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Gaussian kernel and RKHS

Definition
The (normalized) Gaussian kernel with bandwidth σ > 0 on
Rd × Rd is:

kσ(x , x ′) =
1(√

2πσ
)d exp

(
−‖ x − x ′ ‖2

2σ2

)
.

The Gaussian reproducing kernel Hilbert space (RKHS) consists
of functions of the form:

f (x) =
∑

i

αikσ(xi , x) ,

with norm:
‖ f ‖2

Hσ
=

∑
i

∑
j

αiαjkσ(xi , xj) .
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Gaussian RKHS

Properties

For any f in L1(Rd), its Fourier transform F [f ] : Rd → R is defined
by

F [f ] (ω) =

∫
Rd

e−i<x ,ω>f (x)dx .

The RKHS of the Gaussian kernel kσ is:

Hσ =

{
f ∈ C0(Rd) : f ∈ L1(Rd) and

∫
Rd
|F [f ] (ω)|2e

σ2‖ω ‖2

2 dω <∞
}

For any f ∈ Hσ the RKHS norm of f is a smoothness functional:

‖ f ‖2
Hσ

=
1

(2π)d

∫
Rd
|F [f ] (ω)|2e

σ2‖ω ‖2

2 dω .
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Learning in Gaussian RKHS

General setting

Training set (xi , yi) ∈ Rd × R for i = 1, . . . ,n.
Loss function L(y , ŷ)

Learn a function f : Rd → R by solving for some regularization
parameter λ > 0:

min
f∈Hσ

{
1
n

n∑
i=1

L (yi , f (xi)) + λ‖ f ‖2
Hσ

}
.

Pattern recognition
y ∈ {−1,+1}
L(y ,u) = φ(yu) where φ is usually decreasing
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Motivation 1: The effect of regularization

Overfitting

min
f∈Hσ

{
1
n

n∑
i=1

L (yi , f (xi)) +
λ

(2π)d

∫
Rd
|F [f ] (ω)|2e

σ2‖ω ‖2

2 dω

}
.

Classical approach: Decrease λ
Alternative approach: Decrease σ

Asymptotic behavior when n →∞
Usually λ→ 0 (Tikhonov and Arsenin, 1977; Silverman, 1982) to
obtain consistency
λ→ 0 and σ → 0 can lead to fast rates (e.g., Steinwart and
Scovel, 2004)
Can we get consistency with σ → 0 only?
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Motivation 2: One-class SVM

Definition

min
f∈Hσ

{
1
n

n∑
i=1

max (1− f (xi) ,0) + λ‖ f ‖2
Hσ

}
.

Properties
A popular method for outlier
detection
A particular case of learning in
the Gaussian RKHS
λ determines the ratio of
outliers: should not decrease
to zero as n →∞
Can we get some consistency
when σ → 0 instead?
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Setting and notations

(Xi ,Yi)i=1,...,n are i.i.d. ∼ P over Rd × {−1,1}.
Marginal P(dx) = ρ(x)dx .
η(x) : Rd → [0,1] a measurable version of P(Y = 1 |X ).
φ a convex function, Lipschitz, differentiable at 0 with φ′(0) < 0.
For any σ, we denote by f̂σ the unique minimizer of the (strictly
convex) problem:

min
f∈Hσ

{
1
n

n∑
i=1

φ (Yi f (Xi)) + λ‖ f ‖2
Hσ

}
.
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Intuitive behavior

Pointwise limit
Law of large numbers for measurable f :

1
n

n∑
i=1

φ (Yi f (Xi)) →
n→∞

EP [φ (Yf (X ))] .

For f ∈ Hσ1 :
‖ f ‖2

Hσ
→

σ→0
‖ f ‖2

L2

Limit risk
This suggests to consider the following risk for measurable functions:

R0 (f ) = EP [φ (Yf (X ))] + λ‖ f ‖2
L2
.
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Main result: consistency

Theorem

If σ = O
(

n−
1

d+ε

)
for ε > 0, then the procedure is consistent for the

R0 risk:
R0

(
f̂σ

)
→

n→∞
inf

f∈M
R0(f ) in probability.

In that case, it is also Bayes consistent:

R
(

f̂σ
)
→

n→∞
inf

f∈M
R(f ) in probability,

where R is the classification error R(f ) = P (Yf (X ) < 0).
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Main result: asymptotic shape

Theorem
The function f0 : Rd → R defined for any x ∈ Rd by

f0(x) = arg min
α∈R

{
ρ(x) [η(x)φ(α) + (1− η(x))φ(−α)] + λα2

}
is measurable and satisfies

R0(f0) = inf
f∈M

R0(f ) .

Under the conditions of the previous theorem:

‖ f̂σ − f0 ‖L2 →
n→∞

0 in probability.

Jean-Philippe Vert (ParisTech) Regularization with Gaussian kernel 13 / 35



university-logo

Main result: asymptotic shape

Theorem
The function f0 : Rd → R defined for any x ∈ Rd by

f0(x) = arg min
α∈R

{
ρ(x) [η(x)φ(α) + (1− η(x))φ(−α)] + λα2

}
is measurable and satisfies

R0(f0) = inf
f∈M

R0(f ) .

