Regularization of Kernel Methods by Decreasing the Bandwidth of the Gaussian Kernel

Jean-Philippe Vert (joint work with Régis Vert)

Jean-Philippe.Vert@ensmp.fr

Centre for Computational Biology Ecole des Mines de Paris, ParisTech

Seminar Statistics and Probability, University of Lille, May 16, 2007

Motivations

Main results

Proofs

- Learning bound for the *R*₀ risk
- From R₀ to Bayes excess risk
- From *R*₀ excess risk to *L*₂ convergence

4 Conclusion

Motivations

2 Main results

3 Proof

- Learning bound for the *R*₀ risk
- From *R*₀ to Bayes excess risk
- From R₀ excess risk to L₂ convergence

4 Conclusion

Gaussian kernel and RKHS

Definition

 The (normalized) Gaussian kernel with bandwidth *σ* > 0 on R^d × ℝ^d is:

$$k_{\sigma}(x, x') = \frac{1}{\left(\sqrt{2\pi}\sigma\right)^{d}} \exp\left(\frac{-\|x - x'\|^{2}}{2\sigma^{2}}\right)$$

 The Gaussian reproducing kernel Hilbert space (RKHS) consists of functions of the form:

$$f(x) = \sum_{i} \alpha_i k_{\sigma}(x_i, x) ,$$

with norm:

$$\|f\|_{\mathcal{H}_{\sigma}}^{2} = \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} k_{\sigma}(x_{i}, x_{j}) .$$

Jean-Philippe Vert (ParisTech)

Regularization with Gaussian kernel

.

Gaussian kernel and RKHS

Definition

 The (normalized) Gaussian kernel with bandwidth *σ* > 0 on R^d × ℝ^d is:

$$k_{\sigma}(x, x') = \frac{1}{\left(\sqrt{2\pi}\sigma\right)^{d}} \exp\left(\frac{-\|x - x'\|^{2}}{2\sigma^{2}}\right)$$

 The Gaussian reproducing kernel Hilbert space (RKHS) consists of functions of the form:

$$f(\mathbf{x}) = \sum_{i} \alpha_{i} \mathbf{k}_{\sigma}(\mathbf{x}_{i}, \mathbf{x}) ,$$

with norm:

$$\|f\|_{\mathcal{H}_{\sigma}}^{2} = \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} \kappa_{\sigma}(\mathbf{x}_{i}, \mathbf{x}_{j}).$$

Jean-Philippe Vert (ParisTech)

.

Gaussian RKHS

Properties

For any *f* in L₁(ℝ^d), its Fourier transform *F*[*f*] : ℝ^d → ℝ is defined by

$$\mathcal{F}[f](\omega) = \int_{\mathbb{R}^d} e^{-i \langle x, \omega \rangle} f(x) dx$$
.

• The RKHS of the Gaussian kernel k_{σ} is:

$$\mathcal{H}_{\sigma} = \left\{ f \in \mathcal{C}_0(\mathbb{R}^d) \ : \ f \in L_1(\mathbb{R}^d) \text{ and } \int_{\mathbb{R}^d} |\mathcal{F}[f](\omega)|^2 e^{rac{\sigma^2 ||\omega||^2}{2}} d\omega < \infty
ight\}$$

• For any $f \in \mathcal{H}_{\sigma}$ the RKHS norm of f is a smoothness functional:

$$\| f \|_{\mathcal{H}_{\sigma}}^{2} = \frac{1}{(2\pi)^{d}} \int_{\mathbb{R}^{d}} |\mathcal{F}[f](\omega)|^{2} e^{\frac{\sigma^{2} \| \omega \|^{2}}{2}} d\omega .$$

Learning in Gaussian RKHS

General setting

- Training set $(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ for i = 1, ..., n.
- Loss function $L(y, \hat{y})$
- Learn a function *f* : ℝ^d → ℝ by solving for some regularization parameter λ > 0:

$$\min_{f\in\mathcal{H}_{\sigma}}\left\{\frac{1}{n}\sum_{i=1}^{n}L(y_{i},f(x_{i}))+\lambda\|f\|_{\mathcal{H}_{\sigma}}^{2}\right\}$$

