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Biological networks
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Many interesting biological situations can be represented as network:
@ Protein-protein interactions,

@ Metabolic pathways,
@ Signaling pathways, ...
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Example: metabolic network

GAL10

HKA, HKB, GLK1

Glucose

PGM1, PGM2

@ \lertices are enzymes

@ Edges connect two enzymes when they catalyze two successive
reactions
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What are the challenges?

@ Given a newly discovered protein (e.g. from genome sequencing),
predict which known ones are connected to it

© Discover new functional relationships (new edges) between
already known proteins.
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What are the challenges?

Questions

@ Given a newly discovered protein (e.g. from genome sequencing),
predict which known ones are connected to it

© Discover new functional relationships (new edges) between
already known proteins.

Applications
@ Genome annotation
@ Elucidation of new pathways

@ Prediction of new binding partners
@ l|dentification of new candidate drug targets
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How can bioinformatics help?

Biologists have collected a lot of data about proteins. e.g.,
@ Gene expression measurements
@ Phylogenetic profiles
@ Location of proteins/enzymes in the cell

How to use this information “intelligently” to find a good function that
predicts edges between nodes. ’
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Our goal: Summary

@ Gene expression, @ Protein-protein interactions,
@ Gene sequence, @ Metabolic pathways,

@ Protein localization, ... @ Signaling pathways, ...
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@ Unsupervised inference
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Unsupervised inference

@ Given data about the genes proteins...
@ Infer the edges between genes and proteins

@ Note that the graph is considered completely unknown in the
inference process
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Unsupervised inference

@ Given data about the genes proteins...
@ Infer the edges between genes and proteins

@ Note that the graph is considered completely unknown in the
inference process

Strategies for inference

@ Model-based : fit a “model” involving a graph to the data
@ Similarity-based : connect “similar’ nodes
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Model-based approaches

@ Define a model to explain the data with a graph
© Fit the model to the data to infer a graph
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Model-based approaches

@ Define a model to explain the data with a graph
© Fit the model to the data to infer a graph

@ Dynamical system to model gene expression time series (boolean
network, PDE, state-space models...)

@ Statistical models where the graph represents conditional
independence relationships among random variables (Bayesian
networks, LASSO, ...)

J.-P. Vert (ParisTech) Supervised network inference 11/71



Model-based approaches

Pros Cons

@ Best approach if the model @ Specific to particular data
is correct and enough data and networks
are available @ Needs a correct model!

@ Interpretability of the model e Difficult integration of

@ Inclusion of prior heterogeneous data
knowledge @ Often needs a lot of data

and long computation time

v
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Similarity-based approaches

Rationale

Genes functionally related are likely to be co-regulated, co-localized,
present in the same organisms...
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Similarity-based approaches

Genes functionally related are likely to be co-regulated, co-localized,
present in the same organisms...

@ Define a distance between proteins from the genomic data
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Similarity-based approaches

Rationale

Genes functionally related are likely to be co-regulated, co-localized,
present in the same organisms...

Strategy

@ Define a distance between proteins from the genomic data

© Predict an edge if the distance is below a threshold
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Integrations of genomic data

Data representation a distances

@ We assume that each type of data (expression, sequences...)
defines a distance between genes.

@ Many such distances exist (cf kernel methods).

@ Data integration is easily obtained by summing the distance to
obtain an “integrated” distance

Network
—_
inference
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Evaluation on metabolic network reconstruction

@ The known metabolic network of the yeast involves 769 proteins.

@ Predict edges from distances between a variety of genomic data
(expression, localization, phylogenetic profiles, interactions).
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What went wrong?

@ |s the assumption that “similar proteins are connected” correct and
sufficient?

@ Is the Euclidean distance the “correct” way to compare genomic
data?

@ Perhaps the network inferred is interesting, but not related to the
metabolic network?

