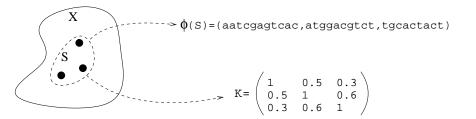
Kernel Matrix Regression

Yoshihiro Yamanishi¹ Jean-Philippe Vert²

¹Bioinformatics Center Kyoto University

²Centre for Computational Biology Ecole des Mines de Paris, ParisTech

The 12th International Conference on Applied Stochastic Models and Data Analysis (ASMDA 2007), Chania, Greece, May 29, 2007.



- A positive definite kernel is a function K : X × X → ℝ such that any Gram matrix is positive semidefinite.
- Many algorithm for data analysis, called kernel methods, are based on p.d. kernels (SVMs, kernel PCA, kernel regression, ...)

Examples

Kernels for vectors

Classical kernels for vectors ($\mathcal{X} = \mathbb{R}^{p}$) include:

• The linear kernel

$$\mathcal{K}_{\textit{lin}}\left(\mathbf{x},\mathbf{x}'
ight)=\mathbf{x}^{ op}\mathbf{x}'$$
 .

• The polynomial kernel

$$K_{\textit{poly}}\left(\mathbf{x},\mathbf{x}'
ight)=\left(\mathbf{x}^{ op}\mathbf{x}'+a
ight)^{d}$$
 .

• The Gaussian RBF kernel:

$$K_{Gaussian}(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}\right)$$

Yamanishi and Vert (Kyodai and ParisTech)

Examples

Kernels for vectors

Classical kernels for vectors ($\mathcal{X} = \mathbb{R}^{p}$) include:

• The linear kernel

$$\mathcal{K}_{\textit{lin}}\left(\mathbf{x},\mathbf{x}'
ight)=\mathbf{x}^{ op}\mathbf{x}'$$
 .

• The polynomial kernel

$$\mathcal{K}_{ extsf{poly}}\left(\mathbf{x},\mathbf{x}'
ight)=\left(\mathbf{x}^{ op}\mathbf{x}'+a
ight)^{d}$$
 .

• The Gaussian RBF kernel:

$$K_{Gaussian}(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}\right)$$

Yamanishi and Vert (Kyodai and ParisTech)

Examples

Kernels for vectors

Classical kernels for vectors ($\mathcal{X} = \mathbb{R}^{p}$) include:

• The linear kernel

$$\mathcal{K}_{\textit{lin}}\left(\mathbf{x},\mathbf{x}'
ight)=\mathbf{x}^{ op}\mathbf{x}'$$
 .

• The polynomial kernel

$$\mathcal{K}_{ extsf{poly}}\left(\mathbf{x},\mathbf{x}'
ight)=\left(\mathbf{x}^{ op}\mathbf{x}'+a
ight)^{d}$$
 .

• The Gaussian RBF kernel:

$$\mathcal{K}_{Gaussian}\left(\mathbf{x},\mathbf{x}'
ight) = \exp\left(-rac{\|\mathbf{x}-\mathbf{x}'\|^2}{2\sigma^2}
ight)$$

Yamanishi and Vert (Kyodai and ParisTech)

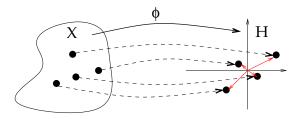
Theorem (Aronszajn, 1950)

K is a p.d. kernel on the set \mathcal{X} if and only if there exists a Hilbert space \mathcal{H} and a mapping

$$\Phi: \mathcal{X} \mapsto \mathcal{H} ,$$

such that, for any \mathbf{x}, \mathbf{x}' in \mathcal{X} :

$$K(\mathbf{x}, \mathbf{x}') = \langle \Phi(\mathbf{x}), \Phi(\mathbf{x}') \rangle_{\mathcal{H}}$$

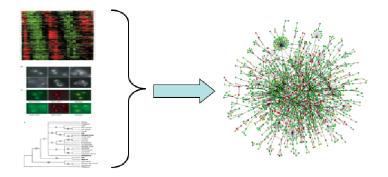


Motivation 1: "expensive" vs "cheap" kernels

FVNQHLCGSHLVEALYLVCGERGFF...