Under the conditions of the previous theorem:

‖ f̂σ − f0 ‖L2 →
n→∞

0 in probability.

Jean-Philippe Vert (ParisTech) Regularization with Gaussian kernel 13 / 35



university-logo

Application: two-class SVM

1-SVM
The L2 limit of the SVM with hinge loss φ(u) = max(1− u,0) is:

f0(x) =


−1 if η(x) ≤ 1/2− λ/ρ(x) ,

(η(x)− 1/2) ρ(x)/λ if η(x) ∈ [1/2− λ/ρ(x),1/2 + λ/ρ(x)] ,

1 if η(x) ≥ 1/2 + λ/ρ(x) .

2-SVM
The L2 limit of the SVM with square hinge loss φ(u) = max(1− u,0)2

is:
f0(x) = (2η(x)− 1)

ρ(x)

λ+ ρ(x)
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Application: one-class SVM

Limit
The L2 limit of the one-class SVM with hinge loss is the density
truncated to level 2λ and scaled:

f0(x) =

{
ρ(x)/2λ if ρ(x) ≤ 2λ ,
1 otherwise.

Corollary
One-class SVM thresholded at level µ/2λ is a consistent estimator
(w.r.t. the excess-mass risk, cf Hartigan, 1987) of the density level set:

Cµ =
{

x ∈ Rd : ρ(x) ≥ µ
}
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Overview

1 Learning bound for the R0 risk: with a probability at least 1− ε,

R0

(
f̂σ

)
− inf

g∈M
R0(g) ≤ C(ε) .

2 From R0 to Bayes excess risk: for any measurable function f ,

R(f )− inf
g∈M

R(g) ≤ ψ

(
R0 (f )− inf

g∈M
R0(g)

)
.

3 From R0 excess risk to L2 convergence: for any measurable
function f ,

‖ f − f0 ‖2
L2
≤ 1
λ

[
R0 (f )− inf

g∈M
R0(g)

]
.
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Objectif

Risks:

R0 (f ) = EP [φ (Yf (X ))] + λ‖ f ‖2
L2
,

Rσ (f ) = EP [φ (Yf (X ))] + λ‖ f ‖2
Hσ

,

R̂σ (f ) =
1
n

n∑
i=1

φ (Yi f (Xi)) + λ‖ f ‖2
Hσ

.

Minimizers

R∗0 = R0 (f0) = min
f∈M

R0(f )

R∗σ = Rσ (fσ) = min
f∈Hσ

Rσ(f )

R̂∗σ = R̂σ

(
f̂σ

)
= min

f∈Hσ

R̂σ(f )
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Decomposition of the excess R0 risk

Decomposition

R0

(
f̂σ

)
− R0 (f0) =

[
R0

(
f̂σ

)
− Rσ

(
f̂σ

)]
+

[
Rσ

(
f̂σ

)
− R∗σ

]
+ [R∗σ − Rσ (g)]

+ [Rσ (g)− R0 (g)]

+ [R0 (g)− R0 (f0)]

for any g in Hσ.

Simplification

R0 (f )− Rσ (f ) = ‖ f ‖2
L2
− ‖ f ‖2

Hσ
≤ 0 for any f ∈ Hσ.

R∗σ − Rσ (g) ≤ 0 by definition of R∗σ.
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Upper bound on the R0 risk

After simplification

R0

(
f̂σ

)
− R0 (f0) ≤

[
Rσ

(
f̂σ

)
− R∗σ

]
(estimation error)

+ ‖g ‖2
Hσ
− ‖g ‖2

L2
(regularization error)

+ [R0 (g)− R0 (f0)] (approximation error)

for any g in Hσ.

Choice of g
g should be smooth (regularization error)
g should be close to f0 (approximation error)
We choose g = kσ1 ∗ f0, with σ1 ≥ σ
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Estimation error bound

Concentration inequality
Classical bounds of statistical learning theory
Need an upper bound of the covering number of balls in the
Gaussian RKHS (e.g., Steinwart and Scovel, 2004)
Need a concentration inequality based on local Rademacher
complexity (e.g., Bartlett et al., 2005)
For any x ≥ 1,0 < p < 2 and δ > 0, we have with probability at
least 1− ex :

Rσ

(
f̂σ

)
− R∗σ ≤ C1

(
1
σ

) d [2+(2−p)(1+δ)]
2+p

(
1
n

) 2
2+p

+ C2

(
1
σ

)d x
n
.

Jean-Philippe Vert (ParisTech) Regularization with Gaussian kernel 22 / 35



university-logo

Regularization error bound

Fourier representation of Gaussian RKHS

‖ f ‖2
Hσ

=
1

(2π)d

∫
Rd
|F [f ] (ω)|2 e

σ2‖ω ‖2

2 dω .

Therefore, for any 0 < σ ≤ τ , Hτ ⊂ Hσ ⊂ L2(Rd).

Lemma
For any σ > 0 and f ∈ L1

(
Rd)

∩ L2
(
Rd)

:

kσ ∗ f ∈ H√2σ and ‖ kσ ∗ f ‖H√2σ
= ‖ f ‖L2 .