Pattern recognition

•
$$y \in \{-1, +1\}$$

• $L(y, u) = \phi(yu)$ where ϕ is usually decreasing

Motivation 1: The effect of regularization

Overfitting

$$\min_{f\in\mathcal{H}_{\sigma}}\left\{\frac{1}{n}\sum_{i=1}^{n}L(y_{i},f(x_{i}))+\frac{\lambda}{(2\pi)^{d}}\int_{\mathbb{R}^{d}}|\mathcal{F}[f](\omega)|^{2}e^{\frac{\sigma^{2}\|\omega\|^{2}}{2}}d\omega\right\}$$

- Classical approach: Decrease λ
- Alternative approach: Decrease σ

Asymptotic behavior when $n \to \infty$

- Usually $\lambda \rightarrow 0$ (Tikhonov and Arsenin, 1977; Silverman, 1982) to obtain consistency
- λ → 0 and σ → 0 can lead to fast rates (e.g., Steinwart and Scovel, 2004)
- Can we get consistency with $\sigma \rightarrow 0$ only?

Motivation 1: The effect of regularization

Overfitting

$$\min_{f\in\mathcal{H}_{\sigma}}\left\{\frac{1}{n}\sum_{i=1}^{n}L(y_{i},f(x_{i}))+\frac{\lambda}{(2\pi)^{d}}\int_{\mathbb{R}^{d}}|\mathcal{F}[f](\omega)|^{2}e^{\frac{\sigma^{2}\|\omega\|^{2}}{2}}d\omega\right\}$$

- Classical approach: Decrease λ
- Alternative approach: Decrease σ

Asymptotic behavior when $n \to \infty$

- Usually $\lambda \rightarrow 0$ (Tikhonov and Arsenin, 1977; Silverman, 1982) to obtain consistency
- λ → 0 and σ → 0 can lead to fast rates (e.g., Steinwart and Scovel, 2004)
- Can we get consistency with $\sigma \rightarrow 0$ only?

Motivation 2: One-class SVM

Definition

$$\min_{f \in \mathcal{H}_{\sigma}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \max\left(1 - f(x_i), \mathbf{0}\right) + \lambda \| f \|_{\mathcal{H}_{\sigma}}^2 \right\}$$

Properties

- A popular method for outlier detection
- A particular case of learning in the Gaussian RKHS
- λ determines the ratio of outliers: should not decrease to zero as n → ∞
- Can we get some consistency when $\sigma \rightarrow 0$ instead?

Motivations

Main results

3 Proofs

- Learning bound for the *R*₀ risk
- From *R*₀ to Bayes excess risk
- From R₀ excess risk to L₂ convergence

4 Conclusion

- $(X_i, Y_i)_{i=1,...,n}$ are i.i.d. $\sim P$ over $\mathbb{R}^d \times \{-1, 1\}$.
- Marginal $P(dx) = \rho(x)dx$.
- $\eta(x) : \mathbb{R}^d \to [0, 1]$ a measurable version of P(Y = 1 | X).
- ϕ a convex function, Lipschitz, differentiable at 0 with $\phi'(0) < 0$.
- For any σ, we denote by f
 _σ the unique minimizer of the (strictly convex) problem:

$$\min_{f\in\mathcal{H}_{\sigma}}\left\{\frac{1}{n}\sum_{i=1}^{n}\phi\left(Y_{i}f(X_{i})\right)+\lambda\|f\|_{\mathcal{H}_{\sigma}}^{2}\right\}$$

Intuitive behavior

Pointwise limit

• Law of large numbers for measurable *f*:

$$\frac{1}{n}\sum_{i=1}^{n}\phi\left(Y_{i}f(X_{i})\right)\underset{n\to\infty}{\rightarrow}\mathbb{E}_{P}\left[\phi\left(Yf(X)\right)\right] \ .$$

• For
$$f \in \mathcal{H}_{\sigma_1}$$
:

$$\| f \|_{\mathcal{H}_{\sigma}}^{2} \xrightarrow[\sigma \to 0]{} \| f \|_{L_{2}}^{2}$$

Limit risk

This suggests to consider the following risk for measurable functions:

$$R_0(f) = \mathbb{E}_P\left[\phi\left(Yf(X)\right)\right] + \lambda \|f\|_{L_2}^2$$

