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Collaborative Filtering (CF)

The problem
Given a set of nX “movies” x ∈ X and a set of nY “people” y ∈ Y,
predict the “rating” z(x,y) ∈ Z of person x for film y
Training data: large nX × nY incomplete matrix Z that describes
the known ratings of some persons for some movies
Goal: complete the matrix.
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Another CF example

Drug design
Given a family of proteins of therapeutic interest (e.g., GPCR’s,
proteases, kinases, nuclear receptors...)
Given all known ligands (small molecules) that can bind to these
proteins
Can we predict unknown interactions?
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CF by low-rank matrix approximation

A common strategy for CF

Z has rank less than k ⇔ Z = UV> U ∈ RnX×k , V ∈ RnY×k

Examples: PLSA (Hoffmann, 2001), MMMF (Srebro et al, 2004)
Numerical and statistical efficiency

U

V
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CF by low-rank matrix approximation example

Fitting low-rank models (Srebro et al, 2004)
Choose a convex loss function `(z, z ′) (hinge, square, etc...)
Relax the (non-convex) rank of Z into the (convex) trace norm of
Z : if σi(Z ) are the singular values of Z ,

rankZ =
∑

i

1σi (Z )>0 ‖Z‖∗ =
∑

i

σi(Z ) .

n observations zu corresponding to xi(u) and yj(u), u = 1, . . . ,n:

min
Z∈RnX×nY

n∑
u=1

`(zu,Zi(u),j(u)) + λ‖Z‖∗

This is an SDP if ` is SDP-representable
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CF with attributes

The problem
Often we have additional attributes:

gender, age of people; type, actors of movies..
3D structures of proteins and ligands for protein-ligand interaction
prediction

How to include attributes in CF?
Expected gains: increase performance, allow predictions on new
movie and/or people.

Our contributions
A general framework for CF with or without attributes, using
kernels to describe attributes (“kernel-CF”)
A family of algorithms for CF in this setting
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Setting

People/Movies
X and Y two Hilbert spaces, with respective inner products
〈x,x′〉X and 〈y,y′〉Y .
Each movie (resp. people) is a point of X (resp. Y)
If no attribute then two different movies (resp. people) are
orthogonal to each other; otherwise use kernels on attributes to
define inner products.

Preference function
We model the preference of people y for a movie x by a bilinear
form:

f (x,y) = 〈x,Fy〉X ,

where F ∈ B0 (Y,X ) is a compact linear operator.
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Relationship to classical matrix formulation

If there are nX movies and nY people, without attributes:
Take X = RnX and Y = RnY

The set of movies (resp. people) form an orthonormal basis
(e1, . . . ,enX ) of X (resp.

(
f1, . . . , fnY

)
of Y)

A compact operator F : Y → X is represented by a matrix
M ∈ RnX×nY in the basis of movies/people
The ranking of people j for movie i is given by:

f (i , j) = e>i Mfj = Mi,j

Hence we recover the classical setting of matrix estimation where
Mi,j is the preference of people j for movie i .
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Spectra of compact operators

Classical results
For (x,y) in X × Y the tensor product x⊗ y is the operator

∀h ∈ Y , (x⊗ y) h = 〈y,h〉Y x .

Any compact operator F : Y → X admits a spectral
decomposition:

F =
∞∑

i=1

σiui ⊗ vi .

where the σi ≥ 0 are the singular values and (ui)i∈N and (vi)i∈N
are orthonormal families in X and Y.
The spectrum of F is the set of singular values sorted in
decreasing order: σ1(F ) ≥ σ2(F ) ≥ . . . ≥ 0.
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Useful classes for operators

Operators of finite rank
The rank of an operator is the number of strictly positive singular
values.
Hence operators of rank smaller or equal to k are characterized
by:

σk+1(F ) = 0 .

Trace-class operators
The trace-class operators are the compact operators F that satisfy:

‖F ‖∗ :=
∞∑

i=1

σi(F ) <∞ .

