Collaborative filtering with attributes

Jacob Abernethy ${ }^{1}$ Francis Bach ${ }^{2}$ Theodoros Evgeniou ${ }^{3}$ Jean-Philippe Vert ${ }^{4}$
${ }^{1}$ UC Berkeley
${ }^{2}$ INRIA / Ecole normale superieure de Paris
${ }^{3}$ INSEAD
${ }^{4}$ ParisTech / Institut Curie / INSERM

The Snowbird Learning Workshop, Snowbird, USA, April 1st, 2008.

Collaborative Filtering (CF)

The problem

- Given a set of $n_{\mathcal{X}}$ "movies" $\mathbf{x} \in \mathcal{X}$ and a set of $n_{\mathcal{Y}}$ "people" $\mathbf{y} \in \mathcal{Y}$,
- predict the "rating" $z(\mathbf{x}, \mathbf{y}) \in \mathcal{Z}$ of person \mathbf{x} for film \mathbf{y}
- Training data: large $n_{\mathcal{X}} \times n_{\mathcal{Y}}$ incomplete matrix Z that describes the known ratings of some persons for some movies
- Goal: complete the matrix.

Another CF example

Drug design

- Given a family of proteins of therapeutic interest (e.g., GPCR's)
- Given all known small molecules that bind to these proteins
- Can we predict unknown interactions?

CF by low-rank matrix approximation

- A common strategy for CF
- Z has rank less than $k \Leftrightarrow Z=U V^{\top} U \in \mathbb{R}^{n_{\mathcal{X}} \times k}, V \in \mathbb{R}^{n_{\mathcal{Y}} \times k}$
- Examples: PLSA (Hoffmann, 2001), MMMF (Srebro et al, 2004)
- Numerical and statistical efficiency

CF by low-rank matrix approximation example

Fitting low-rank models (Srebro et al, 2004)

- Choose a convex loss function $\ell\left(z, z^{\prime}\right)$ (hinge, square, etc...)
- Relax the (non-convex) rank of Z into the (convex) trace norm of
Z : if $\sigma_{i}(Z)$ are the singular values of Z,

$$
\operatorname{rank} Z=\sum_{i} 1_{\sigma_{i}(Z)>0} \quad\|Z\|_{*}=\sum_{i} \sigma_{i}(Z)
$$

- n observations z_{u} corresponding to $\mathbf{x}_{i(u)}$ and $\mathbf{y}_{j(u)}, u=1, \ldots, n$:

$$
\min _{Z \in \mathbb{R}^{n} \mathcal{X} \times n_{\mathcal{Y}}} \sum_{u=1}^{n} \ell\left(z_{u}, Z_{i(u), j(u)}\right)+\lambda\|Z\|_{*}
$$

- This is an SDP if ℓ is SDP-representable

CF with attributes

The problem

- Often we have additional attributes:
- gender, age of people; type, actors of movies..
- 3D structures of proteins and ligands for protein-ligand interaction prediction
- How to include attributes in CF?
- Expected gains: increase performance, allow predictions on new movie and/or people.

Our contributions
 - A general framework for CF with or without attributes, using kernels to describe attributes ("kernel-CF") - A family of algorithms for CF in this setting

CF with attributes

The problem

- Often we have additional attributes:
- gender, age of people; type, actors of movies..
- 3D structures of proteins and ligands for protein-ligand interaction prediction
- How to include attributes in CF?
- Expected gains: increase performance, allow predictions on new movie and/or people.

Our contributions

- A general framework for CF with or without attributes, using kernels to describe attributes ("kernel-CF")
- A family of algorithms for CF in this setting

Setting

- Movies: points in a Hilbert space \mathcal{X}
- Customers: points in a Hilbert space \mathcal{Y}
- We model the preference of customer \mathbf{y} for a movie \mathbf{x} by a bilinear form:

$$
f(\mathbf{x}, \mathbf{y})=\langle\mathbf{x}, F \mathbf{y}\rangle_{\mathcal{X}},
$$

where $F \in \mathcal{B}_{0}(\mathcal{Y}, \mathcal{X})$ is a compact linear operator (i.e., a "matrix").

Spectra of compact operators

Classical results

- Any compact operator $F: \mathcal{Y} \rightarrow \mathcal{X}$ admits a spectral decomposition:

$$
F=\sum_{i=1}^{\infty} \sigma_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i}
$$

where the $\sigma_{i} \geq 0$ are the singular values and $\left(\mathbf{u}_{i}\right)_{i \in \mathbb{N}}$ and $\left(\mathbf{v}_{i}\right)_{i \in \mathbb{N}}$ are orthonormal families in \mathcal{X} and \mathcal{Y}.

- The spectrum of F is the set of singular values sorted in decreasing order: $\sigma_{1}(F) \geq \sigma_{2}(F) \geq \ldots \geq 0$.
- This is the natural generalization of singular values for matrices.

