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Part 1

Statistical Learning with
Positive Definite Kernels
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Overview

Motivations
Develop versatile algorithms to process and learn from data
No hypothesis made regarding the type of data (vectors, strings,
graphs, images, ...)

The approach
Develop methods based on pairwise comparisons.
By imposing constraints on the pairwise comparison function
(positive definite kernels), we obtain a nice general framework for
learning from data.
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Representation by pairwise comparisons
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K=

X

S

(S)=(aatcgagtcac,atggacgtct,tgcactact)φ

Idea
Define a “comparison function”: K : X × X 7→ R.

Represent a set of n data points S = {x1, x2, . . . , xn} by the n × n
matrix:

[K ]ij := K
(
xi , xj

)
.
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Positive Definite (p.d.) Kernels

Definition
A positive definite (p.d.) kernel on the set X is a function
K : X × X → R symmetric:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
= K

(
x′, x

)
,

and which satisfies, for all N ∈ N, (x1, x2, . . . , xN) ∈ XN et
(a1, a2, . . . , aN) ∈ RN :

N∑
i=1

N∑
j=1

aiajK
(
xi , xj

)
≥ 0 .
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General remarks

Remarks
Equivalently, a kernel K is p.d. if and only if, for any N ∈ N and
any set of points (x1, x2, . . . , xN) ∈ XN , the similarity matrix
[K ]ij := K

(
xi , xj

)
is positive semidefinite.

Complete modularity between the kernel (mapping a set of points
to a matrix) and the algorithm (processing the matrix)
Poor scalability w.r.t to the dataset size (n2?)
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Examples

Kernels for vectors
Classical kernels for vectors (X = Rp) include:

The linear kernel
Klin

(
x, x′

)
= x>x′ .

The polynomial kernel

Kpoly
(
x, x′

)
=
(

x>x′ + a
)d

.

The Gaussian RBF kernel:

KGaussian
(
x, x′

)
= exp

(
−‖x− x′ ‖2

2σ2

)
.
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P.d. kernels are inner products

Theorem (Aronszajn, 1950)
K is a p.d. kernel on the set X if and only if there exists a Hilbert space
H and a mapping

Φ : X 7→ H ,

such that, for any x, x′ in X :

K
(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉
H .

φ
X H
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Corollary: The kernel trick

Kernel trick
Any algorithm to process finite-dimensional vectors that can be
expressed only in terms of pairwise inner products can be applied to
potentially infinite-dimensional vectors in the feature space of a p.d.
kernel by replacing each inner product evaluation by a kernel
evaluation.

Remarks
The proof of this proposition is trivial, because the kernel is
exactly the inner product in the feature space.
This trick has huge practical applications, in particular to extend
linear methods to non-linear settings and non-vector data.
Vectors in the feature space are only manipulated implicitly,
through pairwise inner products.
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Kernel trick example: computing distances in the
feature space

φ
X F

x1

x2

x1

x2φ(     )

φ(    )d(x1,x2)

dK (x1, x2)
2 = ‖Φ (x1)− Φ (x2) ‖2

H

= 〈Φ (x1)− Φ (x2) ,Φ (x1)− Φ (x2)〉H
= 〈Φ (x1) ,Φ (x1)〉H + 〈Φ (x2) ,Φ (x2)〉H − 2 〈Φ (x1) ,Φ (x2)〉H

dK (x1, x2)
2 = K (x1, x1) + K (x2, x2)− 2K (x1, x2)
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Distance for the Gaussian kernel

The Gaussian kernel with
bandwidth σ on Rd is:

K (x, y) = e−
‖ x−y ‖2

2σ2 ,

K (x, x) = 1 = ‖Φ (x) ‖2
H, so all

points are on the unit sphere in
the feature space.
The distance between the
images of two points x and y in
the feature space is given by:

dK (x, y) =

√
2
[
1− e−

‖ x−y ‖2

2σ2

] −4 −2 0 2 4

0.
0

0.
4

0.
8

1.
2

||x−y||

d(
x,

y)
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Reproducing kernel Hilbert space

Definition
Let X be a set and H ⊂ RX be a class of functions forming a (real)
Hilbert space with inner product 〈., .〉H. The function K : X 2 7→ R is
called a reproducing kernel (r.k.) of H if

1 H contains all functions of the form

∀x ∈ X , Kx : t 7→ K (x, t) .

2 For every x ∈ X and f ∈ H the reproducing property holds:

f (x) = 〈f , Kx〉H .

If a r.k. exists, then H is called a reproducing kernel Hilbert space
(RKHS).
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Equivalence between positive definite and reproducing
kernels

Theorem (Aronszajn, 1950)
K is a p.d. kernel if and only if there exists a RKHS having K as r.k.