‖F ‖∗ is a norm over the trace-class operators, called the trace norm.
Abernethy et al. () CF with attributes MLO’2007 13 / 42



Useful classes for operators

Operators of finite rank
The rank of an operator is the number of strictly positive singular
values.
Hence operators of rank smaller or equal to k are characterized
by:

σk+1(F ) = 0 .

Trace-class operators
The trace-class operators are the compact operators F that satisfy:

‖F ‖∗ :=
∞∑

i=1

σi(F ) <∞ .

‖F ‖∗ is a norm over the trace-class operators, called the trace norm.
Abernethy et al. () CF with attributes MLO’2007 13 / 42



Useful classes for operators (cont.)

Hilbert-Schmidt operators
The Hilbert-Schmidt operators are compact operators F that
satisfy:

‖F ‖2
Fro :=

∞∑
i=1

σi(F )2 <∞ .

They form a Hilbert space with inner product:〈
x⊗ y,x′ ⊗ y′

〉
X⊗Y =

〈
x,x′

〉
X

〈
y,y′

〉
Y .
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Spectral penalty function

Definition
A function Ω : B0 (Y,X ) 7→ R ∪ {+∞} is called a spectral penalty
function if it can be written as:

Ω(F ) =
∞∑

i=1

si (σi(F )) ,

where for any i ≥ 1, si : R+ 7→ R+ ∪ {+∞} is a non-decreasing
penalty function satisfying si(0) = 0.
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Spectral penalty function

Examples
Rank constraint: take sk+1(0) = 0 and sk+1(u) = +∞ for u > 0,
and si = 0 for i ≥ k . Then

Ω(F ) =

{
0 if rank(F ) ≥ k ,
+∞ if rank(F ) > k .

Trace norm: take si(u) = u for all i , then:

Ω(F ) = ‖F ‖∗ .

Hilbert-Schmidt norm: take si(u) = u2 for all i , then

Ω(F ) = ‖F ‖2
Fro .

Abernethy et al. () CF with attributes MLO’2007 16 / 42



Spectral penalty function

Examples
Rank constraint: take sk+1(0) = 0 and sk+1(u) = +∞ for u > 0,
and si = 0 for i ≥ k . Then

Ω(F ) =

{
0 if rank(F ) ≥ k ,
+∞ if rank(F ) > k .

Trace norm: take si(u) = u for all i , then:

Ω(F ) = ‖F ‖∗ .

Hilbert-Schmidt norm: take si(u) = u2 for all i , then

Ω(F ) = ‖F ‖2
Fro .

Abernethy et al. () CF with attributes MLO’2007 16 / 42



Spectral penalty function

Examples
Rank constraint: take sk+1(0) = 0 and sk+1(u) = +∞ for u > 0,
and si = 0 for i ≥ k . Then

Ω(F ) =

{
0 if rank(F ) ≥ k ,
+∞ if rank(F ) > k .

Trace norm: take si(u) = u for all i , then:

Ω(F ) = ‖F ‖∗ .

Hilbert-Schmidt norm: take si(u) = u2 for all i , then

Ω(F ) = ‖F ‖2
Fro .

Abernethy et al. () CF with attributes MLO’2007 16 / 42



Learning operator with spectral regularization

Setting
Training set: (xi ,yi , ti)i=1,...,N a set of (movie,people,preference).
Loss function l(t , t ′) : cost of predicting preference t instead of t ′.
Empirical risk of an operator F :

RN(F ) =
1
N

N∑
i=1

l (〈xi ,Fyi〉X , ti) .

Learning an operator

min
F∈B0(Y,X ), Ω(F )<∞

{RN(F ) + λΩ(F )} .
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Motivations

We want to solve the problem:

min
F∈B0(Y,X ), Ω(F )<∞

{RN(F ) + λΩ(F )} .