Intuitive behavior

Pointwise limit

• Law of large numbers for measurable *f*:

$$\frac{1}{n}\sum_{i=1}^{n}\phi\left(Y_{i}f(X_{i})\right)\underset{n\to\infty}{\rightarrow}\mathbb{E}_{P}\left[\phi\left(Yf(X)\right)\right] \ .$$

• For
$$f \in \mathcal{H}_{\sigma_1}$$
:

$$\| f \|_{\mathcal{H}_{\sigma}}^{2} \xrightarrow[\sigma \to 0]{} \| f \|_{L_{2}}^{2}$$

Limit risk

This suggests to consider the following risk for measurable functions:

$$R_0(f) = \mathbb{E}_P\left[\phi\left(Yf(X)\right)\right] + \lambda \|f\|_{L_2}^2$$

Main result: consistency

Theorem

• If
$$\sigma = O\left(n^{-\frac{1}{d+\epsilon}}\right)$$
 for $\epsilon > 0$, then the procedure is consistent for the R_0 risk:
 $R_0\left(\hat{f}_{\sigma}\right) \underset{n \to \infty}{\rightarrow} \inf_{f \in \mathcal{M}} R_0(f)$ in probability.

• In that case, it is also Bayes consistent:

$$R\left(\hat{f}_{\sigma}\right) \xrightarrow[n \to \infty]{} \inf_{f \in \mathcal{M}} R(f)$$
 in probability,

where *R* is the classification error R(f) = P(Yf(X) < 0).

Theorem

• If
$$\sigma = O\left(n^{-\frac{1}{d+\epsilon}}\right)$$
 for $\epsilon > 0$, then the procedure is consistent for the R_0 risk:
 $R_0\left(\hat{f}_{\sigma}\right) \underset{n \to \infty}{\rightarrow} \inf_{f \in \mathcal{M}} R_0(f)$ in probability.

• In that case, it is also **Bayes consistent**:

$$R\left(\hat{f}_{\sigma}\right) \underset{n \to \infty}{\rightarrow} \inf_{f \in \mathcal{M}} R(f)$$
 in probability,

where *R* is the classification error R(f) = P(Yf(X) < 0).

Main result: asymptotic shape

Theorem

• The function $f_0 : \mathbb{R}^d \to \mathbb{R}$ defined for any $x \in \mathbb{R}^d$ by

$$f_{0}(x) = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}} \left\{ \rho(x) \left[\eta(x)\phi(\alpha) + (1 - \eta(x))\phi(-\alpha) \right] + \lambda \alpha^{2} \right\}$$

is measurable and satisfies

$$R_0(f_0) = \inf_{f \in \mathcal{M}} R_0(f) \; .$$

• Under the conditions of the previous theorem:

$$\|\hat{f}_{\sigma} - f_0\|_{L_2} \xrightarrow[n \to \infty]{} 0$$
 in probability.

Main result: asymptotic shape

Theorem

• The function $f_0 : \mathbb{R}^d \to \mathbb{R}$ defined for any $x \in \mathbb{R}^d$ by

$$f_{0}(x) = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}} \left\{ \rho(x) \left[\eta(x)\phi(\alpha) + (1 - \eta(x))\phi(-\alpha) \right] + \lambda \alpha^{2} \right\}$$

is measurable and satisfies

$$R_0(f_0) = \inf_{f \in \mathcal{M}} R_0(f) \; .$$

• Under the conditions of the previous theorem:

$$\|\hat{f}_{\sigma} - f_0\|_{L_2} \xrightarrow[n \to \infty]{} 0$$
 in probability.

1-SVM

The *L*₂ limit of the SVM with hinge loss $\phi(u) = \max(1 - u, 0)$ is:

$$f_0(x) = \begin{cases} -1 & \text{if } \eta(x) \le 1/2 - \lambda/\rho(x) \ ,\\ (\eta(x) - 1/2) \, \rho(x)/\lambda & \text{if } \eta(x) \in [1/2 - \lambda/\rho(x), 1/2 + \lambda/\rho(x)] \\ 1 & \text{if } \eta(x) \ge 1/2 + \lambda/\rho(x) \ . \end{cases}$$