Corollary
For any p.d. kernel K , let H be its RKHS. Define:

Φ :X → H ,

x 7→ Kx .

We then get: 〈
Φ (x) ,Φ

(
x′
)〉
H = 〈Kx, Kx′〉H

= Kx (x)

= K
(
x, x′

)
. �
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RKHS of a p.d. kernel

Explicit construction of the RKHS
If K is p.d., then the RKHS H is the vector subspace of RX
spanned by the functions {Kx}x∈X (and their pointwise limits).
For any f , g ∈ H0, given by:

f =
∑

i

aiKxi , g =
∑

j

bjKyj ,

the inner product is given by:

〈f , g〉H0
:=
∑
i,j

aibjK
(
xi , yj

)
, ‖ f ‖2

H0
=
∑
i,j

aiajK
(
xi , xj

)
.

Jean-Philippe Vert (ParisTech) Statistical learning with graphs 16 / 121



Example : RKHS of the linear kernel


K (x, x′) = x>x′ .
f (x) = w>x ,

‖ f ‖H = ‖w ‖2 .

||f||=1||f||=2 ||f||=0.5
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Examples: RKHS of the Gaussian RBF kernel

KGaussian
(
x, x′

)
= exp

(
−‖x− x′ ‖2

2σ2

)
,

f (x) =
n∑

i=1

αi exp
(
−‖x− xi ‖2

2σ2

)
,

‖ f ‖2
H =

n∑
i=1

n∑
j=1

αiαj exp

(
−
‖xi − xj ‖2

2σ2

)

=

∫ ∣∣∣ f̂ (ω)
∣∣∣2 e

σ2ω2
2 dω .
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Smoothness functional

A simple inequality
By Cauchy-Schwarz we have, for any function f ∈ H and any two
points x, x′ ∈ X :∣∣ f (x)− f

(
x′
) ∣∣ = | 〈f , Kx − Kx′〉H |
≤ ‖ f ‖H × ‖Kx − Kx′ ‖H
= ‖ f ‖H × dK

(
x, x′

)
.

The norm of a function in the RKHS controls how fast the function
varies over X with respect to the geometry defined by the kernel
(Lipschitz with constant ‖ f ‖H).

Important message

Small norm =⇒ slow variations.
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A useful property

Representer theorem (Kimeldorf and Wahba, 1971)
Let X be a set endowed with a p.d. kernel K , HK the
corresponding RKHS, and S = {x1, · · · , xn} ⊂ X a finite set of
points in X .
Let Ψ : Rn+1 → R be a function of n + 1 variables, strictly
increasing with respect to the last variable.
Then, any solution to the optimization problem:

min
f∈HK

Ψ(f (x1) , · · · , f (xn) , ‖ f ‖HK ) ,

admits a representation of the form:

∀x ∈ X , f (x) =
n∑

i=1

αiK (xi , x) .
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Representer theorem: proof

f

H

S

f

0
fS

S = span {Kx1 , . . . , Kxn}
f⊥ (xi) = 〈f⊥, Kxi 〉HK = 0 =⇒ f (xi) = fS (xi) for i = 1, . . . , n.
‖ f ‖HK > ‖ fS ‖HK if f⊥ 6= 0. (Pythagoras) �
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Remarks

Practical and theoretical consequences
Often the function Ψ has the form:

Ψ(f (x1) , · · · , f (xn) , ‖ f ‖HK ) = c (f (x1) , · · · , f (xn)) + λΩ (‖ f ‖HK )

where c(.) measures the “fit” of f to a given problem (regression,
classification, dimension reduction, ...) and Ω is strictly increasing.
This formulation has two important consequences:

Theoretically, the minimization will enforce the norm ‖ f ‖HK to be
“small”, which can be beneficial by ensuring a sufficient level of
smoothness for the solution (regularization effect).
Practically, we know by the representer theorem that the solution
lives in a subspace of dimension n, which can lead to efficient
algorithms although the RKHS itself can be of infinite dimension.
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Learning from data

General setting
Observation: {z1, . . . , zn} where zi = (xi , yi) ∈ X × Y
Goal: learn a function f : X → R
Examples: density estimation, pattern recognition, regression,
outlier detection, clustering, compression, low-dimensional
embedding...
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Learning from data

Empirical risk minimization (ERM)
1 Define a loss function l(f , z) and a space of functions F .
2 Minimize the empirical average loss over F :

f̂ ∈ arg min
f∈F

1
n

n∑
i=1

l(f , zi) .

