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Ligand-Based Virtual Screening and QSAR
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NCI AIDS screen results (from http://cactus.nci.nih.gov).
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More formally...

Objective
Build models to predict biochemical properties Y of small molecules
from their structures X , using a training set of (X , Y ) pairs.

Structures X

C15H14ClN3O3

Properties Y
binding to a therapeutic target,
pharmacokinetics (ADME),
toxicity...
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Classical approaches

Two steps
1 Map each molecule to a vector of fixed dimension using molecular

descriptors
Global properties of the molecules (mass, logP...)
2D and 3D descriptors (substructures, fragments, ....)

2 Apply an algorithm for regression or pattern recognition.
PLS, ANN, ...

Example: 2D structural keys
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Which descriptors?
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Difficulties
Many descriptors are needed to characterize various features (in
particular for 2D and 3D descriptors)
But too many descriptors are harmful for memory storage,
computation speed, statistical estimation
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Kernels

Definition
Let Φ(x) = (Φ1(x), . . . ,Φp(x)) be a vector representation of the
molecule x
The kernel between two molecules is defined by:

K (x , x ′) = Φ(x)>Φ(x ′) =

p∑
i=1

Φi(x)Φi(x ′) .

φ
X H
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The kernel trick

φ
X H

The trick
1 Computing the kernel K (x , x ′) is often more efficient than

computing Φ(x), especially in high or infinite dimensions! Ex:

K (x , x ′) = exp
(
−γ‖ x − x ′ ‖2

)
.

2 Many linear algorithms for regression or pattern recognition can
be expressed only in terms of kernels.
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Kernel trick example: computing distances in the
feature space

φ
X F

x1

x2

x1

x2φ(     )

φ(    )d(x1,x2)

dK (x1, x2)
2 = ‖Φ (x1)− Φ (x2) ‖2

H

= 〈Φ (x1)− Φ (x2) ,Φ (x1)− Φ (x2)〉H
= 〈Φ (x1) ,Φ (x1)〉H + 〈Φ (x2) ,Φ (x2)〉H − 2 〈Φ (x1) ,Φ (x2)〉H

dK (x1, x2)
2 = K (x1, x1) + K (x2, x2)− 2K (x1, x2)
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Other algorithms

Kernel methods
You don’t like nearest-neighbor classification, or your problem is not
binary classification, but you would like to benefit from the kernel trick
(nonlinearity, structured data etc...)? Try other kernel methods that
extend your favorite algorithm to handle kernels:

Support Vector Machines,
kernel PLS,
kernel PCA,
kriging,
kernel perceptron,
kernel logistic regression,
and many more!
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Making kernels for molecules

Strategy 1: use well-known molecular descriptors to represent
molecules m as vectors Φ(m), and then use kernels for vectors,
e.g.:

K (m1, m2) = Φ(m1)
>Φ(m2).

Strategy 2: invent new kernels to do things you can not do with
strategy 1, such as using an infinite number of descriptors. We will
now see two examples of this strategy, extending 2D and 3D
molecular descriptors.

φ
X H
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Summary

The problem
Regression and pattern recognition over molecules
Classical vector representation is both statistically and
computationally challenging

The kernel approach
By defining a kernel for molecules we can work implicitly in large
(potentially infinite!) dimensions:

Allows to consider a large number of potentially important
features.
No need to store explicitly the vectors (no problem of memory
storage or hash clashes) thanks to the kernel trick
Use of regularized statistical algorithm (SVM, kernel PLS, kernel
perceptron...)to handle the statistical problem of large dimension
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Outline

1 2D Kernel

2 3D Pharmacophore Kernel

3 Conclusion
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Motivation: 2D Fingerprints

Features
A vector indexed by a large set of molecular fragments

. . . . . .C N
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Pros
Many features
Easy to detect

Cons
Too many features?
Hashing =⇒ clashes
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SVM approach
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Let Φ(x) the vector of fragment counts:
Long fragments lead to large dimensions :

SVM can learn in high dimension
Φ(x) is too long to be stored, and hashes induce clashes:

SVM do not need Φ(x), they just need the kernel

K (x , x ′) = φ(x)>φ(x ′) .

Jean-Philippe Vert (ParisTech) QSAR and Virtual Screening with SVM Tokodai 14 / 43



2D fingerprint kernel

Definition
For any d > 0 let φd(x) be the vector of counts of all fragments
(walks) of length d :

φ1(x) = ( #(C),#(O),#(N), ...)>

φ2(x) = ( #(C-C),#(C=O),#(C-N), ...)> etc...

A 2D fingerprint walk kernel is defined, for a function λ(d) ≥ 0, by

K2D(x , x ′) =
∞∑

d=1

λ(d)φd(x)>φd(x ′) .

