Collaborative filtering with attributes

Jacob Abernethv¹ Francis Bach² Theodoros Evgeniou³ Jean-Philippe Vert⁴

¹UC Berkeley

²INRIA / Ecole normale superieure de Paris

³INSEAD

⁴ParisTech / Ecole des Mines de Paris

The 2nd Workshop on Machine Learning and Optimization, ISM, Tokyo, Japan, October 12, 2007.

Outline

Introduction

- 2 A general framework for CF with attributes
- 3 Representer theorems

4 Algorithms

- 6 Choosing the kernels
- 6 Experiments

Conclusion

Outline

Introduction

- 2 A general framework for CF with attributes
- 3 Representer theorems
- 4 Algorithms
- 5 Choosing the kernels
- 6 Experiments

Conclusion

Collaborative Filtering (CF)

The problem

- Given a set of $n_{\mathcal{X}}$ "movies" $\mathbf{x} \in \mathcal{X}$ and a set of $n_{\mathcal{Y}}$ "people" $\mathbf{y} \in \mathcal{Y}$,
- predict the "rating" $z(\mathbf{x}, \mathbf{y}) \in \mathcal{Z}$ of person \mathbf{x} for film \mathbf{y}
- Training data: large $n_X \times n_Y$ incomplete matrix Z that describes the known ratings of some persons for some movies
- Goal: complete the matrix.

Another CF example

Drug design

- Given a family of proteins of therapeutic interest (e.g., GPCR's, proteases, kinases, nuclear receptors...)
- Given all known ligands (small molecules) that can bind to these proteins
- Can we predict unknown interactions?

CF by low-rank matrix approximation

- A common strategy for CF
- *Z* has rank less than $k \Leftrightarrow Z = UV^{\top}$ $U \in \mathbb{R}^{n_{\mathcal{X}} \times k}$, $V \in \mathbb{R}^{n_{\mathcal{Y}} \times k}$
- Examples: PLSA (Hoffmann, 2001), MMMF (Srebro et al, 2004)
- Numerical and statistical efficiency

CF by low-rank matrix approximation example

Fitting low-rank models (Srebro et al, 2004)

- Choose a convex loss function $\ell(z, z')$ (hinge, square, etc...)
- Relax the (non-convex) rank of Z into the (convex) trace norm of Z: if σ_i(Z) are the singular values of Z,

$$\operatorname{rank} Z = \sum_{i} \mathbf{1}_{\sigma_i(Z) > 0} \qquad \|Z\|_* = \sum_{i} \sigma_i(Z) \,.$$

• *n* observations z_u corresponding to $\mathbf{x}_{i(u)}$ and $\mathbf{y}_{j(u)}$, u = 1, ..., n:

$$\min_{Z\in\mathbb{R}^{n_{\mathcal{X}}\times n_{\mathcal{Y}}}}\sum_{u=1}^{n}\ell(z_{u},Z_{i(u),j(u)})+\lambda\|Z\|_{*}$$

This is an SDP if ℓ is SDP-representable

CF with attributes

The problem

- Often we have additional attributes:
 - gender, age of people; type, actors of movies..
 - 3D structures of proteins and ligands for protein-ligand interaction prediction
- How to include attributes in CF?
- Expected gains: increase performance, allow predictions on new movie and/or people.

Our contributions

- A general framework for CF with or without attributes, using kernels to describe attributes ("kernel-CF")
- A family of algorithms for CF in this setting

CF with attributes

The problem

- Often we have additional attributes:
 - gender, age of people; type, actors of movies..
 - 3D structures of proteins and ligands for protein-ligand interaction prediction
- How to include attributes in CF?
- Expected gains: increase performance, allow predictions on new movie and/or people.