Spectral penalty function

Definition

A function $\Omega: \mathcal{B}_{0}(\mathcal{Y}, \mathcal{X}) \mapsto \mathbb{R} \cup\{+\infty\}$ is called a spectral penalty function if it can be written as:

$$
\Omega(F)=\sum_{i=1}^{\infty} s_{i}\left(\sigma_{i}(F)\right)
$$

where for any $i \geq 1, s_{i}: \mathbb{R}^{+} \mapsto \mathbb{R}^{+} \cup\{+\infty\}$ is a non-decreasing penalty function satisfying $s_{i}(0)=0$.

Spectral penalty function

Examples

- Rank constraint: take $s_{k+1}(0)=0$ and $s_{k+1}(u)=+\infty$ for $u>0$, and $s_{i}=0$ for $i \geq k$. Then

$$
\Omega(F)= \begin{cases}0 & \text { if } \operatorname{rank}(F) \leq k, \\ +\infty & \text { if } \operatorname{rank}(F)>k .\end{cases}
$$

- Trace norm: take $s_{i}(u)=u$ for all i, then:
- Hilbert-Schmidt norm: take $s_{i}(u)=u^{2}$ for all i, then

Spectral penalty function

Examples

- Rank constraint: take $s_{k+1}(0)=0$ and $s_{k+1}(u)=+\infty$ for $u>0$, and $s_{i}=0$ for $i \geq k$. Then

$$
\Omega(F)= \begin{cases}0 & \text { if } \operatorname{rank}(F) \leq k, \\ +\infty & \text { if } \operatorname{rank}(F)>k .\end{cases}
$$

- Trace norm: take $s_{i}(u)=u$ for all i, then:

$$
\Omega(F)=\|F\|_{*} .
$$

- Hilbert-Schmidt norm: take $s_{i}(u)=u^{2}$ for all i, then

Spectral penalty function

Examples

- Rank constraint: take $s_{k+1}(0)=0$ and $s_{k+1}(u)=+\infty$ for $u>0$, and $s_{i}=0$ for $i \geq k$. Then

$$
\Omega(F)= \begin{cases}0 & \text { if } \operatorname{rank}(F) \leq k, \\ +\infty & \text { if } \operatorname{rank}(F)>k .\end{cases}
$$

- Trace norm: take $s_{i}(u)=u$ for all i, then:

$$
\Omega(F)=\|F\|_{*}
$$

- Hilbert-Schmidt norm: take $s_{i}(u)=u^{2}$ for all i, then

$$
\Omega(F)=\|F\|_{\text {Fro }}^{2} .
$$

Learning operator with spectral regularization

Setting

- Training set: $\left(\mathbf{x}_{i}, \mathbf{y}_{i}, t_{i}\right)_{i=1, \ldots, N}$ a set of (movie,people,preference).
- Loss function $I\left(t, t^{\prime}\right)$: cost of predicting preference t instead of t^{\prime}.
- Empirical risk of an operator F :

$$
R_{N}(F)=\frac{1}{N} \sum_{i=1}^{N} I\left(\left\langle\mathbf{x}_{i}, F \mathbf{y}_{i}\right\rangle_{\mathcal{X}}, t_{i}\right) .
$$

Learning an operator

Learning operator with spectral regularization

Setting

- Training set: $\left(\mathbf{x}_{i}, \mathbf{y}_{i}, t_{i}\right)_{i=1, \ldots, N}$ a set of (movie,people,preference).
- Loss function $I\left(t, t^{\prime}\right)$: cost of predicting preference t instead of t^{\prime}.
- Empirical risk of an operator F :

$$
R_{N}(F)=\frac{1}{N} \sum_{i=1}^{N} I\left(\left\langle\mathbf{x}_{i}, F \mathbf{y}_{i}\right\rangle_{\mathcal{X}}, t_{i}\right) .
$$

Learning an operator

$$
\min _{F \in \mathcal{B}_{0}(\mathcal{Y}, \mathcal{X}), \Omega(F)<\infty}\left\{R_{N}(F)+\lambda \Omega(F)\right\} .
$$

A classical representer theorem

Theorem

If \hat{F} is a solution the problem:

$$
\min _{F \in \mathcal{B}_{2}(\mathcal{Y}, \mathcal{X})}\left\{R_{N}(F)+\lambda \sum_{i=1}^{\infty} \sigma_{i}(F)^{2}\right\},
$$

then it is necessarily in the linear span of $\left\{\mathbf{x}_{i} \otimes \mathbf{y}_{i}: i=1, \ldots, N\right\}$, i.e., it can be written as:

$$
\hat{F}=\sum_{i=1}^{N} \alpha_{i} \mathbf{x}_{i} \otimes \mathbf{y}_{i},
$$

for some $\alpha \in \mathbb{R}^{N}$.