For any 0 < σ ≤
√

2τ and f ∈ L1
(
Rd)

∩ L2
(
Rd)

:

kτ ∗ f ∈ Hσ and ‖ kτ ∗ f ‖2
Hσ
− ‖ kτ ∗ f ‖2

L2
≤ σ2

τ2 ‖ f ‖2
L2
.
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Approximation error bound

Lemma

R0 (kσ ∗ f0)− R0 (f0) ≤ (2λ‖ f0 ‖L∞ + LM) ‖ kσ ∗ f0 − f0 ‖L1 ,

where L is the Lipschitz constant of φ and M = supx∈Rd ρ(x). This
shows that the approximation error converges to 0.

Quantitative bound
The modulus of continuity of f in the L1-norm is:

ω (f , δ) = sup
0≤‖ t ‖≤δ

‖ f (.+ t)− f (.) ‖L1 .

For any σ > 0 the following holds:

‖ kσ ∗ f0 − f0 ‖L1 ≤
(

1 +
√

d
)
ω (f , σ) .
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Summary

Proof of R0 consistency
Combining the 3 upper bounds on the estimation, regularization and
approximation errors we obtain:

R0

(
f̂σ

)
− R0 (f0) ≤ C1

(
1
σ

) d [2+(2−p)(1+δ)]
2+p

(
1
n

) 2
2+p

+ C2

(
1
σ

)d x
n

+ C3
σ2

1
σ2 + C4ω (f0, σ1) .

Convergence to 0 is granted as soon as σ = O
(

n−
1

d+ε

)
and

σ1 = o(σ). Terms can be balanced to obtain a bound that depends on
the modulus of continuity of f0.
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Classification calibration

Definition (Bartlett et al., 2006)
For any (η, α) ∈ [0,1]× R, let

Cη(α) = ηφ(α) + (1− η)φ(−α) .

The function φ is said to be classification-calibrated if for any η 6= 1/2,

inf
α∈R:α(2η−1)≤0

Cη(α) > inf
α∈R

Cη(α).

This condition ensures that for each point x , minimizing the conditional
φ-risk provides a scalar of correct sign. We can then deduce the Bayes
consistency of algorithms that minimize the φ risk instead of the
classification error (Zhang, 2004; Lugosi and Vayatis, 2004; Bartlett et
al., 2006).
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R-classification calibration

Definition
We can rewrite the R0-risk as:

R0(f ) =

∫
Rd

{
[η(x)φ(f (x)) + (1− η(x))φ(−f (x))] ρ(x) + λf (x)2

}
dx

Therefore, for any (η, ρ, α) ∈ [0,1]× (0,+∞)× R let

Cη,ρ(α) = Cη(α) +
λα2

ρ
.

We say that φ is R-classification calibrated if for any η 6= 1/2 and ρ > 0:

inf
α∈R:α(2η−1)≤0

Cη,ρ(α) > inf
α∈R

Cη,ρ(α).
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Some properties of calibration

Lemma
φ(x) is R-calibrated iff φ(x) + tx2 is calibrated for all t > 0.
Calibration (resp. R-calibration) does not imply R-calibration (resp.
calibration).
If φ is convex the it is calibrated iff it is R-calibrated iff it is
differentiable at 0 and φ′(0) < 0.

Calibrated but not
R-calibrated

R-calibrated but not
calibrated
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Relating the R0 risk to the classification error rate

Sketch
When λ = 0 Bartlett et al. (2006) provide a control of the excess
φ-risk by the excess classification error for classification calibrated
functions.
Following the same approach we obtain similar controls for the R0
risk if φ is R-classification calibrated.
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Minimum R0 risk

Lemma
For any (η, ρ, α) ∈ [0,1]× [0,+∞)× R let

Gη,ρ(α) = ρ [ηφ(α) + (1− η)φ(−α)] + λα2.

i.e., for any f ∈M

R0(f ) =

∫
x∈Rd

Gη(x),ρ(x) (f (x)) dx .

If φ is convex then Gη,ρ is strictly convex and admits a unique
minimizer α(η, ρ).
f0(x) = α (η(x), ρ(x)) is measurable and minimizes R0.
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From R0 risk to L2 distance

Lemma
By strict convexity of Gη,ρ we obtain, for all (η, ρ, α):

Gη,ρ(α)−Gη,ρ (α(η, ρ)) ≥ λ (α− α(η, ρ))2 .

Conclusion
By integration we obtain:

R0(f )− R0 (f0) ≥ λ‖ f − f0 ‖L2 .
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Conclusion

Conclusion
Consistency for the R0 risk is obtained by decreasing the
bandwidth of the Gaussian kernel
The limit function in the L2 sense is the minimizer of the R0 risk,
given explicitly and uniquely defined for convex φ.
R0-consistency ensures Bayes consistency for pattern recognition.
One-class SVM is a consistent density level set estimator
The convergence speed obtained are not optimal

Reference
R. Vert and J-P. Vert, Consistency and convergence rates of one-class
SVMs and related algorithms, J. Mach. Learn. Res. 7:817-854, 2006.
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