Our contributions

- A general framework for CF with or without attributes, using kernels to describe attributes ("kernel-CF")
- A family of algorithms for CF in this setting

Introduction

2 A general framework for CF with attributes

Representer theorems

4 Algorithms

- 5 Choosing the kernels
- 6 Experiments

Conclusion

Setting

People/Movies

- \mathcal{X} and \mathcal{Y} two Hilbert spaces, with respective inner products $\langle \mathbf{x}, \mathbf{x}' \rangle_{\mathcal{X}}$ and $\langle \mathbf{y}, \mathbf{y}' \rangle_{\mathcal{Y}}$.
- Each movie (resp. people) is a point of ${\mathcal X}$ (resp. ${\mathcal Y})$
- If no attribute then two different movies (resp. people) are orthogonal to each other; otherwise use kernels on attributes to define inner products.

Preference function

• We model the preference of people **y** for a movie **x** by a bilinear form:

$$f(\mathbf{x},\mathbf{y}) = \langle \mathbf{x}, F\mathbf{y}
angle_{\mathcal{X}} ,$$

where $F \in \mathcal{B}_0(\mathcal{Y}, \mathcal{X})$ is a compact linear operator.

Setting

People/Movies

- \mathcal{X} and \mathcal{Y} two Hilbert spaces, with respective inner products $\langle \mathbf{x}, \mathbf{x}' \rangle_{\mathcal{X}}$ and $\langle \mathbf{y}, \mathbf{y}' \rangle_{\mathcal{Y}}$.
- Each movie (resp. people) is a point of ${\mathcal X}$ (resp. ${\mathcal Y})$
- If no attribute then two different movies (resp. people) are orthogonal to each other; otherwise use kernels on attributes to define inner products.

Preference function

 We model the preference of people y for a movie x by a bilinear form:

$$f(\mathbf{x},\mathbf{y}) = \langle \mathbf{x}, F\mathbf{y}
angle_{\mathcal{X}} ,$$

where $F \in \mathcal{B}_0(\mathcal{Y}, \mathcal{X})$ is a compact linear operator.

If there are n_{χ} movies and n_{χ} people, without attributes:

• Take
$$\mathcal{X} = \mathbb{R}^{n_{\mathcal{X}}}$$
 and $\mathcal{Y} = \mathbb{R}^{n_{\mathcal{Y}}}$

- The set of movies (resp. people) form an orthonormal basis $(e_1, \ldots, e_{n_{\mathcal{X}}})$ of \mathcal{X} (resp. $(f_1, \ldots, f_{n_{\mathcal{Y}}})$ of \mathcal{Y})
- A compact operator *F* : *Y* → *X* is represented by a matrix *M* ∈ ℝ^{n_X×n_y} in the basis of movies/people
- The ranking of people *j* for movie *i* is given by:

 $f(i,j) = \boldsymbol{e}_i^\top \boldsymbol{M} \boldsymbol{f}_j = \boldsymbol{M}_{i,j}$

• Hence we recover the classical setting of matrix estimation where $M_{i,j}$ is the preference of people *j* for movie *i*.

Spectra of compact operators

Classical results

• For (\mathbf{x}, \mathbf{y}) in $\mathcal{X} \times \mathcal{Y}$ the tensor product $\mathbf{x} \otimes \mathbf{y}$ is the operator

$$\forall \mathbf{h} \in \mathcal{Y}, \quad (\mathbf{x} \otimes \mathbf{y}) \, \mathbf{h} = \langle \mathbf{y}, \mathbf{h} \rangle_{\mathcal{Y}} \, \mathbf{x}.$$

Any compact operator *F* : *Y* → *X* admits a spectral decomposition:

$$F = \sum_{i=1}^{\infty} \sigma_i \mathbf{u}_i \otimes \mathbf{v}_i \,.$$

where the $\sigma_i \geq 0$ are the singular values and $(\mathbf{u}_i)_{i \in \mathbb{N}}$ and $(\mathbf{v}_i)_{i \in \mathbb{N}}$ are orthonormal families in \mathcal{X} and \mathcal{Y} .

