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Proteins

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Méthionine

E : Acide glutamique K : Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine

H : Histidine V : Thyrosine W : Tryptophane

I : Isoleucine S : Sérine Q : Glutamine

D : Acide aspartique G : Glycine
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Typical problem: supervised sequence classification

Data (training)
Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA...
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW...
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...
...

Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG...
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG...
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP..
...

Goal
Build a classifier to predict whether new proteins are secreted or
not.
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Strategy 1: Supervised classification with vector
embedding

The idea
Map each string x ∈ X to a vector Φ(x) ∈ Rp.
Train a classifier for vectors on the images Φ(x1), . . . ,Φ(xn) of the
training set (nearest neighbor, linear perceptron, logistic
regression, support vector machine...)
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φ
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maskat...
msises

marssl...

malhtv...
mappsv...
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Strategy 1: Supervised classification with vector
embedding
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Pros
Many algorithms exist
Good performance in
classification

Cons
How to embed strings
into vectors?
How to include prior
knowledge in the
features?
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Strategy 2: generative models

The idea
Estimate a model P1(x) and P2(x) for each class
Predict the class of a new sequence by comparing the
probabilities of the sequence under both models
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Strategy 2: generative models

Pros
Many good models exist
(Markov chains, HMM,
SCFG...)
Easy to include prior
knowledge
Good procedures to
estimate models

Cons
Discrepancy between
the modelling criterion
and the classification
criterion
Discriminative methods
often give better results
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Contribution

1 A general framework to combine the pros of both approaches:
kernel methods with mutual information kernels

2 A particular case where this framework can be applied efficiently:
the context-tree weighting kernel
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Outline

1 From generative models to kernel methods

2 Context-tree weighting kernel

3 Conclusion
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Ingredients

1 X the space of data
e.g., the set of finite-length strings

2 A parametric set of probability distributions over X :

{Pθ, θ ∈ Θ ⊂ Rm}

e.g., a Markov chain, HMM, SCFG, ...
3 A prior distribution w(dθ) over Θ

e.g., Dirichlet prior...
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Fitting a generative model

The problem
Given a training set of n data D = (x1, . . . , xn) in X ,
Estimate a distribution PD(dx) over X to model D

Estimation strategy
Parameter estimation: take PD = Pθ̂, where θ ∈ Θ is estimated,
e.g., by maximum likelihood or MAP.
Bayesian approach: take PD =

∫
Θ Pθw(dθ|D), where w(dθ|D) is

the posterior distribution.

Result
PD is a distribution over X , in the convex hull of the model.
The probability of the strings in the training set under P is “large”.
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Fitting a generative model

Summary
In both cases

MODELLING: The model {Pθ, θ ∈ Θ} defines a set of basic
distributions
LEARNING: The fitting procedure finds a convex combination:

PD =

∫
θ∈Θ

PθwD(dθ) ,

where wD is a distribution over Θ that depends on the training set
D, following some principle (ML, MAP, Bayes...)

Jean-Philippe Vert (ParisTech) Context tree weighting kernel 13 / 36



Generative models for discrimination

The problem
Given two sets D1 and D2 representing two populations (e.g., secreted
vs. non-secreted proteins), estimate a score function f (x) that
discrimates both populations.

The generative approach
Estimate PD1 and PD2 using the methodology to fit generative
models on D1 and D2

Form the score:

f (x) = PD1(x)− PD2(x) + cte .

f is an affine function of the {Pθ, θ ∈ Θ}
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Fitting generative model for classification

Summary
In both cases

MODELLING: The model {Pθ, θ ∈ Θ} defines a set of basic
distributions
LEARNING: The fitting procedure finds an affine combination:

f =

∫
θ∈Θ

PθwD(dθ) ,

where wD is a signed measure, following some principle.
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Discrimination with generative models

Good
Modelling

Bad
Learning principles not
adapted to classification

A natural idea
Keep the model for MODELLING: f should be an affine function of
{Pθ, θ ∈ Θ}, i.e.:

f (x) =

∫
θ∈Θ

Pθ(x)wD(dθ) ,

where wD is a signed measure that depends on the training set D.
Change the procedure for LEARNING: Replace the generative
model fitting principles by learning principles for discrimination.
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Reformulation

Learning in Hilbert space

Let H = L2(Θ, w) be the Hilbert space of functions f : Θ → R with
inner product:

〈f , g〉H =

∫
Θ

f (θ)g(θ)w(dθ) .