General properties of ERM

If F is not “too large” then the ERM is consistent (f̂ is close to the
best possible f ∈ F as the number of observations increases).
If F is not “too small” then the best possible f ∈ F is a “good”
solution.
Challenge: choose a “small” F that contains “good” functions.
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Learning with kernels

ERM in RKHS
Take F to be a ball in the RKHS:

FB = {f ∈ H : ‖ f ‖H ≤ B} .

Advantage: by controlling the “size” of F (related to B) the ERM
principle works (consistency and theoretical rates of
convergence).
The kernel should be chosen s.t. some “good” functions have a
small RKHS norm.
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Example: pattern recognition

APPLE

APPLE

APPLE
APPLE

APPLE

PEAR

PEAR
PEAR

??? ???

???

Input variables x ∈ X
Output y ∈ {−1, 1}.
Training set S = {(x1, y1) , . . . , (xn, yn)}.
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Large-margin classifiers

General setting
For pattern recognition Y = {−1, 1}.
Goal: estimate a function f : X → R to predict y from the sign of
f (x)

The margin for a pair (x, y) is yf (x).
Focusing on large margins ensures that f (x) has the same sign
as y and a large absolute value (confidence).
Leads to a loss function

l (f , (x, y)) = φ (yf (x)) ,

where φ : R → R is non-increasing.
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ERM in for large-margin classifiers: Theory

Theoretical results

The ERM estimator f̂n solves:{
minf∈H

1
n
∑n

i=1 φ (yi f (xi))

subject to ‖ f ‖H ≤ B .

Let P an unknown distribution over X × Y, assume
S = (xi , yi)i=1,...,n i.i.d. according to P.
Assume K upper bounded by κ and φ Lipschitz with constant Lφ.
For the φ-risk Rφ(f ) = Eφ (Yf (X )) we have:

ERφ

(
f̂n
)
≤ inf

f∈FB
Rφ(f ) +

8LφκB√
n

.
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ERM in for large-margin classifiers: Practice

Reformulation as penalized minimization
We must solve the constrained minimization problem:{

minf∈H
1
n
∑n

i=1 φ (yi f (xi))

subject to ‖ f ‖H ≤ B .

To make this practical we assume that φ is convex.
The problem is then a convex problem in f for which strong duality
holds. In particular f solves the problem if and only if it solves for
some dual parameter λ the unconstrained problem:

min
f∈H

{
1
n

n∑
i=1

φ (yi f (xi)) + λ‖ f ‖2
H

}
,

and complimentary slackness holds (λ = 0 or ‖ f ‖H = B).
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Optimization in RKHS

By the representer theorem, the solution of the unconstrained
problem can be expanded as:

f (x) =
n∑

i=1

αiK (xi , x) .

Plugging into the original problem we obtain the following
unconstrained and convex optimization problem in Rn:

min
α∈Rn

1
n

n∑
i=1

φ

yi

n∑
j=1

αjK
(
xi , xj

)+ λ

n∑
i,j=1

αiαjK
(
xi , xj

) .

This can be implemented using general packages for convex
optimization or specific algorithms (e.g., for SVM).
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Loss function examples

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

u

ph
i(u

)

1−SVM
2−SVM
Logistic
Boosting

Method φ(u)

Kernel logistic regression log (1 + e−u)
Support vector machine (1-SVM) max (1− u, 0)

Support vector machine (2-SVM) max (1− u, 0)2

Boosting e−u
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Example: Support vector machines

yf(x)

l(f(x),y)

1

The loss function is the hinge loss:

φhinge(u) = max (1− u, 0) .

SVM solve the problem:

min
f∈H

{
1
n

n∑
i=1

φhinge (yi f (xi)) + λ‖ f ‖2
H

}
.
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SVM reformulation

The classifier is:

∀x ∈ X , f (x) =
n∑

i=1

αiK (x, xi) ,

where α is the solution of the following QP:

max
α∈Rd

2
n∑

i=1

αiyi −
n∑

i,j=1

αiαjK
(
xi , xj

)
,

subject to:

0 ≤ yiαi ≤
1

nλ
, for i = 1, . . . , n .
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Kernel methods: Summary

3 ways to map X to a Hilbert space:
1 Explicitly define and compute Φ : X → H
2 Define a p.d. kernel over X
3 Define a RKHS over X

The kernel trick allows to extend many linear algorithms to
non-linear settings and to general data (even non-vectorial).
The norm in the RKHS can be used as regularization for empirical
risk minimization. This is theoretically justified and leads to
efficient algorithms (often finite-dimensional convex problem
thanks to the representer theorem).
We are now ready to learn with graphs by defining positive definite
kernels for graphs!
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Part 2

Kernels for Graphs
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Chemoinformatics and QSAR

inactive

active

active

active

inactive

inactive

NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Image retrieval and classification

From Harchaoui and Bach (2007).
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Graph kernel

Notations
A directed graph is a pair G = (V , E) with V finite (vertices) and
E ⊂ V × V (edges).
A graph is labeled if a label from a set of labels A is assigned to
each vertex and/or edge.
Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic
(denoted G1 ' G2) if there exists a bijection between V1 and V2
that preserves edges and labels.

