Supervised inference of biological networks and Classification of gene expression data with gene networks

Jean-Philippe Vert Jean-Philippe.Vert@ensmp.fr

Centre for Computational Biology Ecole des Mines de Paris, ParisTech

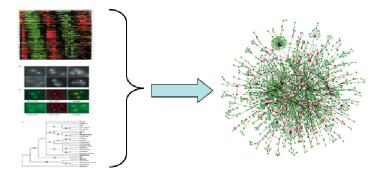
Institute for Infocomm Research, Singapore, February 14th, 2007

Supervised inference of biological networks from heterogeneous genomic data

Supervised inference of biological networks from heterogeneous genomic data

Supervised inference of biological networks from heterogeneous genomic data

Motivation



Data

- Gene expression,
- Gene sequence,
- Protein localization, ...

Graph

- Protein-protein interactions,
- Metabolic pathways,
- Signaling pathways, ...

Unsupervised approaches

The graph is completely unknown

- model-based approaches : Bayes nets, dynamical systems,...
- similarity-based : connect similar nodes

Supervised approaches

Part of the graph is known in advance

- Prior knowledge in model-based approaches
- Statistical / Machine learning approaches: learn from the known subnetwork a rule that can predict edges from genomic data

Unsupervised approaches

The graph is completely unknown

- model-based approaches : Bayes nets, dynamical systems,...
- similarity-based : connect similar nodes

Supervised approaches

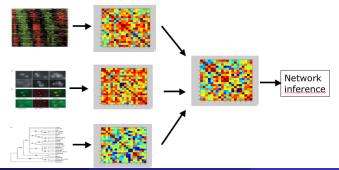
Part of the graph is known in advance

- Prior knowledge in model-based approaches
- Statistical / Machine learning approaches: learn from the known subnetwork a rule that can predict edges from genomic data

Genomic Data

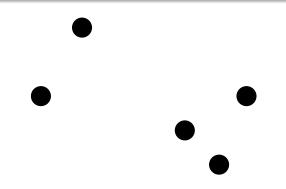
Data representation a distances

- We assume that each type of data (expression, sequences...) defines a (*negative definite*) distance between genes.
- Many such distances exist (cf kernel methods).
- Data integration is easily obtained by summing the distance to obtain an "integrated" distance



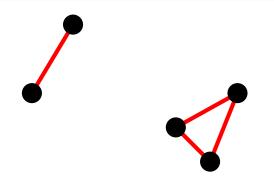
Method 1: Direct similarity-based prediction

- Motivation: "connect similar genes"
- Connect *a* and *b* if d(a, b) is below a threshold.
- This is an unsupervised approach (no use of the known subnetwork).



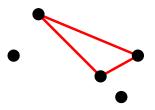
Method 1: Direct similarity-based prediction

- Motivation: "connect similar genes"
- Connect *a* and *b* if d(a, b) is below a threshold.
- This is an unsupervised approach (no use of the known subnetwork).



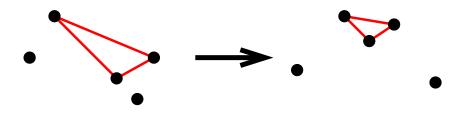
Method 2: metric learning

- Motivation: use the known subnetwork to refine the distance measure, before applying the similarity-based method
- Based on kernel CCA (Yamanishi et al., 2004) or kernel metric learning (V. and Yamanishi, 2005).

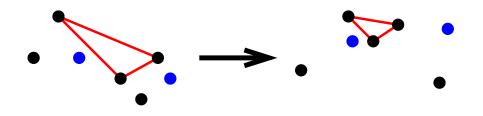


Method 2: metric learning

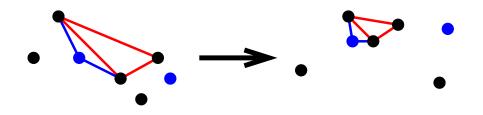
- Motivation: use the known subnetwork to refine the distance measure, before applying the similarity-based method
- Based on kernel CCA (Yamanishi et al., 2004) or kernel metric learning (V. and Yamanishi, 2005).



- Motivation: use the known subnetwork to refine the distance measure, before applying the similarity-based method
- Based on kernel CCA (Yamanishi et al., 2004) or kernel metric learning (V. and Yamanishi, 2005).



- Motivation: use the known subnetwork to refine the distance measure, before applying the similarity-based method
- Based on kernel CCA (Yamanishi et al., 2004) or kernel metric learning (V. and Yamanishi, 2005).