Let the embedding Φ : X → H defined by:

Φ(x) = {θ 7→ Pθ(x)} .

We want to find a linear function in H, i.e., a vector u ∈ H with:

f (x) = 〈Φ(x), u〉H =

∫
Θ

Pθ(x)u(θ)w(dθ) ,

that discriminates between the two classes.
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Example: support vector machine

mahtlg...

φ
X F

maskat...
msises

marssl...

malhtv...
mappsv...

SVM algorithm

f (x) = sign

(
n∑

i=1

αiyi 〈Φ(xi),Φ(x)〉H

)
,

where α1, . . . , αn solve, under the constraints 0 ≤ αi ≤ C:

min
α

(
1
2

n∑
i=1

n∑
i=1

αiαjyiyj
〈
Φ(xi),Φ(xj)

〉
H −

n∑
i=1

αi

)
.
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Kernel trick

mahtlg...

φ
X F

maskat...
msises

marssl...
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Problem
Φ(x) = {θ 7→ Pθ(x)} is
infinite-dimensional,
can not be computed
nor manipulated.

Kernel
The kernel K : X × X → R is:

K (x , x ′) =
〈
Φ(x),Φ(x ′)

〉
H

If K (x , x ′) can be computed, learning algorithms can be used!
(kernel methods)
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Example: support vector machine with kernels
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SVM algorithm

f (x) = sign

(
n∑

i=1

αiyiK (xi , x)

)
,

where α1, . . . , αn solve, under the constraints 0 ≤ αi ≤ C:

min
α

(
1
2

n∑
i=1

n∑
i=1

αiαjyiyjK (xi , xj)−
n∑

i=1

αi

)
.
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From generative models to kernel methods

Summary
A model defines a family of distributions M = {Pθ, θ ∈ Θ ⊂ Rm}.
Fitting a model to empirical data usually means finding a function
f in the convex hull or linear span of M:

f =

∫
θ∈Θ

PθwD(dθ) ,

Equivalently f is a linear function in the Hilbert space X after the
embedding Φ(x) = {θ 7→ Pθ(x)}
Powerful kernel methods (e.g., SVM) can be used to infer such a
linear function as soon as the mutual information kernel (Seeger,
2002) can be computed:

K (x , x ′) =
〈
Φ(x),Φ(x ′)

〉
H =

∫
Θ

Pθ(x)Pθ(x ′)w(dθ) .
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Warm-up example

X the set of finite-length binary strings
Pθ(X = 1) = θ and Pθ(X = 0) = 1− θ a model for independent
random coin toss, with θ ∈ [0, 1].
Let dθ be the Lebesgue measure on [0, 1]

The mutual information kernel between x = 001 and x′ = 1010 is:{
Pθ (x) = θ (1− θ)2 ,

Pθ (x′) = θ2 (1− θ)2 ,

K
(
x, x′

)
=

∫ 1

0
θ3 (1− θ)4 dθ =

3!4!

8!
=

1
280

.
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Context-tree model

Definition
A context-tree model is a variable-memory Markov chain:

PD,θ(x) = PD,θ (x1 . . . xD)
n∏

i=D+1

PD,θ (xi | xi−D . . . xi−1)

D is a suffix tree
θ ∈ ΣD is a set of conditional probabilities (multinomials)
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Context-tree model: example

P(AABACBACC) = P(AAB)θAB(A)θA(C)θC(B)θACB(A)θA(C)θC(A) .
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The context-tree weighting kernel

Priors
We have a family of models:

M =
{

PD,θ , D ∈ T , θ ∈ ΣD
}

We define a prior over M that factorizes as:

π(D, dθ) = π(D)π(dθ|D) .