Definition
We note G the quotient set of the set of all labelled graphs with
respect to isomorphism.
A graph kernel is a p.d. kernel over G.
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Expressiveness vs Complexity

Definition: Complete graph kernels
A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

∀G1, G2 ∈ G, dK (G1, G2) = 0 =⇒ G1 ' G2 .

Equivalently, Φ(G1) 6= Φ(G1) if G1 and G2 are not isomorphic.

Expressiveness vs Complexity trade-off
If a graph kernel is not complete, then there is no hope to learn all
possible functions over G: the kernel is not expressive enough.
On the other hand, kernel computation must be tractable, i.e., no
more than polynomial (with small degree) for practical
applications.
Can we define tractable and expressive graph kernels?
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Complexity of graph algorithms

Known facts
Are G1 and G2 isomorphic?
The graph isomorphism problem is in NP. It is believed to lie
between P and NP-complete. No known polynomial-time
algorithm exists.
Is G1 isomorphic to a subgraph of G2?
The subgraph isomorphism problem is NP-complete.
Does G contain a sequence of adjacent vertices and edges that
contains every vertex and edge exactly once?
The Hamiltonian path problem is NP-complete.
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Complexity of complete kernels

Proposition (Gärtner et al., 2003)
Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.

Proof
For any kernel K the complexity of computing dK is the same as
the complexity of computing K , because:

dK (G1, G2)
2 = K (G1, G1) + K (G2, G2)− 2K (G1, G2) .

If K is a complete graph kernel, then computing dK solves the
graph isomorphism problem (dK (G1, G2) = 0 iff G1 ' G2). �
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Subgraphs

Definition
A subgraph of a graph (V , E) is a connected graph (V ′, E ′) with
V ′ ⊂ V and E ′ ⊂ E .
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Subgraph kernel

Definition
Let (λG)G∈G a set or nonnegative real-valued weights
For any graph G ∈ G, let

∀H ∈ G, ΦH(G) =
∣∣ {G′ is a subgraph of G : G′ ' H

} ∣∣ .

The subgraph kernel between any two graphs G1 and G2 ∈ G is
defined by:

Ksubgraph(G1, G2) =
∑
H∈G

λHΦH(G1)ΦH(G2) .
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Subgraph kernel complexity

Proposition (Gärtner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (1/2)
Let Pn be the path graph with n edges.
The vectors Φ(P1), . . . ,Φ(Pn) are linearly independent, therefore:

ePn =
n∑

i=1

αiΦ(Pi) .

The coefficients αi can be found in polynomial time (solving a
n × n triangular system).
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Subgraph kernel complexity

Proposition (Gärtner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (2/2)
If G is a graph with n vertices, then it has a path that visits each
node exactly once (Hamiltonian path) if and only if Φ(G)>en > 0,
i.e.,

n∑
i=1

αiKsubgraph(G, Pi) > 0 .

The decision problem whether a graph has a Hamiltonian path is
NP-complete. �
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Paths

Definition
A path of a graph (V , E) is sequence of distinct vertices
v1, . . . , vn ∈ V (i 6= j =⇒ vi 6= vj ) such that (vi , vi+1) ∈ E for
i = 1, . . . , n − 1.
Equivalently the paths are the linear subgraphs.
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Path kernel

Definition
The path kernel is the subgraph kernel restricted to paths, i.e.,

Kpath(G1, G2) =
∑
H∈P

λHΦH(G1)ΦH(G2) ,

where P ⊂ G is the set of path graphs.

Proposition (Gärtner et al., 2003)
Computing the path kernel is NP-hard.

Proof
Same as the subgraph kernel. �
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Summary

Expressiveness vs Complexity trade-off
It is intractable to compute complete graph kernels.
It is intractable to compute the subgraph kernels.
Restricting subgraphs to be linear does not help: it is also
intractable to compute the path kernel.
One approach to define polynomial time computable graph kernels
is to have the feature space be made up of graphs homomorphic
to subgraphs, e.g., to consider walks instead of paths.
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Walks

Definition
A walk of a graph (V , E) is sequence of v1, . . . , vn ∈ V such that
(vi , vi+1) ∈ E for i = 1, . . . , n − 1.
We note Wn(G) the set of walks with n vertices of the graph G,
and W(G) the set of all walks.

etc...
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Paths and walks
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Walk kernel

Definition
Let Sn denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = ∪n≥1Sn.
For any graph G let a weight λG(w) be associated to each walk
w ∈ W(G).
Let the feature vector Φ(G) = (Φs(G))s∈S be defined by:

Φs(G) =
∑

w∈W(G)

λG(w)1 (s is the label sequence of w) .