J.-P. Vert (ParisTech) Supervised network inference 16/ 71



e Supervised inference
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In actual applications,
@ we know in advance parts of the network to be inferred

@ the problem is to add/remove nodes and edges using genomic
data as side information

- O Supervised method

@ Given genomic data and
the currently known

\: = ~O network...
- 7 -
@ Infer missing edges
AN between current nodes and

-------- O additional nodes.
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e Supervised inference
@ Metric learning
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Metric learning

@ The direct similarity-based method fails because the distance
metric used might not be adapted to the inference of the targeted
protein network.

@ Solution: use the known subnetwork to refine the distance
measure, before applying the similarity-based method
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Metric learning

@ The direct similarity-based method fails because the distance
metric used might not be adapted to the inference of the targeted
protein network.

@ Solution: use the known subnetwork to refine the distance
measure, before applying the similarity-based method

N > T
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Metric learning

@ The direct similarity-based method fails because the distance
metric used might not be adapted to the inference of the targeted
protein network.

@ Solution: use the known subnetwork to refine the distance
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Metric learning

@ The direct similarity-based method fails because the distance
metric used might not be adapted to the inference of the targeted
protein network.

@ Solution: use the known subnetwork to refine the distance
measure, before applying the similarity-based method

N
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Metric learning by kernel CCA (Yamanishi et al., 2004)

@ Embed both the graph and the genomic data in Hilbert spaces.
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Metric learning by kernel CCA (Yamanishi et al., 2004)

@ Embed both the graph and the genomic data in Hilbert spaces.

@ Find subspaces in the Hilbert spaces where the graph distance
and the genomic data distance match (kernel CCA)
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Metric learning by kernel CCA (Yamanishi et al., 2004)

@ Embed both the graph and the genomic data in Hilbert spaces.

@ Find subspaces in the Hilbert spaces where the graph distance
and the genomic data distance match (kernel CCA)

@ Use the metric of the genomic data subspace for network
inference with the direct method.
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Kernel metric learning (V. and Yamanishi, 2005)

Kernel metric learning

@ Criterion: connected points should be near each other after
mapping to a new d-dimensional Euclidean space.

@ Add regularization to deal with high dimensions.
@ Mapping f(x) = (fi(x), ..., fy(x)) with:

fFL{f,.fiorhvar()=1 | 57

fi = arg min {Z(f(xf)f()q))2+kfi}-

@ Interpolates between (kernel) PCA (A = oo) and graph embedding
(A=0).
@ Equivalent to a generalized eigenvalue problem.
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Metric learning: Summary
[ ] : b é ° .

@ Solves an important question of the similarity-based approach:
which distance should be used?

@ Virtually any algorithm for distance metric learning can be used

J.-P. Vert (ParisTech) Supervised network inference 23/71



Metric learning: Summary
[ ] : b é ° .

@ Solves an important question of the similarity-based approach:
which distance should be used?

@ Virtually any algorithm for distance metric learning can be used

@ But... do we really need to follow the similarity-based approach to
infer graphs?
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e Supervised inference

@ Matrix completion
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Matrix completion

@ Goal: Fill missing entries in the adjacency matrix directly
@ Use genomic data matrix (similarity/distance) as side information

2o W29, n=10, N=20)

protein 1,..., n, n+1

Adjacency matrix of protein network

1 Unknown Pathway
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protein 1,.., n, n+1,, N (e.g., n=10, N=20)
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Supervised network inference

Similarity matrix of the other genomic data
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Matrix completion by em algorithm (Kato et al., 2005)

Method
@ M is the set of matrices obtained when missing entries are filled
@ D is the set of spectral variants of the genomic data matrix
@ Find the completed matrix M by solving

min  KL(D, M)
MeM,DeD

Unknown Pathway

proten 1, N (09, Ne20)
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Matrix completion by kernel matrix regression
(Yamanishi and V., 2007)

Method
@ Embed the genomic data to a Hilbert space H
@ Formulate the problem as a bivariate regression problem:

M(x,y) = u(x) u(y) +e,

where u : H — RY.

@ A variant of the em algorithm, using the Euclidean geometry
instead of the information geometry.