However the set {F ∈ B0 (Y,X ) , Ω(F ) <∞} is usually of infinite
dimension.
We show that in fact a finite-dimensional problem must be solved,
by extending the familiar representer theorem to our setting.
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A classical representer theorem

Theorem
If F̂ is a solution the problem:

min
F∈B2(Y,X )

{
RN(F ) + λ

∞∑
i=1

σi(F )2

}
,

then it is necessarily in the linear span of {xi ⊗ yi : i = 1, . . . ,N}, i.e.,
it can be written as:

F̂ =
N∑

i=1

αixi ⊗ yi ,

for some α ∈ RN .
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Proof sketch

B2 (Y,X ) is isomorphic to the RKHS of the tensor product kernel:

k⊗
((

x,x′
)
,
(
y,y′

))
=

〈
x,x′

〉
X

〈
y,y′

〉
Y ,

by f (x,y) = 〈x,Fy〉X . In particular,

‖ f ‖2
H⊗ = ‖F ‖2 = Ω(F ) .

The problem is therefore a classical kernel method:

min
f∈H⊗

{
RN(f ) + λ‖ f ‖2

⊗

}
,

so the classical representer theorem can be used. �
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A generalized representer theorem

Theorem
For any spectral penalty function Ω : B0 (Y,X ) 7→ R, let the
optimization problem:

min
F∈B0(Y,X ),Ω(F )<∞

{RN(F ) + λΩ(F )} .

If the set of solutions is not empty, then there is a solution F in
XN ⊗ YN , i.e., there exists α ∈ RmX×mY such that:

F =

mX∑
i=1

mY∑
j=1

αijui ⊗ vj ,

where (u1, . . . ,umX ) and
(
v1, . . . ,vmY

)
form orthonormal bases of XN

and YN , respectively.
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Proof sketch

For any operator F ∈ B0 (Y,X ), let

G = ΠXN FΠYN ,

where ΠU is the orthogonal projection onto U.
Lemma: we can show that for all i ≥ 0:

σi(G) ≤ σi(F ).

Therefore Ω(G) ≤ Ω(F ).
On the other hand RN(G) = RN(F ).
Consequently for any solution F we have another solution
G ∈ XN ⊗ YN . �
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Practical consequence

Theorem (cont.)
The coefficients α that define the solution by

F =

mX∑
i=1

mY∑
j=1

αijui ⊗ vj ,

can be found by solving the following finite-dimensional optimization
problem:

min
α∈RmX×mY ,Ω(α)<∞

RN

(
diag

(
XαY>

))
+ λΩ(α) ,

where Ω(α) refers to the spectral penalty function applied to the matrix
α seen as an operator from RmY to RmX , and X and Y denote any
matrices that satisfy K = XX> and G = YY> for the two Gram
matrices K and G of XN and YN .
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Rank constraint

Motivation
Often the optimization over RmX×mY is too difficult. We would like to
reduce complexity by, e.g., focusing on small rank matrices.

Corollary
If the spectral penalty function Ω is infinite on operators of rank larger
than R (i.e., σR+1(u) = +∞ for u > 0), then the matrix α ∈ RmX×mY in
the previous theorem has rank at most R.
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The problem

Let ψi(t) = l(t , ti), supposed to be convex.
Suppose

Ω(A) =
∑
i≥1

s(σi(A)) ,

where s is a convex even function s.t. s(0) = 0.
The problem we wish to solve is:

min
α∈Rmx×my

n∑
i=1

ψi((XαY>)ii) + λΩ(α)

One may directly solve this primal problem.
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Fenchel conjugacy

Let ψ∗i denote the Fenchel conjugate of φi :

ψ∗i (αi) = max
vi∈R

αivi − ψi(vi) .

Let Ω∗ denote the Fenchel conjugate of Ω:

Ω∗(β) = max
∈Rmx×my

Tr(α>β)− Ω(α) .