- Objective: predict the function of proteins \implies we need a kernel for proteins.
- "Cheap" kernel: all protein sequences are easily known, we easily define a kernel K_{seq} based on sequences.
- "Expensive" kernel: a few protein structures are known, we can define a kernel *K*_{struct} based on structures
- The problem: *K*_{struct} is more relevant, but not available for all proteins; *K*_{seq} is less relevant but known for all proteins.

Motivation 2: Graph inference



- Available genomic data = Kinput
- Graph to predict (partially known) = K_{output} (after Hilbert embedding)
- Problem: predict missing entries in Koutput from Kinput

Kernel Matrix Regression

$$\mathcal{K} = \begin{pmatrix} \mathcal{K}_{tt} & \mathcal{K}_{
ho t}^{\top} \\ \mathcal{K}_{
ho t} & \mathcal{K}_{
ho
ho} \end{pmatrix}, \quad \mathcal{G} = \begin{pmatrix} \mathcal{G}_{tt} & \mathcal{G}_{
ho t}^{\top} \\ \mathcal{G}_{
ho t} & \mathcal{G}_{
ho
ho} \end{pmatrix},$$

- K is fully known
- G_{tt} is known, but not G_{pt} nor G_{pp}
- Goal: predict G_{pt} and G_{pp} from K and G_{tt}

The idea

The cheap kernel could be used in place of the expensive kernel.

Solution

Use the cheap kernel as a proxy for the expensive one:

$$G_{pt} = K_{pt} \quad G_{pp} = K_{pp}.$$

The idea

The cheap kernel could be used in place of the expensive kernel.

Solution

Use the cheap kernel as a proxy for the expensive one:

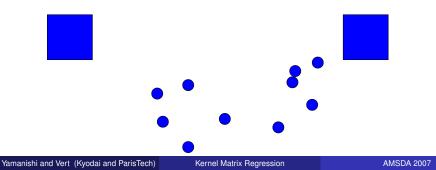
$$G_{pt} = K_{pt}$$
 $G_{pp} = K_{pp}$.

The idea

- Consider the kernels as inner products
- Find low-dimensional projections of the *t* points in *K*_{tt} and *G*_{tt} with maximum correlation
- Project the last *p* points of *K* onto this subspace
- Estimate G_{tp} as the inner products in the projection from K.

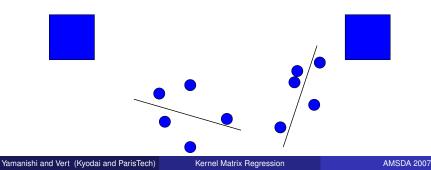
The idea

- Consider the kernels as inner products
- Find low-dimensional projections of the *t* points in *K*_{tt} and *G*_{tt} with maximum correlation
- Project the last *p* points of *K* onto this subspace
- Estimate G_{tp} as the inner products in the projection from K.



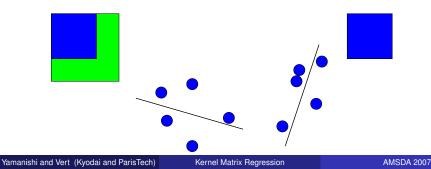
The idea

- Consider the kernels as inner products
- Find low-dimensional projections of the *t* points in *K*_{tt} and *G*_{tt} with maximum correlation
- Project the last *p* points of *K* onto this subspace
- Estimate G_{tp} as the inner products in the projection from K.



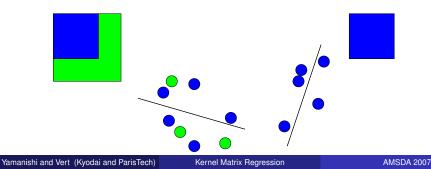
The idea

- Consider the kernels as inner products
- Find low-dimensional projections of the *t* points in *K*_{tt} and *G*_{tt} with maximum correlation
- Project the last p points of K onto this subspace
- Estimate G_{tp} as the inner products in the projection from K.