A walk kernel is a graph kernel defined by:

Kwalk (G1, G2) =
∑
s∈S

Φs(G1)Φs(G2) .

Jean-Philippe Vert (ParisTech) Statistical learning with graphs 55 / 121



Walk kernel

Definition
Let Sn denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = ∪n≥1Sn.
For any graph G let a weight λG(w) be associated to each walk
w ∈ W(G).
Let the feature vector Φ(G) = (Φs(G))s∈S be defined by:

Φs(G) =
∑

w∈W(G)

λG(w)1 (s is the label sequence of w) .

A walk kernel is a graph kernel defined by:

Kwalk (G1, G2) =
∑
s∈S

Φs(G1)Φs(G2) .

Jean-Philippe Vert (ParisTech) Statistical learning with graphs 55 / 121



Walk kernel examples

Examples
The nth-order walk kernel is the walk kernel with λG(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.
The random walk kernel is obtained with λG(w) = PG(w), where
PG is a Markov random walk on G. In that case we have:

K (G1, G2) = P(label(W1) = label(W2)) ,

where W1 and W2 are two independant random walks on G1 and
G2, respectively.
The geometric walk kernel is obtained (when it converges) with
λG(w) = β length(w), for β > 0. In that case the feature space is of
infinite dimension.
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Computation of walk kernels

Proposition
These three kernels (nth-order, random and geometric walk kernels)
can be computed efficiently in polynomial time.
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Product graph

Definition
Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with labeled
vertices. The product graph G = G1 ×G2 is the graph G = (V , E) with:

1 V = {(v1, v2) ∈ V1 × V2 : v1 and v2 have the same label} ,
2 E ={(

(v1, v2), (v ′1, v ′2)
)
∈ V × V : (v1, v ′1) ∈ E1 and (v2, v ′2) ∈ E2

}
.

G1 x G2

c

d e43

2

1 1b 2a 1d

1a 2b

3c

4c

2d

3e

4e

G1 G2

a b
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Walk kernel and product graph

Lemma
There is a bijection between:

1 The pairs of walks w1 ∈ Wn(G1) and w2 ∈ Wn(G2) with the same
label sequences,

2 The walks on the product graph w ∈ Wn(G1 ×G2).

Corollary

Kwalk (G1, G2) =
∑
s∈S

Φs(G1)Φs(G2)

=
∑

(w1,w2)∈W(G1)×W(G1)

λG1(w1)λG2(w2)1(l(w1) = l(w2))

=
∑

w∈W(G1×G2)

λG1×G2(w) .
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Computation of the nth-order walk kernel

For the nth-order walk kernel we have λG1×G2(w) = 1 if the length
of w is n, 0 otherwise.
Therefore:

Knth−order (G1, G2) =
∑

w∈Wn(G1×G2)

1 .

Let A be the adjacency matrix of G1 ×G2. Then we get:

Knth−order (G1, G2) =
∑
i,j

[An]i,j = 1>An1 .

Computation in O(n|G1||G2|d1d2), where di is the maximum
degree of Gi .
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Computation of random and geometric walk kernels

In both cases λG(w) for a walk w = v1 . . . vn can be decomposed
as:

λG(v1 . . . vn) = λi(v1)
n∏

i=2

λt(vi−1, vi) .

Let Λi be the vector of λi(v) and Λt be the matrix of λt(v , v ′):

Kwalk (G1, G2) =
∞∑

n=1

∑
w∈Wn(G1×G2)

λi(v1)
n∏

i=2

λt(vi−1, vi)

=
∞∑

n=0

ΛiΛ
n
t 1

= Λi (I − Λt)
−1 1

Computation in O(|G1|3|G2|3)
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Extension 1: Non-tottering walk kernel

Tottering walks
A tottering walk is a walk w = v1 . . . vn with vi = vi+2 for some i .

Tottering

Non−tottering

Tottering walks seem irrelevant for many applications
Focusing on non-tottering walks is a way to get closer to the path
kernel (e.g., equivalent on trees).