The spectrum of *F* is the set of singular values sorted in decreasing order: σ₁(*F*) ≥ σ₂(*F*) ≥ ... ≥ 0.

Useful classes for operators

Operators of finite rank

- The rank of an operator is the number of strictly positive singular values.
- Hence operators of rank smaller or equal to *k* are characterized by:

 $\sigma_{k+1}(F)=0.$

Trace-class operators

The trace-class operators are the compact operators *F* that satisfy:

 $\|F\|_*:=\sum_{i=1}^\infty \sigma_i(F)<\infty.$

 $F \parallel_*$ is a norm over the trace-class operators, called the trace norm.

Useful classes for operators

Operators of finite rank

- The rank of an operator is the number of strictly positive singular values.
- Hence operators of rank smaller or equal to k are characterized by:

 $\sigma_{k+1}(F)=0.$

Trace-class operators

The trace-class operators are the compact operators F that satisfy:

$$\|F\|_*:=\sum_{i=1}^\infty \sigma_i(F)<\infty.$$

 $|| F ||_*$ is a norm over the trace-class operators, called the trace norm.

Hilbert-Schmidt operators

• The Hilbert-Schmidt operators are compact operators *F* that satisfy:

$$\|F\|_{Fro}^2 := \sum_{i=1}^\infty \sigma_i(F)^2 < \infty.$$

• They form a Hilbert space with inner product:

$$\left\langle \mathbf{x}\otimes\mathbf{y},\mathbf{x}'\otimes\mathbf{y}'
ight
angle _{\mathcal{X}\otimes\mathcal{Y}}=\left\langle \mathbf{x},\mathbf{x}'
ight
angle _{\mathcal{X}}\left\langle \mathbf{y},\mathbf{y}'
ight
angle _{\mathcal{Y}}$$

Definition

A function $\Omega : \mathcal{B}_0(\mathcal{Y}, \mathcal{X}) \mapsto \mathbb{R} \cup \{+\infty\}$ is called a spectral penalty function if it can be written as:

$$\Omega(F) = \sum_{i=1}^{\infty} s_i (\sigma_i(F)) ,$$

where for any $i \ge 1, s_i : \mathbb{R}^+ \mapsto \mathbb{R}^+ \cup \{+\infty\}$ is a non-decreasing penalty function satisfying $s_i(0) = 0$.

Spectral penalty function

Examples

• Rank constraint: take $s_{k+1}(0) = 0$ and $s_{k+1}(u) = +\infty$ for u > 0, and $s_i = 0$ for $i \ge k$. Then

$$\Omega(F) = \begin{cases} 0 & \text{if } rank(F) \ge k \,, \\ +\infty & \text{if } rank(F) > k \,. \end{cases}$$

• Trace norm: take $s_i(u) = u$ for all *i*, then:

 $\Omega(F) = \|F\|_*.$

• Hilbert-Schmidt norm: take $s_i(u) = u^2$ for all *i*, then

 $\Omega(F) = \|F\|_{Fro}^2.$

Spectral penalty function

Examples

• Rank constraint: take $s_{k+1}(0) = 0$ and $s_{k+1}(u) = +\infty$ for u > 0, and $s_i = 0$ for $i \ge k$. Then

$$\Omega(F) = \begin{cases} 0 & \text{if } rank(F) \ge k \,, \\ +\infty & \text{if } rank(F) > k \,. \end{cases}$$

• Trace norm: take $s_i(u) = u$ for all *i*, then:

 $\Omega(F) = \|F\|_*.$

• Hilbert-Schmidt norm: take $s_i(u) = u^2$ for all *i*, then

 $\Omega(F) = \|F\|_{Fro}^2.$

Spectral penalty function

Examples

• Rank constraint: take $s_{k+1}(0) = 0$ and $s_{k+1}(u) = +\infty$ for u > 0, and $s_i = 0$ for $i \ge k$. Then

$$\Omega(F) = \begin{cases} 0 & \text{if } rank(F) \ge k \,, \\ +\infty & \text{if } rank(F) > k \,. \end{cases}$$