Proof

This is just the classical representer theorem for tensor product kernels.

A generalized representer theorem

Theorem

For any spectral penalty function $\Omega: \mathcal{B}_{0}(\mathcal{Y}, \mathcal{X}) \mapsto \mathbb{R}$, let the optimization problem:

$$
\min _{F \in \mathcal{B}_{0}(y, \mathcal{X}), \Omega(F)<\infty}\left\{R_{N}(F)+\lambda \Omega(F)\right\} .
$$

If the set of solutions is not empty, then there is a solution F in $\mathcal{X}_{N} \otimes \mathcal{Y}_{N}$, i.e., there exists $\alpha \in \mathbb{R}^{m_{\mathcal{X}} \times m_{y}}$ such that:

$$
F=\sum_{i=1}^{m_{x}} \sum_{j=1}^{m_{y}} \alpha_{i j} \mathbf{u}_{i} \otimes \mathbf{v}_{j},
$$

where $\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{m_{\mathcal{X}}}\right)$ and $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m_{y}}\right)$ form orthonormal bases of \mathcal{X}_{N} and \mathcal{Y}_{N}, respectively.

Practical consequence

Theorem (cont.)

The coefficients α that define the solution by

$$
F=\sum_{i=1}^{m_{\mathcal{X}}} \sum_{j=1}^{m_{\mathcal{Y}}} \alpha_{i j} \mathbf{u}_{i} \otimes \mathbf{v}_{j}
$$

can be found by solving the following finite-dimensional optimization problem:

$$
\min _{\alpha \in \mathbb{R}^{m_{\mathcal{X}} \times m_{\mathcal{Y}}, \Omega(\alpha)<\infty}} R_{N}\left(\operatorname{diag}\left(X \alpha Y^{\top}\right)\right)+\lambda \Omega(\alpha)
$$

where $\Omega(\alpha)$ refers to the spectral penalty function applied to the matrix α seen as an operator from $\mathbb{R}^{m_{\mathcal{Y}}}$ to $\mathbb{R}^{m_{\mathcal{X}}}$, and X and Y denote any matrices that satisfy $K=X X^{\top}$ and $G=Y Y^{\top}$ for the two Gram matrices K and G of \mathcal{X}_{N} and \mathcal{Y}_{N}.

Summary

We obtain various algorithms by choosing:
(1) A loss function (depends on the application)
(2) A spectral regularization (that is amenable to optimization)
© Two kernels.
Both kernels and spectral regularization can be used to constrain the solution

Examples

- Dirac kernel + spectral constraint (rank, trace norm) = matrix completion
- Attribute kernels + Hilbert-Schmidt regularization $=$ kernel methods for pairs with tensor product kernel
- Attribute kernel on movies, Dirac on people, spectral regularization (rank, trace norm) = multi-task learning (rank constraints enforces sharing the weights between people).

A family of kernels

Taken $K_{\otimes}=K \times G$ with

$$
\left\{\begin{array}{l}
K=\eta K_{\text {Attribute }}^{X}+(1-\eta) K_{\text {Dirac }}^{X}, \\
G=\zeta K_{\text {Attribute }}^{y}+(1-\zeta) K_{\text {Dirac }}^{y},
\end{array}\right.
$$

for $0 \leq \eta \leq 1$ and $0 \leq \zeta \leq 1$

Simulated data

Experiment

- Generate data $(\mathbf{x}, \mathbf{y}, z) \in \mathbb{R}^{f_{X}} \times \mathbb{R}^{f_{Y}} \times \mathbb{R}$ according to

$$
z=\mathbf{x}^{\top} B \mathbf{y}+\varepsilon
$$

- Observe only $n_{X}<f_{X}$ and $n_{Y}<f_{Y}$ features
- Low-rank assumption will find the missing features
- Observed attributes will help the low-rank formulation to concentrate mostly on the unknown features
- Comparison of
- Low-rank constraint without tracenorm (note that it requires regularization)
- Trace-norm formulation (regularization is implicit)

Simulated data: results

- Compare MSE

- Left: rank constraint (best: 0.1540), right: trace norm (best: 0.1522)

Movies

- MovieLens 100k database, ratings with attributes
- Experiments with 943 movies and 1,642 people, 100,000 rankings in $\{1, \ldots, 5\}$
- Train on a subset of the ratings, test on the rest
- error measured with MSE (best constant prediction: 1.26)

Conclusion

What we saw

- A general framework for CF with or without attributes
- A generalized representation theorem valid for any spectral penalty function
- A family of new methods;

Future work

- The bottleneck is often practical optimization. Online version possible.
- Automatic kernel optimization

Reference

J. Abernethy, F. Bach, T. Evgeniou and J.-P. Vert, "A new approach to collaborative filtering: operator estimation with spectral constraint", technical report arXiv 0802-1431, 2008.