Jean-Philippe Vert (ParisTech) Statistical learning with graphs 63 / 121



Computation of the non-tottering walk kernel

Second-order Markov random walk to prevent tottering walks
Written as a first-order Markov random walk on an augmented
graph
Normal walk kernel on the augmented graph (which is always a
directed graph).
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Extension 2: Subtree kernels
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Computation of the subtree kernel

Like the walk kernel, amounts to compute the (weighted) number
of subtrees in the product graph.
Recursion: if T (v , n) denotes the weighted number of subtrees of
depth n rooted at the vertex v , then:

T (v , n + 1) =
∑

R⊂N (v)

∏
v ′∈R

λt(v , v ′)T (v ′, n) ,

where N (v) is the set of neighbors of v .
Can be combined with the non-tottering graph transformation as
preprocessing to obtain the non-tottering subtree kernel.
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Chemoinformatics (Mahé et al., 2004)

MUTAG dataset
aromatic/hetero-aromatic compounds
high mutagenic activity /no mutagenic activity, assayed in
Salmonella typhimurium.
188 compouunds: 125 + / 63 -

Results
10-fold cross-validation accuracy

Method Accuracy
Progol1 81.4%
2D kernel 91.2%
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Image classification (Harchaoui and Bach, 2007)

COREL14 dataset
1400 natural images in 14 classes
Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination
(M).

H W TW wTW M

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

T
es

t e
rr

or

Kernels

Performance comparison on Corel14
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Part 3

Kernels on Graphs
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Example: web
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Example: social network
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Example: protein-protein interaction
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Kernel on a graph

φ

We need a kernel K (x, x′) between nodes of the graph.
Example: predict gene protein functions from high-throughput
protein-protein interaction data.
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General remarks

Strategies to make a kernel on a graph
X being finite, any symmetric semi-definite matrix K defines a
valid p.d. kernel on X .
How to “translate” the graph topology into the kernel?

Direct geometric approach: Ki,j should be “large” when xi and xj
are “close” to each other on the graph?
Functional approach: ‖ f ‖K should be “small” when f is “smooth” on
the graph?
Link discrete/continuous: is there an equivalent to the continuous
Gaussien kernel on the graph (e.g., limit by fine discretization)?
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Conditionally p.d. kernels

Hilbert distance
Any p.d. kernels is an inner product in a Hilbert space

K
(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉
H .

It defines a Hilbert distance:

dK
(
x, x′

)2
= K (x, x) + K

(
x′, x′

)
− 2K

(
x, x′

)
−d2

K is conditionally positive definite, i.e.:

∀t > 0 , exp
(
−tdK

(
x, x′

)2
)

is p.d.

Jean-Philippe Vert (ParisTech) Statistical learning with graphs 78 / 121



Graph distance

Graph embedding in a Hilbert space
Given a graph G = (V , E), the graph distance dG(x , x ′) between
any two vertices is the length of the shortest path between x and
x ′.
We say that the graph G = (V , E) can be embedded (exactly) in a
Hilbert space if −dG is c.p.d., which implies in particular that
exp(−tdG(x , x ′)) is p.d. for all t > 0.

Lemma
In general graphs can not be embedded exactly in Hilbert spaces.
In some cases exact embeddings exists, e.g.:

trees can be embedded exactly,
closed chains can be embedded exactly.
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Example: non-c.p.d. graph distance

1 5

2

3
4

dG =


0 1 1 1 2
1 0 2 2 1
1 2 0 2 1
1 2 2 0 1
2 1 1 1 0


λmin

([
e(−0.2dG(i,j))

])
= −0.028 < 0 .
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Graph distance on trees are c.p.d.

Proof
Let G = (V , E) a tree
Fix a root x0 ∈ V
Represent any vertex x ∈ V by a vector Φ(x) ∈ R|E |, where
Φ(x)i = 1 is the i-th edge is in the (unique) path between x and
x0, 0 otherwise.
Then:

dG(x , x ′) = ‖Φ(x)− Φ(x ′) ‖2 ,

and therefore −dG is c.p.d., in particular exp(−tdG(x , x ′)) is p.d.
for all t > 0.

Jean-Philippe Vert (ParisTech) Statistical learning with graphs 81 / 121



Example

1

2

3

4

5

[
e−dG(i,j)

]
=


1 0.14 0.37 0.14 0.05

0.14 1 0.37 0.14 0.05
0.37 0.37 1 0.37 0.14
0.14 0.14 0.37 1 0.37
0.05 0.05 0.14 0.37 1



Jean-Philippe Vert (ParisTech) Statistical learning with graphs 82 / 121



Graph distance on closed chains are c.p.d.