• Trace norm: take $s_i(u) = u$ for all *i*, then:

 $\Omega(F) = \|F\|_*.$

• Hilbert-Schmidt norm: take $s_i(u) = u^2$ for all *i*, then

 $\Omega(F) = \|F\|_{Fro}^2.$

Learning operator with spectral regularization

Setting

- Training set: $(\mathbf{x}_i, \mathbf{y}_i, t_i)_{i=1,...,N}$ a set of (movie, people, preference).
- Loss function *I*(*t*, *t'*) : cost of predicting preference *t* instead of *t'*.

• Empirical risk of an operator F:

$$R_N(F) = \frac{1}{N} \sum_{i=1}^N I(\langle \mathbf{x}_i, F \mathbf{y}_i \rangle_{\mathcal{X}}, t_i) .$$

Learning an operator

$$\min_{F \in \mathcal{B}_0(\mathcal{Y}, \mathcal{X}), \ \Omega(F) < \infty} \left\{ R_N(F) + \lambda \Omega(F) \right\} \ .$$

Learning operator with spectral regularization

Setting

- Training set: $(\mathbf{x}_i, \mathbf{y}_i, t_i)_{i=1,...,N}$ a set of (movie, people, preference).
- Loss function I(t, t') : cost of predicting preference t instead of t'.
- Empirical risk of an operator F:

$$R_N(F) = \frac{1}{N} \sum_{i=1}^N I(\langle \mathbf{x}_i, F \mathbf{y}_i \rangle_{\mathcal{X}}, t_i) .$$

Learning an operator

$$\min_{F \in \mathcal{B}_0(\mathcal{Y}, \mathcal{X}), \ \Omega(F) < \infty} \left\{ R_N(F) + \lambda \Omega(F) \right\} \ .$$

Introduction

2 A general framework for CF with attributes

3 Representer theorems

4 Algorithms

- 5 Choosing the kernels
- 6 Experiments

Conclusion

• We want to solve the problem:

$$\min_{F\in\mathcal{B}_0(\mathcal{Y},\mathcal{X}),\ \Omega(F)<\infty}\left\{R_N(F)+\lambda\Omega(F)\right\}\ .$$

- However the set {F ∈ B₀ (𝔅, 𝔅), Ω(F) < ∞} is usually of infinite dimension.
- We show that in fact a finite-dimensional problem must be solved, by extending the familiar representer theorem to our setting.

Theorem

If \hat{F} is a solution the problem:

$$\min_{F \in \mathcal{B}_{2}(\mathcal{Y}, \mathcal{X})} \left\{ R_{N}(F) + \lambda \sum_{i=1}^{\infty} \sigma_{i}(F)^{2} \right\}$$

then it is necessarily in the linear span of $\{\mathbf{x}_i \otimes \mathbf{y}_i : i = 1, ..., N\}$, i.e., it can be written as:

$$\hat{F} = \sum_{i=1}^{N} \alpha_i \mathbf{x}_i \otimes \mathbf{y}_i \,,$$

for some $\alpha \in \mathbb{R}^N$.

• $\mathcal{B}_2(\mathcal{Y}, \mathcal{X})$ is isomorphic to the RKHS of the tensor product kernel:

$$k_{\otimes}\left(\left(\mathbf{x},\mathbf{x}'
ight),\left(\mathbf{y},\mathbf{y}'
ight)
ight)=\left\langle\mathbf{x},\mathbf{x}'
ight
angle_{\mathcal{X}}\left\langle\mathbf{y},\mathbf{y}'
ight
angle_{\mathcal{Y}}$$

by $f(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, F\mathbf{y} \rangle_{\mathcal{X}}$. In particular,

$$\|f\|_{\mathcal{H}_{\otimes}}^{2}=\|F\|^{2}=\Omega(F).$$

• The problem is therefore a classical kernel method:

$$\min_{f\in\mathcal{H}_{\otimes}}\left\{R_{N}(f)+\lambda\|f\|_{\otimes}^{2}\right\},\$$

so the classical representer theorem can be used. \Box

Theorem

For any spectral penalty function $\Omega : \mathcal{B}_0(\mathcal{Y}, \mathcal{X}) \mapsto \mathbb{R}$, let the optimization problem:

$$\min_{F\in\mathcal{B}_0(\mathcal{Y},\mathcal{X}),\Omega(F)<\infty}\left\{R_N(F)+\lambda\Omega(F)\right\}\,.$$

If the set of solutions is not empty, then there is a solution *F* in $\mathcal{X}_N \otimes \mathcal{Y}_N$, i.e., there exists $\alpha \in \mathbb{R}^{m_{\mathcal{X}} \times m_{\mathcal{Y}}}$ such that:

$$F = \sum_{i=1}^{m_{\mathcal{X}}} \sum_{j=1}^{m_{\mathcal{Y}}} \alpha_{ij} \mathbf{u}_i \otimes \mathbf{v}_j \,,$$

where $(\mathbf{u}_1, \ldots, \mathbf{u}_{m_{\mathcal{X}}})$ and $(\mathbf{v}_1, \ldots, \mathbf{v}_{m_{\mathcal{Y}}})$ form orthonormal bases of \mathcal{X}_N and \mathcal{Y}_N , respectively.

Proof sketch

• For any operator $F \in \mathcal{B}_0(\mathcal{Y}, \mathcal{X})$, let

 $\boldsymbol{G} = \boldsymbol{\Pi}_{\mathcal{X}_N} \boldsymbol{F} \boldsymbol{\Pi}_{\mathcal{Y}_N} \,,$

where Π_U is the orthogonal projection onto U.

• Lemma: we can show that for all $i \ge 0$:

 $\sigma_i(G) \leq \sigma_i(F).$

- Therefore $\Omega(G) \leq \Omega(F)$.
- On the other hand $R_N(G) = R_N(F)$.
- Consequently for any solution *F* we have another solution $G \in \mathcal{X}_N \otimes \mathcal{Y}_N$. \Box

Theorem (cont.)

The coefficients α that define the solution by

$$\boldsymbol{F} = \sum_{i=1}^{m_{\mathcal{X}}} \sum_{j=1}^{m_{\mathcal{Y}}} \alpha_{ij} \mathbf{u}_i \otimes \mathbf{v}_j \,,$$

can be found by solving the following finite-dimensional optimization problem:

$$\min_{\alpha \in \mathbb{R}^{m_{\mathcal{X}} \times m_{\mathcal{Y}}}, \Omega(\alpha) < \infty} R_N\left(diag\left(X \alpha Y^\top \right) \right) + \lambda \Omega(\alpha),$$

where $\Omega(\alpha)$ refers to the spectral penalty function applied to the matrix α seen as an operator from $\mathbb{R}^{m_{\mathcal{Y}}}$ to $\mathbb{R}^{m_{\mathcal{X}}}$, and X and Y denote any matrices that satisfy $K = XX^{\top}$ and $G = YY^{\top}$ for the two Gram matrices K and G of \mathcal{X}_N and \mathcal{Y}_N .

Motivation

Often the optimization over $\mathbb{R}^{m_{\mathcal{X}} \times m_{\mathcal{Y}}}$ is too difficult. We would like to reduce complexity by, e.g., focusing on small rank matrices.

Corollary

If the spectral penalty function Ω is infinite on operators of rank larger than R (i.e., $\sigma_{R+1}(u) = +\infty$ for u > 0), then the matrix $\alpha \in \mathbb{R}^{m_{\mathcal{X}} \times m_{\mathcal{Y}}}$ in the previous theorem has rank at most R.

Motivation

Often the optimization over $\mathbb{R}^{m_{\mathcal{X}} \times m_{\mathcal{Y}}}$ is too difficult. We would like to reduce complexity by, e.g., focusing on small rank matrices.