2-SVM

The L_2 limit of the SVM with square hinge loss $\phi(u) = \max(1 - u, 0)^2$ is:

$$f_0(x) = (2\eta(x) - 1) \frac{\rho(x)}{\lambda + \rho(x)}$$

1-SVM

The *L*₂ limit of the SVM with hinge loss $\phi(u) = \max(1 - u, 0)$ is:

$$f_0(x) = \begin{cases} -1 & \text{if } \eta(x) \le 1/2 - \lambda/\rho(x) \ ,\\ (\eta(x) - 1/2) \, \rho(x)/\lambda & \text{if } \eta(x) \in [1/2 - \lambda/\rho(x), 1/2 + \lambda/\rho(x)] \\ 1 & \text{if } \eta(x) \ge 1/2 + \lambda/\rho(x) \ . \end{cases}$$

2-SVM

The L₂ limit of the SVM with square hinge loss $\phi(u) = \max(1 - u, 0)^2$ is:

$$f_0(x) = (2\eta(x) - 1) \, rac{
ho(x)}{\lambda +
ho(x)}$$

Limit

The L_2 limit of the one-class SVM with hinge loss is the density truncated to level 2λ and scaled:

$$f_0(x) = egin{cases}
ho(x)/2\lambda & ext{if }
ho(x) \leq 2\lambda \ 1 & ext{otherwise.} \end{cases}$$

Corollary

One-class SVM thresholded at level $\mu/2\lambda$ is a consistent estimator (w.r.t. the excess-mass risk, cf Hartigan, 1987) of the density level set:

$$\mathcal{C}_{\mu} = \left\{ \mathbf{x} \in \mathbb{R}^{d} \, : \,
ho(\mathbf{x}) \geq \mu
ight\}$$

Main results

- Learning bound for the R_0 risk
- From R_0 to Bayes excess risk
- From R_0 excess risk to L_2 convergence

• Learning bound for the R_0 risk: with a probability at least $1 - \epsilon$,

$$R_0\left(\widehat{f}_\sigma
ight) - \inf_{g\in\mathcal{M}}R_0(g) \leq C(\epsilon) \; .$$

Solution R_0 to Bayes excess risk: for any measurable function f,

$$m{R}(f) - \inf_{g \in \mathcal{M}} m{R}(g) \leq \psi \left(m{R}_0\left(f
ight) - \inf_{g \in \mathcal{M}} m{R}_0(g)
ight) \; .$$

From R₀ excess risk to L₂ convergence: for any measurable function f,

$$\| f - f_0 \|_{L_2}^2 \leq rac{1}{\lambda} \left[R_0 \left(f
ight) - \inf_{g \in \mathcal{M}} R_0 (g)
ight]$$

.

Motivations

Main results

3 Proofs

• Learning bound for the R₀ risk

- From R₀ to Bayes excess risk
- From R₀ excess risk to L₂ convergence

Conclusion

Objectif

• Risks:

$$\begin{aligned} R_0(f) &= \mathbb{E}_P \left[\phi \left(Yf(X) \right) \right] + \lambda \| f \|_{L_2}^2 ,\\ R_\sigma(f) &= \mathbb{E}_P \left[\phi \left(Yf(X) \right) \right] + \lambda \| f \|_{\mathcal{H}_\sigma}^2 ,\\ \widehat{R}_\sigma(f) &= \frac{1}{n} \sum_{i=1}^n \phi \left(Y_i f(X_i) \right) + \lambda \| f \|_{\mathcal{H}_\sigma}^2 \end{aligned}$$

.

Minimizers

$$\begin{aligned} R_0^* &= R_0 \left(f_0 \right) = \min_{f \in \mathcal{M}} R_0(f) \\ R_\sigma^* &= R_\sigma \left(f_\sigma \right) = \min_{f \in \mathcal{H}_\sigma} R_\sigma(f) \\ \widehat{R}_\sigma^* &= \widehat{R}_\sigma \left(\widehat{f}_\sigma \right) = \min_{f \in \mathcal{H}_\sigma} \widehat{R}_\sigma(f) \end{aligned}$$