Proof: case |V | = 2p
Let G = (V , E) a cycle with an even number of vertices |V | = 2p
Fix a root x0 ∈ V , number the 2p edges from x0 to x0.
Map the 2p edges in Rp to (e1, . . . , ep,−e1, . . . ,−ep)

Map a vertex v to the sum of the edges in the shortest path
between x0 and v .
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Functional approach

Motivation
How to make p.d. kernel on general graphs?
Making a kernel is equivalent to defining a RKHS.
There are intuitive notions of smoothness on a graph

Idea
Define a priori a smoothness functional on the functions
f : X → R.
Show that it defines a RKHS and identify the corresponding kernel
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Notations

1

2

3

4

5

A =


0 0 1 0 0
0 0 1 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 , D =


1 0 0 0 0
0 1 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1
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Graph Laplacian

Definition
The Laplacian of the graph is the matrix L = D − A.

1

2

3

4

5

L = A− D =


1 0 −1 0 0
0 1 −1 0 0
−1 −1 3 −1 0
0 0 −1 2 −1
0 0 0 −1 1
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Properties of the Laplacian

Lemma
Let L = D − A be the Laplacian of a connected graph:

For any f : X → R,

Ω(f ) :=
∑
i∼j

(
f (xi)− f

(
xj
))2

= f>Lf

L is a symmetric positive semi-definite matrix
0 is an eigenvalue with multiplicity 1 associated to the constant
eigenvector 1 = (1, . . . , 1)

The image of L is

Im(L) =

{
f ∈ Rm :

m∑
i=1

fi = 0

}
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Proof: link between Ω(f ) and L

Ω (f ) =
∑
i∼j

(
f (xi)− f

(
xj
))2

=
∑
i∼j

(
f (xi)

2 + f
(
xj
)2 − 2f (xi) f

(
xj
))

=
m∑

i=1

Di,i f (xi)
2 − 2

∑
i∼j

f (xi) f
(
xj
)

= f>Df − f>Af

= f>Lf
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Proof: eigenstructure of L

L is symmetric because A and D are symmetric.
For any f ∈ Rm, f>Lf = Ω(f ) ≥ 0, therefore the (real-valued)
eigenvalues of L are ≥ 0 : L is therefore positive semi-definite.
f is an eigenvector associated to eigenvalue 0
iff f>Lf = 0
iff
∑

i∼j
(
f (xi)− f

(
xj
))2

= 0 ,
iff f (xi) = f

(
xj
)

when i ∼ j ,
iff f is constant (because the graph is connected).
L being symmetric, Im(L) is the orthogonal supplement of Ker(L),
that is, the set of functions orthogonal to 1. �
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Our first graph kernel

Theorem

The set H =
{

f ∈ Rm :
∑m

i=1 fi = 0
}

endowed with the norm:

Ω (f ) =
∑
i∼j

(
f (xi)− f

(
xj
))2

is a RKHS whose reproducing kernel is L∗, the pseudo-inverse of the
graph Laplacian.
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Proof (1/2)

Resticted to H, the symmetric bilinear form:

〈f , g〉 = f>Lg

is positive definite (because L is positive semi-definite, and
H = Im(L)). It is therefore a scalar product, making of H a Hilbert
space (in fact Euclidean).
The norm in this Hilbert space H is:

‖ f ‖2 = 〈f , f 〉 = f>Lf = Ω(f ) .
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Proof (2/2)

To check that H is a RKHS with reproducing kernel K = L∗, it suffices
to show that: {

∀x ∈ X , Kx ∈ H ,

∀ (x, f ) ∈ X ×H, 〈f , Kx〉 = f (x) .

Ker(K ) = Ker (L∗) = Ker (L), implying K 1 = 0. Therefore, each
row/column of K is in H.
For any f ∈ H, if we note gi = 〈K (i , ·), f 〉 we get:

g = KLf = L∗Lf = ΠH(f ) = f .

As a conclusion K = L∗ is the reproducing kernel of H. �
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Example

1

2

3

4

5

L∗ =


0.88 −0.12 0.08 −0.32 −0.52

−0.12 0.88 0.08 −0.32 −0.52
0.08 0.08 0.28 −0.12 −0.32

−0.32 −0.32 −0.12 0.48 0.28
−0.52 −0.52 −0.32 0.28 1.08
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The diffusion equation

Lemma
For any x0 ∈ Rd , the function:

Kx0 (x, t) = Kt (x0, x) =
1

(4πt)
d
2

exp
(
−‖x− x0 ‖2

4t

)
.

is solution of the diffusion equation:

∂

∂t
Kx0 (x, t) = ∆Kx0 (x, t) .

with initial condition Kx0 (x, 0) = δx0(x).
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Discrete diffusion equation

For finite-dimensional ft ∈ Rm, the diffusion equation becomes:

∂

∂t
ft = −Lft

which admits the following solution:

ft = f0e−tL

This suggest to consider:

K = e−tL

which is indeed symmetric positive semi-definite. We call it the
diffusion kernel or heat kernel.
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Example: complete graph