Corollary

If the spectral penalty function Ω is infinite on operators of rank larger than R (i.e., $\sigma_{R+1}(u) = +\infty$ for u > 0), then the matrix $\alpha \in \mathbb{R}^{m_{\mathcal{X}} \times m_{\mathcal{Y}}}$ in the previous theorem has rank at most R.

Introduction

- 2 A general framework for CF with attributes
- 3 Representer theorems

Algorithms

- 5 Choosing the kernels
- 6 Experiments

Conclusion

• Let $\psi_i(t) = I(t, t_i)$, supposed to be convex.

Suppose

$$\Omega(\boldsymbol{A}) = \sum_{i\geq 1} \boldsymbol{s}(\sigma_i(\boldsymbol{A})),$$

where *s* is a convex even function s.t. s(0) = 0.

• The problem we wish to solve is:

$$\min_{\alpha \in \mathbb{R}^{m_{\mathbf{X}} \times m_{\mathbf{Y}}}} \sum_{i=1}^{n} \psi_i((\mathbf{X} \alpha \mathbf{Y}^{\top})_{ii}) + \lambda \Omega(\alpha)$$

• One may directly solve this primal problem.

• Let ψ_i^* denote the Fenchel conjugate of ϕ_i :

$$\psi_i^*(\alpha_i) = \max_{\mathbf{v}_i \in \mathbb{R}} \alpha_i \mathbf{v}_i - \psi_i(\mathbf{v}_i).$$

• Let Ω^* denote the Fenchel conjugate of Ω :

$$\Omega^*(\beta) = \max_{\in \mathbb{R}^{m_X \times m_y}} Tr(\alpha^\top \beta) - \Omega(\alpha).$$

• In fact Ω^* is a spectral function corresponding to s^* :

$$\Omega^*(\beta) = \sum_{i\geq 1} s^*(\sigma_i(\beta)).$$

Dual problem

Primal:

$$\min_{\alpha \in \mathbb{R}^{m_{\boldsymbol{X}} \times m_{\boldsymbol{Y}}}} \sum_{i=1}^{N} \psi_i((\boldsymbol{X} \alpha \boldsymbol{Y}^{\top})_{ii}) + \lambda \Omega(\alpha)$$

• Dual (strong duality):

$$\max_{\beta \in \mathbb{R}^N} - \sum_{i=1}^N \psi_i^*(\beta_i) - \lambda \Omega^* \left(-\frac{1}{\lambda} X^\top \operatorname{Diag}(\beta) Y \right) \,.$$

- The solution α of the primal is among the Fenchel duals of $-\frac{1}{\lambda}X^{\top} \operatorname{Diag}(\beta)Y$ (closed form if *s* if differentiable).
- Choosing the primal or dual formulation depends on the number of training patterns N compared to m_x × m_y.

Example: trace norm constraint

• Primal:

$$\min_{\alpha \in \mathbb{R}^{m_{X} \times m_{Y}}} \sum_{i=1}^{N} \psi_{i}((X \alpha Y^{\top})_{ii}) + \lambda \| \alpha \|_{*}$$

Large convex, non-smooth problem (can be cast as a SDP).Dual:

$$\max_{\beta \in \mathbb{R}^N} - \sum_{i=1}^N \psi_i^*(\beta_i) \text{ such that } \max_i \sigma_i \left(-X^\top \operatorname{Diag}(\beta) Y \right) \leq \lambda \,.$$

- Two tricks to (approximately) solve this problem:
 - Make it smooth
 - Make it low-rank

Smoothing the problem

Make the problem smooth by approximating the non smooth functions:

- loss: (depends on the loss)
- trace norm:

$$f_{\varepsilon}(b) = \varepsilon \log(1 + e^{\sigma/\varepsilon}) + \varepsilon \log(1 + e^{-\sigma/\varepsilon})$$

Trick

- Let G(M) be a convex twice differentiable function to optimize over $\mathbb{R}^{p \times q}$.
- If the global minimum of G has rank r, then G restricted to matrices of rank r + 1 have no local minimum apart from the global minimum.