This is an inner product in the space of 2D fingerprints of infinite
length.
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2D Walk kernel examples

Examples
The nth-order walk kernel is the walk kernel with λ(n) = 1 and
λ(d) = 0 for d 6= n. It compares two graphs through their common
walks of length n.
The geometric walk kernel is obtained (when it converges) with
λ(d) = βd , for β > 0. In that case the feature space is of infinite
dimension (Gärtner et al., 2003).
Other variants are possible (e.g., random walk kernel of Kashima
et al.)
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2D kernel computation

Proposition
These 2D walk kernels can be computed efficiently in polynomial time.

Remarks
The complexity is not always related to the length of the fragments
considered (although faster computations are possible if the
length is limited).
Solves the problem of clashes and memory storage.
Allows to work with infinite-length fingerprints without computing
them!
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Product graph

Definition
Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with labeled
vertices. The product graph G = G1 ×G2 is the graph G = (V , E) with:

1 V = {(v1, v2) ∈ V1 × V2 : v1 and v2 have the same label} ,
2 E ={(

(v1, v2), (v ′1, v ′2)
)
∈ V × V : (v1, v ′1) ∈ E1 and (v2, v ′2) ∈ E2

}
.

G1 x G2

c

d e43

2

1 1b 2a 1d

1a 2b

3c

4c

2d

3e

4e

G1 G2

a b
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Walk kernel and product graph

Lemma
There is a bijection between:

1 The pairs of walks w1 ∈ Wn(G1) and w2 ∈ Wn(G2) with the same
label sequences,

2 The walks on the product graph w ∈ Wn(G1 ×G2).

G1 x G2

c

d e43

2

1 1b 2a 1d

1a 2b

3c

4c

2d

3e

4e

G1 G2

a b
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Walk kernel and product graph

Lemma
There is a bijection between:

1 The pairs of walks w1 ∈ Wn(G1) and w2 ∈ Wn(G2) with the same
label sequences,

2 The walks on the product graph w ∈ Wn(G1 ×G2).

Corollary

Kwalk (G1, G2) =
∑
s∈S

Φs(G1)Φs(G2)

=
∑

(w1,w2)∈W(G1)×W(G1)

λG1(w1)λG2(w2)1(l(w1) = l(w2))

=
∑

w∈W(G1×G2)

λG1×G2(w) .
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Computation of the nth-order walk kernel

For the nth-order walk kernel we have λG1×G2(w) = 1 if the length
of w is n, 0 otherwise.
Therefore:

Knth−order (G1, G2) =
∑

w∈Wn(G1×G2)

1 .

Let A be the adjacency matrix of G1 ×G2. Then we get:

Knth−order (G1, G2) =
∑
i,j

[An]i,j = 1>An1 .

Computation in O(n|G1||G2|d1d2), where di is the maximum
degree of Gi .
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Computation of random and geometric walk kernels

In both cases λG(w) for a walk w = v1 . . . vn can be decomposed
as:

λG(v1 . . . vn) = λi(v1)
n∏

i=2

λt(vi−1, vi) .

Let Λi be the vector of λi(v) and Λt be the matrix of λt(v , v ′):

Kwalk (G1, G2) =
∞∑

n=1

∑
w∈Wn(G1×G2)

λi(v1)
n∏

i=2

λt(vi−1, vi)

=
∞∑

n=0

ΛiΛ
n
t 1

= Λi (I − Λt)
−1 1

Computation in O(|G1|3|G2|3)
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Extensions 1: label enrichment

Atom relabebling with the Morgan index

Order 2 indices
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No Morgan Indices Order 1 indices

Compromise between fingerprints and structural keys features.
Other relabeling schemes are possible (graph coloring).
Faster computation with more labels (less matches implies a
smaller product graph).
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Extension 2: Non-tottering walk kernel

Tottering walks
A tottering walk is a walk w = v1 . . . vn with vi = vi+2 for some i .

Tottering

Non−tottering

Tottering walks seem irrelevant for many applications
Focusing on non-tottering walks is a way to get closer to the path
kernel (e.g., equivalent on trees).
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Computation of the non-tottering walk kernel (Mahé et
al., 2005)

Second-order Markov random walk to prevent tottering walks
Written as a first-order Markov random walk on an augmented
graph
Normal walk kernel on the augmented graph (which is always a
directed graph).
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Extension 2: Subtree kernels
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Example: Tree-like fragments of molecules

.

.

.

.

.

.

.

.

.
N

N

C

CO

C

.

.