Kernel metric learning (V. and Yamanishi, 2005)

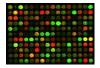
- Criterion: connected points should be near each other after mapping to a new *d*-dimensional Euclidean space.
- Add regularization to deal with high dimensions.
- Mapping $f(x) = (f_1(x), ..., f_d(x))$ with:

$$f_{i} = \arg\min_{f \perp \{f_{1}, \dots, f_{i-1}\}, \text{var}(f) = 1} \left\{ \sum_{i \sim j} \left(f(x_{i}) - f(x_{j}) \right)^{2} + \lambda ||f||_{k}^{2} \right\}$$

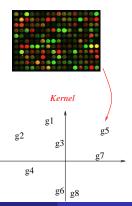
- Interpolates between (kernel) PCA ($\lambda = \infty$) and graph embedding ($\lambda = 0$).
- Equivalent to a generalized eigenvalue problem.

.

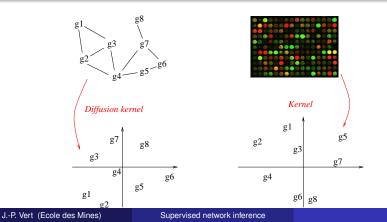
- Criterion: Find a subspace where the graph distance and the genomic data distance match
- Formulated as a search for correlated directions (kernel trick).



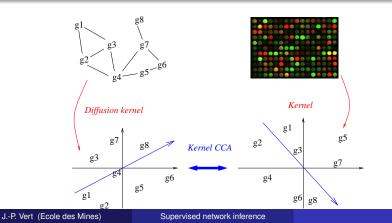
- Criterion: Find a subspace where the graph distance and the genomic data distance match
- Formulated as a search for correlated directions (kernel trick).



- Criterion: Find a subspace where the graph distance and the genomic data distance match
- Formulated as a search for correlated directions (kernel trick).

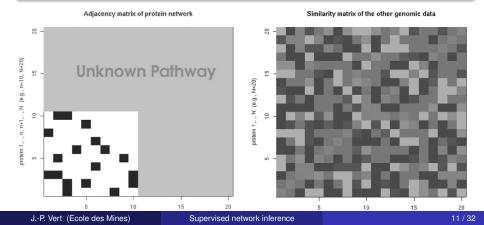


- Criterion: Find a subspace where the graph distance and the genomic data distance match
- Formulated as a search for correlated directions (kernel trick).



Method 3: Matrix completion

- Motivation: Fill missing entries in the adjacency matrix directly, by making it similar to (a variant of) the data matrix
- Method: EM algorithm based on information geometry of positive semidefinite matrices (Kato et al., 2005)

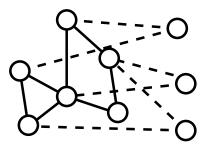


- A pair can be connected (1) or not connected (-1)
- Use known network as a training set for a SVM that will predict if new pair is connected or not
- Example: SVM with tensor product pairwise kernel (Ben-Hur and Noble, 2006):

 $K_{TTPK}((x_1, x_2), (x_3, x_4)) = K(x_1, x_3)K(x_2, x_4) + K(x_1, x_4)K(x_2, x_3)$

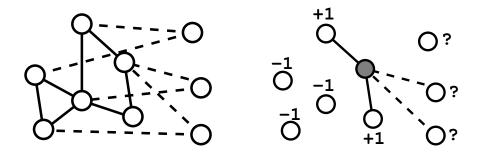
Method 5: Local predictions

- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.



Method 5: Local predictions

- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.



Pros

- Allow very different models for nearby nodes on the graph
- Faster to train n models with n examples than 1 model with n² examples

Cons

• Few positive examples available for some nodes

Pros

- Allow very different models for nearby nodes on the graph
- Faster to train n models with n examples than 1 model with n² examples

Cons

• Few positive examples available for some nodes

Experiments

Network

- Metabolic network (668 vertices, 2782 edges)
- Protein-protein interaction network (984 vertices, 2438 edges)

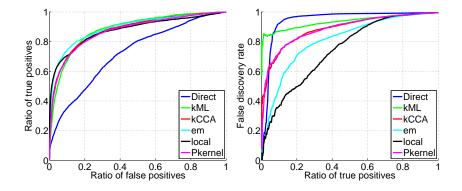
Data (yeast)

- Gene expression (157 experiments)
- Phylogenetic profile (145 organisms)
- Cellular localization (23 intracellular locations)
- Yeast two-hybrid data (2438 interactions among 984 proteins)

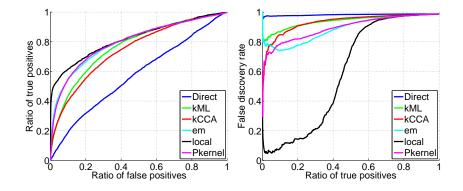
Method

- 5-fold cross-validation
- Predict edges between test set and training set

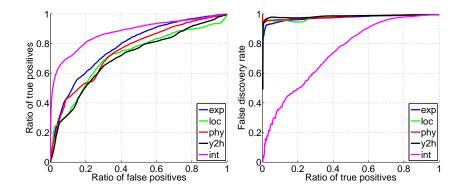
Results: protein-protein interaction



Results: metabolic gene network

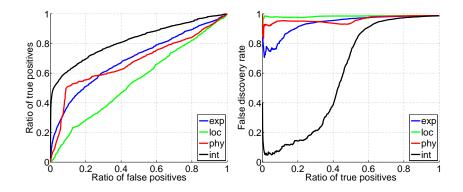


Results: effect of data integration



Local SVM, protein-protein interaction network.