Decomposition of the excess R_0 risk

Decomposition

$$egin{aligned} R_0\left(\hat{f}_{\sigma}
ight)-R_0\left(f_0
ight)&=\left[R_0\left(\hat{f}_{\sigma}
ight)-R_{\sigma}\left(\hat{f}_{\sigma}
ight)
ight]\ &+\left[R_{\sigma}\left(\hat{f}_{\sigma}
ight)-R_{\sigma}^*
ight]\ &+\left[R_{\sigma}^*-R_{\sigma}\left(g
ight)
ight]\ &+\left[R_{\sigma}\left(g
ight)-R_0\left(g
ight)
ight]\ &+\left[R_0\left(g
ight)-R_0\left(f_0
ight)
ight]\ &+\left[R_0\left(g
ight)-R_0\left(f_0
ight)
ight] \end{aligned}$$

for any g in \mathcal{H}_{σ} .

Simplification

- $R_0(f) R_\sigma(f) = \|f\|_{L_2}^2 \|f\|_{\mathcal{H}_\sigma}^2 \le 0$ for any $f \in \mathcal{H}_\sigma$.
- $R_{\sigma}^{*} R_{\sigma}(g) \leq 0$ by definition of R_{σ}^{*} .

Upper bound on the R_0 risk

After simplification

$$\begin{split} R_{0}\left(\hat{f}_{\sigma}\right) - R_{0}\left(f_{0}\right) &\leq \left[R_{\sigma}\left(\hat{f}_{\sigma}\right) - R_{\sigma}^{*}\right] & (\text{estimation error}) \\ &+ \|g\|_{\mathcal{H}_{\sigma}}^{2} - \|g\|_{L_{2}}^{2} & (\text{regularization error}) \\ &+ \left[R_{0}\left(g\right) - R_{0}\left(f_{0}\right)\right] & (\text{approximation error}) \end{split}$$

for any g in \mathcal{H}_{σ} .

Choice of g

- g should be smooth (regularization error)
- g should be close to f₀ (approximation error)
- We choose $g = k_{\sigma_1} * f_0$, with $\sigma_1 \ge \sigma$

Upper bound on the R_0 risk

After simplification

$$\begin{split} R_{0}\left(\hat{f}_{\sigma}\right) - R_{0}\left(f_{0}\right) &\leq \left[R_{\sigma}\left(\hat{f}_{\sigma}\right) - R_{\sigma}^{*}\right] & (\text{estimation error}) \\ &+ \|g\|_{\mathcal{H}_{\sigma}}^{2} - \|g\|_{L_{2}}^{2} & (\text{regularization error}) \\ &+ [R_{0}\left(g\right) - R_{0}\left(f_{0}\right)] & (\text{approximation error}) \end{split}$$

for any g in \mathcal{H}_{σ} .

Choice of g

- g should be smooth (regularization error)
- g should be close to f₀ (approximation error)
- We choose $g = k_{\sigma_1} * f_0$, with $\sigma_1 \ge \sigma$

Concentration inequality

- Classical bounds of statistical learning theory
- Need an upper bound of the covering number of balls in the Gaussian RKHS (e.g., Steinwart and Scovel, 2004)
- Need a concentration inequality based on local Rademacher complexity (e.g., Bartlett et al., 2005)
- For any x ≥ 1,0 0, we have with probability at least 1 − e^x:

$$\mathcal{R}_{\sigma}\left(\hat{f}_{\sigma}
ight)-\mathcal{R}_{\sigma}^{*}\leq C_{1}\left(rac{1}{\sigma}
ight)^{rac{d\left[2+(2-
ho)(1+\delta)
ight]}{2+
ho}}\left(rac{1}{n}
ight)^{rac{2}{2+
ho}}+C_{2}\left(rac{1}{\sigma}
ight)^{d}rac{x}{n}\,.$$

Regularization error bound

Fourier representation of Gaussian RKHS

$$\| f \|_{\mathcal{H}_{\sigma}}^{2} = \frac{1}{(2\pi)^{d}} \int_{\mathbb{R}^{d}} |\mathcal{F}[f](\omega)|^{2} e^{\frac{\sigma^{2} \| \omega \|^{2}}{2}} d\omega .$$

Therefore, for any $0 < \sigma \leq \tau$, $\mathcal{H}_{\tau} \subset \mathcal{H}_{\sigma} \subset L_2(\mathbb{R}^d)$.