Ki,j =

{
1+(m−1)e−tm

m for i = j ,
1−e−tm

m for i 6= j .
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Example: closed chain

Ki,j =
1
m

m−1∑
ν=0

exp
[
−2t

(
1− cos

2πν

m

)]
cos

2πν(i − j)
m

.
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Example

1

2

3

4

5

e−L =


0.50 0.13 0.24 0.10 0.04
0.13 0.50 0.24 0.10 0.04
0.24 0.24 0.24 0.18 0.10
0.10 0.10 0.18 0.32 0.30
0.04 0.04 0.10 0.30 0.52
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Spectrum of the diffusion kernel

Let 0 = λ1 < λ2 ≤ . . . ≤ λm be the eigenvalues of the Laplacian:

L =
m∑

i=1

λiuiu>i (λi ≥ 0)

The diffusion kernel Kt is an invertible matrix because its
eigenvalues are strictly positive:

Kt =
m∑

i=1

e−tλi uiu>i
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Norm in the diffusion RKHS

For any function f ∈ Rm, let:

f̂i = u>i f

be the Fourier coefficients of f (projection of f onto the eigenbasis
of K ).
The RKHS norm of f is then:

‖ f ‖2
Kt

= f>K−1f =
m∑

i=1

etλi f̂ 2
i .
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Generalization

This observation suggests to define a whole family of kernels:

Kr =
m∑

i=1

r(λi)uiu>i

associated with the following RKHS norms:

‖ f ‖2
Kr

=
m∑

i=1

f̂ 2
i

r(λi)

where r : R+ → R+
∗ is a non-increasing function.
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Example : regularized Laplacian

r(λ) =
1

λ + ε
, ε > 0

K =
m∑

i=1

1
λi + ε

uiu>i = (L + εI)−1

‖ f ‖2
K = f>K−1f =

∑
i∼j

(
f (xi)− f

(
xj
))2

+ ε

m∑
i=1

f (xi)
2 .
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Example

1

2

3

4

5

(L + I)−1 =


0.60 0.10 0.19 0.08 0.04
0.10 0.60 0.19 0.08 0.04
0.19 0.19 0.38 0.15 0.08
0.08 0.08 0.15 0.46 0.23
0.04 0.04 0.08 0.23 0.62
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Applications 1: graph partitioning

A classical relaxation of graph partitioning is:

min
f∈RX

∑
i∼j

(
fi − fj

)2 s.t.
∑

i

f 2
i = 1

This can be rewritten

max
f

∑
i

f 2
i s.t. ‖ f ‖H ≤ 1

This is principal component analysis in the RKHS (“kernel PCA”)

PC1PC2
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Applications 2: search on a graph

Let x1, . . . , xq a set of q nodes (the query). How to find “similar”
nodes (and rank them)?
One solution:

min
f
‖ f ‖H s.t. f (xi) ≥ 1 for i = 1, . . . , q.
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Application 3: Semi-supervised learning
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Application 3: Semi-supervised learning
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Application 4: Tumor classification from microarray
data

Data available
Gene expression measures for more than 10k genes
Measured on less than 100 samples of two (or more) different
classes (e.g., different tumors)

Goal
Design a classifier to automatically assign a class to future
samples from their expression profile
Interpret biologically the differences between the classes
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Linear classifiers

The approach
Each sample is represented by a vector x = (x1, . . . , xp) where
p > 105 is the number of probes
Classification: given the set of labeled sample, learn a linear
decision function:

f (x) =

p∑
i=1

βixi + β0 ,

Interpretation: the weight βi quantifies the influence of gene i for
the classification

Pitfalls
No robust estimation procedure exist for 100 samples in 105

dimensions!

Jean-Philippe Vert (ParisTech) Statistical learning with graphs 113 / 121



Prior knowledge

We know the functions of many genes, and how they interact
together.
This can be represented as a graph of genes, where connected
genes perform some action together
Prior knowledge: constraint the weights of genes that work
together to be similar
Mathematically: constrain the norm of the weight vector in the
RKHS of the diffusion kernel.
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Comparison
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RNA 
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Riboflavin metabolism
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biosynthesis
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biosynthesis
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TCA cycle
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metabolism
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Conclusion
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Conclusion

What we saw
Extension of machine learning algorithms to graph data through
the definition of positive definite kernels for and on graphs
A variety of solutions have been proposed, borrowing ideas from
graph algorithms and spectral graph theory.
Increasingly used in real-world applications.

Unanswered question
Theoretical foundations to guide the choice of kernel?
How to design / choose / learn a kernel for a given application in
practice?
How to improve scalability of kernel methods + graph kernels to
large datasets?
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