Algorithm

- Start with small r.
- Ind local minimum with Quasi-Newton.
- If solution is rank-defficient then we have the global optimum; otherwise increase r and start again in 2.

Trick

- Let G(M) be a convex twice differentiable function to optimize over $\mathbb{R}^{p \times q}$.
- If the global minimum of G has rank r, then G restricted to matrices of rank r + 1 have no local minimum apart from the global minimum.

Algorithm

- Start with small r.
- Ind local minimum with Quasi-Newton.
- If solution is rank-defficient then we have the global optimum; otherwise increase r and start again in 2.

Introduction

- 2 A general framework for CF with attributes
- 3 Representer theorems

4 Algorithms

- 6 Choosing the kernels
- 6 Experiments

Conclusion

We obtain various algorithms by choosing:

- A loss function (depends on the application)
- A spectral regularization (that is amenable to optimization)
- Two kernels.

Both kernels and spectral regularization can be used to constrain the solution

- Dirac kernel + spectral constraint (rank, trace norm) = matrix completion
- Attribute kernels + Hilbert-Schmidt regularization = kernel methods for pairs with tensor product kernel
- Attribute kernel on movies, Dirac on people, spectral regularization (rank, trace norm) = multi-task learning (rank constraints enforces sharing the weights between people).

A family of kernels

Taken $K_{\otimes} = K \times G$ with

$$\begin{cases} \mathcal{K} = \eta \mathcal{K}_{\text{Attribute}}^{x} + (1 - \eta) \mathcal{K}_{\text{Dirac}}^{x}, \\ \mathcal{G} = \zeta \mathcal{K}_{\text{Attribute}}^{y} + (1 - \zeta) \mathcal{K}_{\text{Dirac}}^{y}, \end{cases}$$

for $0 \le \eta \le 1$ and $0 \le \zeta \le 1$

Abernethy et al. ()

Introduction

- 2 A general framework for CF with attributes
- 3 Representer theorems

4 Algorithms

5 Choosing the kernels

6 Experiments

7 Conclusion

Experiment

• Generate data $(\mathbf{x}, \mathbf{y}, z) \in \mathbb{R}^{f_{\chi}} \times \mathbb{R}^{f_{Y}} \times \mathbb{R}$ according to

$$z = \mathbf{x}^\top B \mathbf{y} + \varepsilon$$

- Observe only $n_X < f_X$ and $n_Y < f_Y$ features
 - · Low-rank assumption will find the missing features
 - Observed attributes will help the low-rank formulation to concentrate mostly on the unknown features

Comparison of

- Low-rank constraint without tracenorm (note that it requires regularization)
- Trace-norm formulation (regularization is implicit)

Simulated data: results

- Compare MSE
- Left: rank constraint (best: 0.1540), right: trace norm (best: 0.1522)

- MovieLens 100k database, ratings with attributes
- Experiments with 943 movies and 1,642 people, 100,000 rankings in $\{1, \ldots, 5\}$
- Train on a subset of the ratings, test on the rest
- error measured with MSE (best constant prediction: 1.26)

	n	Ċ	error
	•7	>	
no-attributes	0	0	0.91
multi-task - I	0	1	0.96
multi-task - II	1	0	0.94
attributes only	1	1	0.88
"middle"	.1	.01	0.84

Introduction

- 2 A general framework for CF with attributes
- 3 Representer theorems

4 Algorithms

- 5 Choosing the kernels
- 6 Experiments

Conclusion

What we saw

- A general framework for CF with or without attributes, using kernels
- A generalized representation theorem valid for any spectral penalty function
- A family of new methods;

Future work

- The bottleneck is often practical optimization. Online version possible.
- Automatic kernel optimization