Lemma

• For any
$$\sigma > 0$$
 and $f \in L_1(\mathbb{R}^d) \cap L_2(\mathbb{R}^d)$:

$$k_{\sigma} * f \in \mathcal{H}_{\sqrt{2}\sigma}$$
 and $\|k_{\sigma} * f\|_{\mathcal{H}_{\sqrt{2}\sigma}} = \|f\|_{L_2}$.

• For any $0 < \sigma \leq \sqrt{2}\tau$ and $f \in L_1(\mathbb{R}^d) \cap L_2(\mathbb{R}^d)$:

$$k_{\tau} * f \in \mathcal{H}_{\sigma}$$
 and $||k_{\tau} * f||^{2}_{\mathcal{H}_{\sigma}} - ||k_{\tau} * f||^{2}_{L_{2}} \leq \frac{\sigma^{2}}{\tau^{2}} ||f||^{2}_{L_{2}}$.

Lemma

$$R_{0}(k_{\sigma}*f_{0}) - R_{0}(f_{0}) \leq (2\lambda \| f_{0} \|_{L_{\infty}} + LM) \| k_{\sigma}*f_{0} - f_{0} \|_{L_{1}},$$

where L is the Lipschitz constant of ϕ and $M = \sup_{x \in \mathbb{R}^d} \rho(x)$. This shows that the approximation error converges to 0.

Quantitative bound

The modulus of continuity of f in the L_1 -norm is:

$$\omega(f,\delta) = \sup_{0 \le \|t\| \le \delta} \|f(.+t) - f(.)\|_{L_1}.$$

For any $\sigma > 0$ the following holds:

$$\| k_{\sigma} * f_0 - f_0 \|_{L_1} \leq \left(1 + \sqrt{d}\right) \omega\left(f, \sigma\right) \ .$$

Lemma

$$R_0\left(k_{\sigma}*f_0\right)-R_0\left(f_0\right)\leq \left(2\lambda\|f_0\|_{L_{\infty}}+LM\right)\|k_{\sigma}*f_0-f_0\|_{L_1},$$

where L is the Lipschitz constant of ϕ and $M = \sup_{x \in \mathbb{R}^d} \rho(x)$. This shows that the approximation error converges to 0.

Quantitative bound

The modulus of continuity of f in the L_1 -norm is:

$$\omega(f,\delta) = \sup_{0 \le \|t\| \le \delta} \|f(.+t) - f(.)\|_{L_1}.$$

For any $\sigma > 0$ the following holds:

$$\| \mathbf{k}_{\sigma} * \mathbf{f}_{0} - \mathbf{f}_{0} \|_{L_{1}} \leq \left(1 + \sqrt{\mathbf{d}} \right) \omega \left(\mathbf{f}, \sigma \right)$$

Proof of R₀ consistency

Combining the 3 upper bounds on the estimation, regularization and approximation errors we obtain:

$$\begin{split} R_0\left(\hat{f}_{\sigma}\right) - R_0\left(f_0\right) &\leq C_1\left(\frac{1}{\sigma}\right)^{\frac{d\left[2+(2-p)(1+\delta)\right]}{2+\rho}} \left(\frac{1}{n}\right)^{\frac{2}{2+\rho}} + C_2\left(\frac{1}{\sigma}\right)^d \frac{x}{n} \\ &+ C_3\frac{\sigma_1^2}{\sigma^2} + C_4\omega\left(f_0,\sigma_1\right) \;. \end{split}$$

Convergence to 0 is granted as soon as $\sigma = O\left(n^{-\frac{1}{d+\epsilon}}\right)$ and $\sigma_1 = o(\sigma)$. Terms can be balanced to obtain a bound that depends on the modulus of continuity of f_0 .

Main results

Proofs

- Learning bound for the R_0 risk
- From R₀ to Bayes excess risk
- From R_0 excess risk to L_2 convergence

Definition (Bartlett et al., 2006)

For any $(\eta, \alpha) \in [0, 1] \times \mathbb{R}$, let

$$C_{\eta}(\alpha) = \eta \phi(\alpha) + (1 - \eta) \phi(-\alpha)$$
.