. C

O

C

N

C

N O

C

N CN C C

N

N

Jean-Philippe Vert (ParisTech) QSAR and Virtual Screening with SVM Tokodai 27 / 43



Computation of the subtree kernel

Like the walk kernel, amounts to compute the (weighted) number
of subtrees in the product graph.
Recursion: if T (v , n) denotes the weighted number of subtrees of
depth n rooted at the vertex v , then:

T (v , n + 1) =
∑

R⊂N (v)

∏
v ′∈R

λt(v , v ′)T (v ′, n) ,

where N (v) is the set of neighbors of v .
Can be combined with the non-tottering graph transformation as
preprocessing to obtain the non-tottering subtree kernel.
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Experiments

MUTAG dataset
aromatic/hetero-aromatic compounds
high mutagenic activity /no mutagenic activity, assayed in
Salmonella typhimurium.
188 compouunds: 125 + / 63 -

Results
10-fold cross-validation accuracy

Method Accuracy
Progol1 81.4%
2D kernel 91.2%
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Subtree kernels
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AUC as a function of the branching factors for different tree depths
(from Mahé et al., 2007).
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Image classification (Harchaoui and Bach, 2007)

COREL14 dataset
1400 natural images in 14 classes
Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination
(M).

H W TW wTW M
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Performance comparison on Corel14
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Outline

1 2D Kernel

2 3D Pharmacophore Kernel

3 Conclusion
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Space of pharmacophore

3-points pharmacophores

O

O

2

d1

d3

d

O

O

2

d1

d3

d

A set of 3 atoms, and 3 inter-atom distances:

T = {((x1, x2, x3) , (d1, d2, d3)) , xi ∈ {atom types}; di ∈ R}
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3D fingerprint kernel

Pharmacophore fingerprint
1 Discretize the space of pharmacophores T (e.g., 6 atoms or

groups of atoms, 6-7 distance bins) into a finite set Td

2 Count the number of occurrences φt(x) of each pharmacophore
bin t in a given molecule x , to form a pharmacophore fingerprint.

3D kernel
A simple 3D kernel is the inner product of pharmacophore fingerprints:

K (x , x ′) =
∑
t∈Td

φt(x)φt(x ′) .
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Discretization of the pharmacophore space

Common issues
1 If the bins are too large, then they are not specific enough
2 If the bins are too large, then they are too specific

In all cases, the arbitrary position of boundaries between bins affects
the comparison:

x1 x3

x2

→ d(x1, x3) < d(x1, x2)
BUT bin(x1) = bin(x2) 6= bin(x3)
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Kernels between pharmacophores

A small trick

K (x , y) =
∑
t∈Td

φt(x)φt(y)

=
∑
t∈Td

(
X

px∈P(x)

1(bin(px) = t))(
X

py∈P(y)

1(bin(py) = t))

=
∑

px∈P(x)

∑
py∈P(y)

1(bin(px) = bin(py))

General pharmacophore kernel

K (x , y) =
∑

px∈P(x)

∑
py∈P(y)

KP(px , py )
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New pharmacophore kernels

Discretizing the pharmacophore space is equivalent to taking the
following kernel between individual pharmacophores:

KP(p1, p2) = 1 (bin(px) = bin(py))

For general kernels, there is no need for discretization!
For example, is d(p1, p2) is a Euclidean distance between
pharmacophores, take:

KP (p1, p2) = exp (−γd (p1, p2)) .
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Experiments

4 public datasets
BZR: ligands for the benzodiazepine receptor
COX: cyclooxygenase-2 inhibitors
DHFR: dihydrofolate reductase inhibitors
ER: estrogen receptor ligands

TRAIN TEST
Pos Neg Pos Neg

BZR 94 87 63 62
COX 87 91 61 64
DHFR 84 149 42 118
ER 110 156 70 110
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Experiments

Results (accuracy)
Kernel BZR COX DHFR ER
2D (Tanimoto) 71.2 63.0 76.9 77.1
3D fingerprint 75.4 67.0 76.9 78.6
3D not discretized 76.4 69.8 81.9 79.8
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Outline

1 2D Kernel

2 3D Pharmacophore Kernel

3 Conclusion

Jean-Philippe Vert (ParisTech) QSAR and Virtual Screening with SVM Tokodai 40 / 43



Summary

SVM is a powerful and flexible machine learning algorithm. The
kernel trick allows the manipulation of non-vectorial objects at the
cost of defining a kernel function.
The 2D kernel for molecule extends classical fingerprint-based
approches. It solves the problem of bit clashes, allows infinite
fingerprints and various extensions.
The 3D kernel for molecule extends classical pharmacophore
fingerprint-based approaches. It solves the problems of bit
clashes and of discretization.
Both kernels improve upon their classical counterparts, and
provide competitive results on benchmark datasets.
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