In fact Ω∗ is a spectral function corresponding to s∗:

Ω∗(β) =
∑
i≥1

s∗(σi(β)) .
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Dual problem

Primal:

min
α∈Rmx×my

N∑
i=1

ψi((XαY>)ii) + λΩ(α)

Dual (strong duality):

max
β∈RN

−
N∑

i=1

ψ∗i (βi)− λΩ∗
(
−1
λ

X> Diag(β)Y
)
.

The solution α of the primal is among the Fenchel duals of
− 1

λX> Diag(β)Y (closed form if s if differentiable).
Choosing the primal or dual formulation depends on the number
of training patterns N compared to mx ×my .
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Example: trace norm constraint

Primal:

min
α∈Rmx×my

N∑
i=1

ψi((XαY>)ii) + λ‖α ‖∗

Large convex, non-smooth problem (can be cast as a SDP).
Dual:

max
β∈RN

−
N∑

i=1

ψ∗i (βi) such that max
i
σi

(
−X> Diag(β)Y

)
≤ λ .

Two tricks to (approximately) solve this problem:
Make it smooth
Make it low-rank
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Smoothing the problem

Make the problem smooth by approximating the non smooth functions:
loss: (depends on the loss)
trace norm:

fε(b) = ε log(1 + eσ/ε) + ε log(1 + e−σ/ε) .

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5
absolute value
smooth approximation
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Making the problem low-rank

Trick
Let G(M) be a convex twice differentiable function to optimize over
Rp×q.
If the global minimum of G has rank r , then G restricted to
matrices of rank r + 1 have no local minimum apart from the
global minimum.

Algorithm
1 Start with small r .
2 Find local minimum with Quasi-Newton.
3 If solution is rank-defficient then we have the global optimum;

otherwise increase r and start again in 2.
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Generalities

We obtain various algorithms by choosing:
1 A loss function (depends on the application)
2 A spectral regularization (that is amenable to optimization)
3 Two kernels.

Both kernels and spectral regularization can be used to constrain the
solution
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Examples

Dirac kernel + spectral constraint (rank, trace norm) = matrix
completion
Attribute kernels + Hilbert-Schmidt regularization = kernel
methods for pairs with tensor product kernel
Attribute kernel on movies, Dirac on people, spectral
regularization (rank, trace norm) = multi-task learning (rank
constraints enforces sharing the weights between people).
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A family of kernels

Taken K⊗ = K ×G with{
K = ηK x

Attribute + (1− η)K x
Dirac ,

G = ζK y
Attribute + (1− ζ)K y

Dirac ,

for 0 ≤ η ≤ 1 and 0 ≤ ζ ≤ 1

ζ

?

multi−task prediction from attributes

multi−task
completion

matrix 1

1

0

η
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Simulated data

Experiment

Generate data (x,y, z) ∈ RfX × RfY × R according to

z = x>By + ε

Observe only nX < fX and nY < fY features
Low-rank assumption will find the missing features
Observed attributes will help the low-rank formulation to
concentrate mostly on the unknown features

Comparison of
Low-rank constraint without tracenorm (note that it requires
regularization)
Trace-norm formulation (regularization is implicit)
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Simulated data: results

Compare MSE
Left: rank constraint (best: 0.1540), right: trace norm (best: 0.1522)
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Movies

MovieLens 100k database, ratings with attributes
Experiments with 943 movies and 1,642 people, 100,000 rankings
in {1, . . . ,5}
Train on a subset of the ratings, test on the rest
error measured with MSE (best constant prediction: 1.26)

η ζ error
no-attributes 0 0 0.91
multi-task - I 0 1 0.96
multi-task - II 1 0 0.94
attributes only 1 1 0.88
“middle” .1 .01 0.84
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Conclusion

What we saw
A general framework for CF with or without attributes, using
kernels
A generalized representation theorem valid for any spectral
penalty function
A family of new methods;

Future work
The bottleneck is often practical optimization. Online version
possible.
Automatic kernel optimization
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