Adisceney mtio procin e —

Unknown Pathway
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Matrix completion : Summary

@ Algebric formulation of the problem

@ Use specific geometries of the set of matrices (information
geometry, Forbenius distances)

@ However not really motivated by biological motivations

@ In fact closely related to metric learning approaches (central role
of spectral decomposition)
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e Supervised inference

@ Global pattern recognition
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Pattern recognition

???
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Pattern recognition

: 6‘ s O
Q\r
= PEAR @R 77 77

@ Input variables x € X, Output y € {—1,1}.
@ Training set S = {(X1, 1), .., (Xn, ¥n)}.
@ Goal: learn a function f: X — {—1,1}

@ Many powerful algorithms! Logistic regression, nearest neighbors,
ANN, decision trees, SVM

L)
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Pattern recognition for supervised graph inference

Formulation and basic issue

@ A pair can be connected (1) or not connected (-1)
@ From the known subgraph we can exiract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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@ From the known subgraph we can exiract examples of connected
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@ However the genomic data characterize individual proteins; we
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Pattern recognition for supervised graph inference

Formulation and basic issue

@ A pair can be connected (1) or not connected (-1)
@ From the known subgraph we can exiract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Tensor product SVM (Ben-Hur and Noble, 2006)

@ Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ Ais similar to C and B is similar to D, or...
e Ais similarto D and B is similar to C
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Tensor product SVM (Ben-Hur and Noble, 2006)

@ Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ Ais similar to C and B is similar to D, or...
e Ais similarto D and B is similar to C

@ Formally, define a similarity between pairs from a similarity
between individuals by

Krepx (8, b), (¢, d)) = K(a, c)K(b, d) + K(a, d)K(b,c) .
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Tensor product SVM (Ben-Hur and Noble, 2006)

@ Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ Ais similar to C and B is similar to D, or...
e Ais similarto D and B is similar to C

@ Formally, define a similarity between pairs from a similarity
between individuals by

Krepx (8, b), (¢, d)) = K(a, c)K(b, d) + K(a, d)K(b,c) .

@ If K is a positive definite kernel for individuals then Krppi is a p.d.
kernel for pairs which can be used by SVM

@ This amounts to representing a pair (a, b) by the symmetrized
tensor product:

(a,b) — (a®b)® (bw a) .
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Metric learning pairwise SVM (V. et al, 2007)

@ |Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ A— Bis similarto C — D, or...
o A— Bissimilarto D — C.
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Metric learning pairwise SVM (V. et al, 2007)

@ |Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ A— Bis similarto C — D, or...
o A— Bissimilarto D — C.

@ Formally, define a similarity between pairs from a similarity
between individuals by

Kuek ((a, b), (¢, d)) = (K(a,c) + K(b,d) — K(a,c) — K(b,d))? .
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Metric learning pairwise SVM (V. et al, 2007)

@ |Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ A— Bis similarto C — D, or...
o A— Bissimilarto D — C.

@ Formally, define a similarity between pairs from a similarity
between individuals by

Kuek ((a, b), (¢, d)) = (K(a,c) + K(b,d) — K(a,c) — K(b,d))? .

@ If K is a positive definite kernel for individuals then K px is a p.d.
kernel for pairs which can be used by SVM

@ This amounts to representing a pair (a, b) by the symmetrized
difference:

(a,b) — (a— b)*2 .
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Remarks about pattern recognition for pairs

@ The objective function is exactly what we want (discriminate
between connected and non-connected pairs)

@ We can use state-of-the-art powerful algorithms for graph
inference (e.g., SVM)
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Remarks about pattern recognition for pairs

Pros
@ The objective function is exactly what we want (discriminate
between connected and non-connected pairs)
@ We can use state-of-the-art powerful algorithms for graph
inference (e.g., SVM)

Cons

@ We need to deduce an embedding for pairs from data about
individuals.