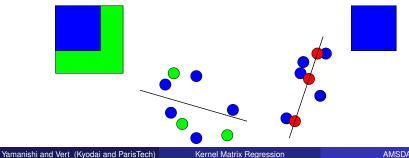
The idea

- Consider the kernels as inner products
- Find low-dimensional projections of the *t* points in *K*_{tt} and *G*_{tt} with maximum correlation
- Project the last p points of K onto this subspace
- Estimate G_{tp} as the inner products in the projection from K.



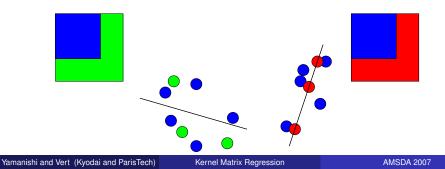
The idea

- Consider the kernels as inner products
- Find low-dimensional projections of the *t* points in *K*_{tt} and *G*_{tt} with maximum correlation
- Project the last p points of K onto this subspace
- Estimate G_{tp} as the inner products in the projection from K.



The idea

- Consider the kernels as inner products
- Find low-dimensional projections of the *t* points in *K*_{tt} and *G*_{tt} with maximum correlation
- Project the last p points of K onto this subspace
- Estimate G_{tp} as the inner products in the projection from K.



The idea

- Directly try to predict the expensive kernel *G* from *K*, using the know part as training set.
- In order to learn a p.d. function we impose the model:

$$G(x,y) = \sum_i u_i(x)u_i(y) + \epsilon,$$

for $u_i : \mathcal{X} \to \mathbb{R}$.

• We minimize the L_2 (Frobenius) norm of ϵ over the training set.

Kernel matrix regression

Solution

• We look for u_i in the RKHS of K:

$$u_i(x) = \sum_{i=1}^n \alpha_j^i K(x_j, x) \, .$$

• Minimization over the α 's of

$$\parallel \textit{G}_{\textit{tt}} - \textit{K}_{\textit{tt}} \textit{A} \textit{A}^{ op} \textit{K}_{\textit{tt}} \parallel^2_{\textit{Fro}}$$

gives:

$$AA^{\top} = K_{tt}^{-1} G_{tt} K_{tt}^{-1} ,$$

and therefore:

$$G_{pt} = K_{pt}K_{tt}^{-1}G_{tt} \quad G_{pp} = K_{pt}K_{tt}^{-1}G_{tt}K_{tt}^{-1}K_{pt}^{\top}.$$

Minimization over the $\alpha {\rm \dot{s}}$ of

$$\| \boldsymbol{G}_{tt} - \boldsymbol{K}_{tt} \boldsymbol{A} \boldsymbol{A}^{\top} \boldsymbol{K}_{tt} \|_{Fro}^{2} + 2\lambda \sum_{i} \| \boldsymbol{u}_{i} \|_{RKHS}^{2}$$

gives:

$$\boldsymbol{A}\boldsymbol{A}^{\top} = \boldsymbol{K}_{tt}^{-1} \left(\boldsymbol{G}_{tt} - \lambda \boldsymbol{K}_{tt}^{-1} \right) \boldsymbol{K}_{tt}^{-1} ,$$

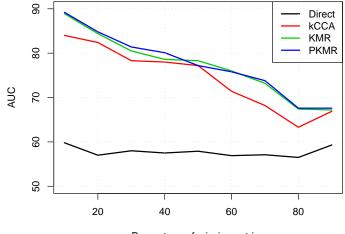
and therefore:

$$G_{pt} = K_{pt}K_{tt}^{-1}\left(G_{tt} - \lambda K_{tt}^{-1}\right) \quad G_{pp} = K_{pt}K_{tt}^{-1}\left(G_{tt} - \lambda K_{tt}^{-1}\right)K_{tt}^{-1}K_{pt}^{\top}.$$

Data

- Reconstruct the metabolic gene network, a biological network with 769 genes as vertices
- Use a kernel over genes deduced from gene expression data, phylogenetic profiles, cellular localization.
- The graph is embedded to a Hilbert space using a diffusion kernel
- 5-fold cross-validation, measure average AUC.

Biological network inference: Results



Percentage of missing entries

Yamanishi and Vert (Kyodai and ParisTech)

Kernel Matrix Regression

1 Motivations

- A method to predict missing entries in a kernel Gram matrix using side information from another Gram matrix
- Objective function and regularization more adapted to the problem than kernel CCA