superfamily
Training: for a sequence of interest, positive examples come from
the same superfamily, but different families. Negative from other
superfamilies.
Test: predict the superfamily.
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Difference in performance
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SVM-pairwise

SVM-Mismatch
SVM-Fisher

Performance on the SCOP superfamily recognition benchmark (from
Vert et al., 2004).
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Example: web
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Example: social network
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Example: protein-protein interaction
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Kernel on a graph

φ

We need a kernel K (x, x′) between nodes of the graph.
Example: predict gene protein functions from high-throughput
protein-protein interaction data.
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General remarks

Strategies to make a kernel on a graph
X being finite, any symmetric semi-definite matrix K defines a
valid p.d. kernel on X .
How to “translate” the graph topology into the kernel?

Direct geometric approach: Ki,j should be “large” when xi and xj
are “close” to each other on the graph?
Functional approach: ‖ f ‖K should be “small” when f is “smooth” on
the graph?
Link discrete/continuous: is there an equivalent to the continuous
Gaussien kernel on the graph (e.g., limit by fine discretization)?
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First approach : Geometric

A direct approach
Remember : for X = Rn, the Gaussian RBF kernel is:

K
(
x, x′

)
= exp

(
−d

(
x, x′

)2
/2σ2

)
,

where d (x, x′) is the Euclidean distance.
If X is a graph, let d (x, x′) be the shortest-path distance between
x and x′.
Problem: the shortest-path distance is not a Hilbert distance
(except for special graphs, e.g., trees)...
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Functional approach

Idea
Define a priori a smoothness functional on the functions
f : X → R.
Show that it defines a RKHS and identify the corresponding kernel
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Notations

1

2

3

4

5

A =


0 0 1 0 0
0 0 1 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 , D =


1 0 0 0 0
0 1 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1
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Graph Laplacian

Definition
The Laplacian of the graph is the matrix L = A− D.

1

2

3

4

5

L = A− D =


−1 0 1 0 0
0 −1 1 0 0
1 1 −3 1 0
0 0 1 −2 1
0 0 0 1 −1
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Properties of the Laplacian

Lemma
Let L = A− D be the Laplacian of the graph:

For any f : X → R,

Ω(f ) :=
∑
i∼j

(
f (xi)− f

(
xj

))2
= −f>Lf

−L is a symmetric positive semi-definite matrix
0 is an eigenvalue with multiplicity 1 associated to the constant
eigenvector 1 = (1, . . . , 1)

The image of L is

Im(L) =

{
f ∈ Rm :

m∑
i=1

fi = 0

}
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Our first graph kernel

Theorem

The set H =
{

f ∈ Rm :
∑m

i=1 fi = 0
}

endowed with the norm:

Ω (f ) =
∑
i∼j

(
f (xi)− f

(
xj

))2

is a RKHS whose reproducing kernel is (−L)∗, the pseudo-inverse of
the graph Laplacian.
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Example

1

2

3

4

5

(−L)∗ =


0.88 −0.12 0.08 −0.32 −0.52

−0.12 0.88 0.08 −0.32 −0.52
0.08 0.08 0.28 −0.12 −0.32

−0.32 −0.32 −0.12 0.48 0.28
−0.52 −0.52 −0.32 0.28 1.08
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The diffusion equation

Lemma
For any x0 ∈ Rd , the function:

Kx0 (x, t) = Kt (x0, x) =
1

(4πt)
d
2

exp
(
−‖x− x0 ‖2

4t

)
.

is solution of the diffusion equation:

∂

∂t
Kx0 (x, t) = ∆Kx0 (x, t) .

with initial condition Kx0 (x, 0) = δx0(x).
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Discrete diffusion equation

For finite-dimensional ft ∈ Rm, the diffusion equation becomes:

∂

∂t
ft = Lft

which admits the following solution:

ft = f0etL

This suggest to consider:

K = etL

which is indeed symmetric positive semi-definite. We call it the
diffusion kernel or heat kernel.
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Example: complete graph

Ki,j =

{
1+(m−1)e−tm

m for i = j ,
1−e−tm

m for i 6= j .
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Example: closed chain

Ki,j =
1
m

m−1∑
ν=0

exp
[
−2t

(
1− cos

2πν

m

)]
cos

2πν(i − j)
m

.
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Spectrum of the diffusion kernel

Let 0 = λ1 > −λ2 ≥ . . . ≥ −λm be the eigenvalues of the
Laplacian:

L =
m∑

i=1

(−λi)uiu>i (λi ≥ 0)

The diffusion kernel Kt is an invertible matrix because its
eigenvalues are strictly positive:

Kt =
m∑

i=1

e−tλi uiu>i

Jean-Philippe Vert (Ecole des Mines) Kernels for Strings and Graphs 110 / 126



Norm in the diffusion RKHS

For any function f ∈ Rm, let:

f̂i = u>i f

be the Fourier coefficients of f (projection of f onto the eigenbasis
of K ).
The RKHS norm of f is then:

‖ f ‖2
Kt

= f>K−1f =
m∑

i=1

etλi f̂ 2
i .
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Generalization

This observation suggests to define a whole family of kernels:

Kr =
m∑

i=1

r(λi)uiu>i

associated with the following RKHS norms:

‖ f ‖2
Kr

=
m∑

i=1

f̂ 2
i

r(λi)

where r : R+ → R+
∗ is a non-increasing function.
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Example : regularized Laplacian

r(λ) =
1

λ + ε
, ε > 0

K =
m∑

i=1

1
λi + ε

uiu>i = (−L + εI)−1

‖ f ‖2
K = f>K−1f =

∑
i∼j

(
f (xi)− f

(
xj

))2
+ ε

m∑
i=1

f (xi)
2 .
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Applications 1: graph partitioning

A classical relaxation of graph partitioning is:

min
f∈RX

∑
i∼j

(
fi − fj

)2 s.t.
∑

i

f 2
i = 1

This can be rewritten

max
f

∑
i

f 2
i s.t. ‖ f ‖H ≤ 1

This is principal component analysis in the RKHS (“kernel PCA”)

PC1PC2

Jean-Philippe Vert (Ecole des Mines) Kernels for Strings and Graphs 115 / 126



Applications 2: search on a graph

Let x1, . . . , xq a set of q nodes (the query). How to find “similar”
nodes (and rank them)?
One solution:

min
f
‖ f ‖H s.t. f (xi) ≥ 1 for i = 1, . . . , q.
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Application 3: Semi-supervised learning
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Application 3: Semi-supervised learning
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Application 4: Tumor classification from microarray
data

Data available
Gene expression measures for more than 10k genes
Measured on less than 100 samples of two (or more) different
classes (e.g., different tumors)

Goal
Design a classifier to automatically assign a class to future
samples from their expression profile
Interpret biologically the differences between the classes
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Linear classifiers

The approach
Each sample is represented by a vector x = (x1, . . . , xp) where
p > 105 is the number of probes
Classification: given the set of labeled sample, learn a linear
decision function:

f (x) =

p∑
i=1

βixi + β0 ,

Interpretation: the weight βi quantifies the influence of gene i for
the classification

Pitfalls
No robust estimation procedure exist for 100 samples in 105

dimensions!
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Prior knowledge

We know the functions of many genes, and how they interact
together.
This can be represented as a graph of genes, where connected
genes perform some action together
Prior knowledge: constraint the weights of genes that work
together to be similar
Mathematically: constrain the norm of the weight vector in the
RKHS of the diffusion kernel.
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Comparison

 

N

-

Glycan 
biosynthesis

   

Protein 
kinases

DNA  
and 
RNA 
polymerase 
subunits

Glycolysis / 
Gluconeogenesis 

Sulfur
metabolism

Porphyrin
and 
chlorophyll 
metabolism

Riboflavin metabolism

Folate
biosynthesis

Biosynthesis of steroids, 
ergosterol metabolism

 

Lysine
biosynthesis

Phenylalanine, tyrosine and
tryptophan biosynthesis Purine

metabolism

Oxidative 
phosphorylation, 
TCA cycle

Nitrogen,
asparagine
metabolism
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Further reading

Kernels on graphs

R. I. Kondor and J. Lafferty.
Diffusion Kernels on Graphs and Other Discrete Input.
In ICML 2002, 2002.

Applications

F. Rapaport, A. Zinovyev, M. Dutreix, E. Barillot and J.-P. Vert
Classification of Microarray Data using Gene Networks.
BMC Bioinformatics, 8:35, 2007.
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Conclusion
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Conclusion (1/2)

Kernel design
A variety of principles for string and graph kernel design have
been proposed.
Good kernel design is important for each data and each task.
Performance is not the only criterion.
Still an art, although principled ways have started to emerge.
The integration of “higher-order information” is a hot topic! Kernel
methods are promising to combine generative and discriminative
approaches.
Their application goes of course beyond computational biology.
Their application goes of course beyond strings and graphs.
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Conclusion (2/2)

Challenges
How to choose “the” best kernel for a given task, or to learn
simultaneously with different kernels?
How to extend the methods to non p.d. and non symmetric
kernels?
How to design scalable kernel methods to process millions of
points?
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