@ There are many training examples (N(N — 1)/2) which can be a
problem of pattern recognition algorithms in terms of computation
time and memory

@ The result is a global model over the graph; however the presence
or absence of a connection may also depend on the “position” of
the connection in the graph.
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e Supervised inference

@ Local pattern recognition
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Local pattern recognition (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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Local pattern recognition (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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The LOCAL model
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The LOCAL model: training edges
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The LOCAL model: testing edges

/

t
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The LOCAL model: learning
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The LOCAL model: learning
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The LOCAL model: learning
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The LOCAL model: learning
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The LOCAL model: learning
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The LOCAL model: decision boundary




The LOCAL model: testing




The LOCAL model: testing




The LOCAL model: Predictions
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The LOCAL model: target graph
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The LOCAL model: Two correct edges, one error
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The LOCAL model: Do same for each learning node
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The LOCAL model: Do same for each learning node
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The LOCAL model: Do same for each learning node
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Local predictions: pros and cons

Pros

@ Allow very different models for nearby nodes on the graph

@ Faster to train n models with n examples than 1 model with r?
examples

@ No need for tricky embedding of pairs: each model works at the
level of individuals.
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Local predictions: pros and cons

Pros

@ Allow very different models for nearby nodes on the graph
@ Faster to train n models with n examples than 1 model with n?
examples

@ No need for tricky embedding of pairs: each model works at the
level of individuals.

@ Few positive examples available for some nodes

@ We must rank pairs based on scores obtained on different models
= scores must be calibrated.

@ If we have two new proteins, no simple way to predict an edge
between them. |
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e Experiments
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@ Metabolic network (668 vertices, 2782 edges)

@ Protein-protein interaction network (984 vertices, 2438 edges)

Data (yeast)
@ Gene expression (157 experiments)
@ Phylogenetic profile (145 organisms)
@ Cellular localization (23 intracellular locations)
@ Yeast two-hybrid data (2438 interactions among 984 proteins)

@ 5-fold cross-validation

@ Predict edges between test set and training set
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Results: protein-protein interaction
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Results: metabolic gene network
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Results: effect of data integration
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Local SVM, protein-protein interaction network.
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Results: effect of data integration
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Local SVM, metabolic gene network.
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Experiments: Summary

@ Supervised approaches work much better than the baseline direct
approach

@ Data integration is easy and very powerful

@ Good results obtained on two apparently very different networks
(metabolic, physical interactions)

@ The LOCAL method wins the benchmark competition
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Applications: missing enzyme prediction

£FEBS

Journal

Prediction of missing enzyme genes in a bacterial
metabolic network

Reconstruction of the lysine-degradation pathway of Pseudomonas
aeruginosa

Yoshihiro Yamanishi', Hisaaki Mihara?, Motoharu Osaki?, Hisashi Muramatsu®, Nobuyoshi Esaki?,
Tetsuya Sato’, Yoshiyuki Hizukuri', Susumu Goto" and Minoru Kanehisa’

1 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan
2 Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Japan
3 Department of Biology, Graduate School of Science, Osaka University, Japan
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Applications: missing enzyme prediction
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Applications: missing enzyme prediction

900 DOI 10.1002/pmic.200600862 Proteomics 2007, 7, 900-909

RESEARCH ARTICLE

Prediction of nitrogen metabolism-related genes in
Anabaena by kernel-based network analysis

Shinobu Okamoto'*, Yoshihiro Yamanishi', Shigeki Ehira?, Shuichi Kawashima®,
Koichiro Tonomura’** and Minoru Kanehisa’

' Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
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Applications: function annotation

Determination of the role of the bacterial peptidase PepF by statistical
inference and further experimental validation
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Outline

e Conclusion
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Take-home messages

@ When the network is known in part, supervised methods can be
more adapted than unsupervised ones.

@ A variety of methods have been investigated recently (metric
learning, matrix completion, pattern recognition); the current
winner on our benchmarks (metabolic network and PPI network)
is the local pattern recognition approach.

@ It reaches high performance on the benchmarks: 45% of all true
edges of the metabolic gene network are retrieved at a FDR below
50% (for the yeast).

@ These methods:

e work for any network

e work with any data

e can integrate heterogeneous data, which strongly improves
performance
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