The function ϕ is said to be classification-calibrated if for any $\eta \neq 1/2$,

$$\inf_{\alpha \in \mathbb{R}: \alpha(2\eta-1) \leq 0} C_{\eta}(\alpha) > \inf_{\alpha \in \mathbb{R}} C_{\eta}(\alpha).$$

This condition ensures that for each point *x*, minimizing the conditional ϕ -risk provides a scalar of correct sign. We can then deduce the Bayes consistency of algorithms that minimize the ϕ risk instead of the classification error (Zhang, 2004; Lugosi and Vayatis, 2004; Bartlett et al., 2006).

Definition

We can rewrite the R_0 -risk as:

$$R_0(f) = \int_{\mathbb{R}^d} \left\{ \left[\eta(x)\phi(f(x)) + (1 - \eta(x))\phi(-f(x)) \right] \rho(x) + \lambda f(x)^2 \right\} dx$$

Therefore, for any $(\eta, \rho, \alpha) \in [0, 1] \times (0, +\infty) \times \mathbb{R}$ let

$$\mathcal{C}_{\eta,
ho}(lpha)=\mathcal{C}_{\eta}(lpha)+rac{\lambdalpha^2}{
ho}\;.$$

We say that ϕ is R-classification calibrated if for any $\eta \neq 1/2$ and $\rho > 0$:

$$\inf_{\alpha \in \mathbb{R}: \alpha(2\eta-1) \leq 0} C_{\eta,\rho}(\alpha) > \inf_{\alpha \in \mathbb{R}} C_{\eta,\rho}(\alpha).$$

Some properties of calibration

Lemma

- $\phi(x)$ is R-calibrated iff $\phi(x) + tx^2$ is calibrated for all t > 0.
- Calibration (resp. R-calibration) does not imply R-calibration (resp. calibration).
- If φ is convex the it is calibrated iff it is R-calibrated iff it is differentiable at 0 and φ'(0) < 0.

Sketch

- When $\lambda = 0$ Bartlett et al. (2006) provide a control of the excess ϕ -risk by the excess classification error for classification calibrated functions.
- Following the same approach we obtain similar controls for the R₀ risk if φ is R-classification calibrated.

Main results

Proofs

- Learning bound for the R_0 risk
- From R_0 to Bayes excess risk
- From R_0 excess risk to L_2 convergence

Lemma

• For any $(\eta, \rho, \alpha) \in [0, 1] \times [0, +\infty) \times \mathbb{R}$ let

$$G_{\eta,\rho}(\alpha) = \rho \left[\eta \phi(\alpha) + (1-\eta)\phi(-\alpha) \right] + \lambda \alpha^2.$$

i.e., for any $f \in \mathcal{M}$

$$R_0(f) = \int_{x\in\mathbb{R}^d} G_{\eta(x),\rho(x)}\left(f(x)\right) dx$$
.

- If φ is convex then G_{η,ρ} is strictly convex and admits a unique minimizer α(η, ρ).
- $f_0(x) = \alpha (\eta(x), \rho(x))$ is measurable and minimizes R_0 .

Lemma

By strict convexity of $G_{\eta,\rho}$ we obtain, for all (η, ρ, α) :

$$G_{\eta,
ho}(lpha) - G_{\eta,
ho}\left(lpha(\eta,
ho)
ight) \geq \lambda \left(lpha - lpha(\eta,
ho)
ight)^2$$

Conclusion

By integration we obtain:

$$R_0(f) - R_0(f_0) \ge \lambda \| f - f_0 \|_{L_2}$$
.

Motivations

Main results

3 Proofs

- Learning bound for the *R*₀ risk
- From *R*₀ to Bayes excess risk
- From R₀ excess risk to L₂ convergence

4 Conclusion

Conclusion

- Consistency for the *R*₀ risk is obtained by decreasing the bandwidth of the Gaussian kernel
- The limit function in the L₂ sense is the minimizer of the R₀ risk, given explicitly and uniquely defined for convex φ.
- *R*₀-consistency ensures Bayes consistency for pattern recognition.
- One-class SVM is a consistent density level set estimator
- The convergence speed obtained are not optimal

Reference

R. Vert and J-P. Vert, Consistency and convergence rates of one-class SVMs and related algorithms, J. Mach. Learn. Res. 7:817-854, 2006.