The resulting context-tree weighting kernel is then

K
(
x , x ′

)
=
∑
D

∫
θ∈ΣD

PD,θ(x)PD,θ(x ′)π(dθ|D)π(D) .
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Prior π(D)

The set of suffix trees of depth up to D is endowed with the distribution
of a branching process

P(D) = ε3(1− ε)4
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Prior π(dθ | D)

θ is made of |D| multinomial parameters. We endow them
independently with a Dirichlet prior:

π(dθ | D) =
∏
s∈D

ωβ(dθs)

with

ωβ(dθ) ∼
d∏

i=1

θβi−1
i λ(dθ) .

We can also consider Dirichlet mixtures:

ωγ,β(dθs) =
n∑

k=1

γ(k)ωβ(k)(dθs) .
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The context-tree kernel

Theorem (Cuturi et al., 2004)
For these choices of priors, the context-tree kernel:

K
(
x, x′

)
=
∑
D

∫
θ∈ΣD

PD,θ(x)PD,θ(x′)π(dθ|D)π(D)

can be computed in O(|x|+ |x′|) with a variant of the Context-Tree
Weighting algorithm.
This is a valid mutual information kernel.
The similarity is related to information-theoretical measure of
mutual information between strings.
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Computation

The CTW algorithm (Willems et al., 1995) provides a linear-time
algorithm to compute the coding probability:

Pπ(x) =
∑
D

∫
θ∈ΣD

PD,θ(x)π(dθ|D)π(D)

The extension to K (x , x ′) is obvious: it roughly corresponds to
computing the coding probability of the concatenation of x and x ′

because
PD,θ(x)PD,θ(x ′) = PD,θ(xx ′) .

The extension from Dirichlet priors to Dirichlet mixture does not
increase the complexity of the algorithm.
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Length normalization

In practice K (x , x ′) decreases exponentially with the length of x
and x ′

This means that the sequences are almost orthogonal in the
Hilbert space, which prevents learning (issue of diagonal
dominance)
Possible length normalization:

Kσ

(
x , x ′

)
=
∑
D

∫
θ∈ΣD

PD,θ(x)
σ
|x| PD,θ(x ′)

σ
|x′|π(dθ|D)π(D) .
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Coding interpretation

The cosine between Φ(x) and Φ(x ′) in H is:

c(x , x ′) =
〈Φ(x),Φ(x ′)〉H

‖Φ(x) ‖H‖Φ(x ′) ‖H
=

K (x , x ′)√
K (x , x)K (x , x ′)

.

Therefore:

− log2 c(x , x ′) = − log K (x , x ′)+
1
2
(
− log2 K (x , x ′)− log2 K (x ′, x ′)

)
.

− log2 K (x , x ′) is the length of the code of x and x ′ coded together
−logc(x , x ′) is therefore the gain in compression when x and x ′

are coded together, compared to the situation where they are
compressed independently to each other.
This is known as the mutual information between x and x ′.
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Semigroup kernel interpretation

Let Ψ(x) the statistics of x needed to compute the kernel.
The CTW kernel has the particularity that K (x , x ′) is a function of
Ψ(x) + Ψ(x ′) (i.e., roughly speaking a function of the
concatenation of x and x ′).
The set of strings endowed with the concatenation is a semigroup
(more precisely the set of Ψ(x) endowed with addition is a
semigroup)
the CTW kernel is a semigroup positive definite function;

K (x , x ′) = g(Ψ(x) + Ψ(x ′))

Such semigroup kernels can be characterized in more generality
(representation as convex combination of semigroup characters),
and more kernel can be imagined (Cuturi et al., 2006).
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Application: SCOP classification benchmark
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Conclusion

Mutual information kernels allow to use well-designed probabilistic
models with a variety of learning algorithms
The CTW kernel is a practical way to compute such a kernel
Suggests systematic ways to make kernels with other
compression algorithms
Can be extended in the context of semigroup kernels

Thanks Marco Cuturi!
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