Results: effect of data integration



Local SVM, metabolic gene network.

Summary

- A variety of methods have been investigated recently
- Some reach interesting performance on the benchmarks: Local SVM retrieve 45% of all true edges of the metabolic gene network at a FDR below 50%
- Valid for any network, but non-mechanistic model.
- Future work: experimental validation, improved data integration, semi-local approaches...

Tumor classification from microarray data

Data available

- Gene expression measures for more than 10k genes
- Measured on less than 100 samples of two (or more) different classes (e.g., different tumors)

Goal

• Design a classifier to automatically assign a class to future samples from their expression profile

• Interpret biologically the differences between the classes

Tumor classification from microarray data

Data available

- Gene expression measures for more than 10k genes
- Measured on less than 100 samples of two (or more) different classes (e.g., different tumors)

Goal

- Design a classifier to automatically assign a class to future samples from their expression profile
- Interpret biologically the differences between the classes

The approach

- Each sample is represented by a vector $x = (x_1, ..., x_p)$ where $p > 10^5$ is the number of probes
- Classification: given the set of labeled sample, learn a linear decision function:

$$f(x) = \sum_{i=1}^{p} \beta_i x_i + \beta_0 ,$$

that is positive for one class, negative for the other

 Interpretation: the weight β_i quantifies the influence of gene *i* for the classification

Pitfalls

- No robust estimation procedure exist for 100 samples in 10⁵ dimensions!
- It is necessary to reduce the complexity of the problem with prior knowledge.

Example : Norm Constraints

The approach

A common method in statistics to learn with few samples in high dimension is to constrain the norm of β , e.g.:

- Euclidean norm (support vector machines, ridge regression): $\|\beta\|_2 = \sum_{i=1}^{p} \beta_i^2$
- L_1 -norm (lasso regression) : $\|\beta\|_1 = \sum_{i=1}^p |\beta_i|$

Pros

 Good performance in classification

Cons

- Limited interpretation (small weights)
- No prior biological knowledge

The approach

Constrain most weights to be 0, i.e., select a few genes (< 20) whose expression are enough for classification. Interpretation is then about the selected genes.

Pros

- Good performance in classification
- Useful for biomarker selection
- Apparently easy interpretation

Cons

- The gene selection process is usually not robust
- Wrong interpretation is the rule (too much correlation between genes)

Motivation

- Basic biological functions are usually expressed in terms of pathways and not of single genes (metabolic, signaling, regulatory)
- Many pathways are already known
- How to use this prior knowledge to constrain the weights to have an interpretation at the level of pathways?

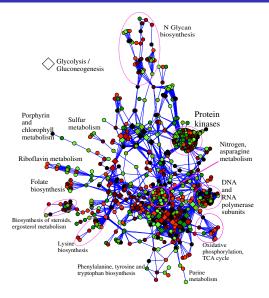
One solution (Rapaport et al., 2007)

- Let the set of pathways be represented by an undirected graph.
- Consider the pathway-derived norm:

$$\Omega(\beta) = \sum_{i \sim j} (\beta_i - \beta_j)^2 .$$

- Constrain $\Omega(\beta)$ instead of $\|\beta\|_2^2$
- Remard: this is equivalent to a SVM with a particular kernel.

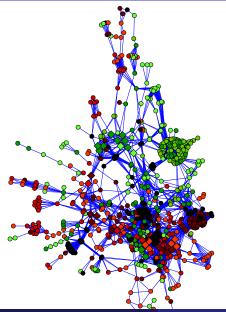
Pathway interpretation



Bad example

- The graph is the complete known metabolic network of the budding yeast (from KEGG database)
- We project the classifier weight learned by a SVM
- Good classification accuracy, but no possible interpretation!

Pathway interpretation



Good example

- The graph is the complete known metabolic network of the budding yeast (from KEGG database)
- We project the classifier weight learned by a spectral SVM
- Good classification accuracy, and good interpretation!

- Use the gene graph to encode prior knowledge about the classifier.
- Prior knowledge is always needed to classify few examples in large dimensions (sometimes implicitly)
- Future work: validation of the method on more data, other formulations, directed graphs...

Supervised graph inference

- Yoshihiro Yamanishi, Minoru Kanehisa (Univ. Kyoto): kCCA, kML
- Kevin Bleakley, Gerard Biau (Univ. Montpellier): local SVM

Classification of microarray data

 Franck Rapaport, Emmanuel Barillot, Andrei Zynoviev, Marie Dutreix (Curie Institute)