
Machine Learning in
Computational Biology

Jean-Philippe Vert
Mines ParisTech / Institut Curie / INSERM



Apple or pear?



We need a predictor

PEAR

PEAR

APPLE



How to make a predictor?

APPLE/PEARIMAGE

1. Knowledge-based, « intelligent design »
2. Data-based, « machine learning »



Knowledge-based predictor

• Based on shape, texture, color, …
• Usually difficult to engineer
• Can not be used for other problems (eg,

discriminate strawberries vs grapes)



Data-based predictor

PEAR



Data-based predictor

• Needs a database of labeled examples
• Does not always provide a simple rule

(« black-box »)
• The more data the better!
• The algorithm can be quite generic



Ok, but there is no apple is
bioinformatics!

• Sure, but:
– There are many data
– Many problems can be formulated as that of

« learning a predictor from data »
– It is often difficult to design knowledge-based

predictors (no clear biological theory, noise,
large number of features…)



Example: diagnosis/prognosis
from microarray data

- Cancer type
- Future evolution



Example: virtual screening

-Activity
-Toxicity



Example: gene annotation

-Localization
-Function
-Structure

MAHSKMQN…



Other examples

• Predict function from structure
• Predict splicing sites
• Predict binding sites
• Predict regulated genes
• …



Summary

• Patterns X (image/sequence/structure/…)
• Label Y (binary here, but can be more general)
• We want to build a predictor Y=f(X)
• For this we need a training set of (X,Y) pairs
• We need an algorithm that estimates the predictor

f from the training set
• We can then use the predictor to make predictions

on new patterns X by f(Y)



My first machine learning
algorithm: nearest neighbour

• Define a similarity measure s(X,X’)
between patterns

• For a new pattern X, predict as label f(X)
the label of the most similar pattern in the
training set



Nearest neighbours

• Very simple to implement
• Good baseline method
• Simple extension: make a majority vote of

the k nearest neighbors (k-NN)



Other popular algorithms

• Decision trees, random forests
• Fisher linear discriminant
• Artificial neural networks (ANN)
• Logistic regression
• Boosting
• Support vector machines (SVM)



Linear classifier (simple case)



Linear classifier (simple case)



Which is better?



Vapnik’s answer: margin



Vapnik’s answer: margin



Vapnik’s answer: margin



The best: largest margin



Support vectors



Implementation

• The problème of finding the largest margin
hyperplane is easy to solve (but not by
yourself!)

• Unique solution, no local optimum (convex
optimization problem)

• Only depends on the support vectors



New problem



Soft-margin SVM

• Find a trade-off between:
– Large margin
– Few misclassification

• Mathematically:

• Still easy to solve (for a good choice of
« error »). C is a parameter.



Some limitations

• What if the data are not vectors?
• What if instead I have a way to measure a

distance between patterns (e.g., alignment
of sequences, stuctures, …)



An interesting property

• To train a SVM we just need the matrix of
pairwise distances:

• The predictor has the form:



An interesting generalization

• Take a distance d(X,X’)
• Train a SVM from the matrix of pairwise

distances:

• The predictor now is:



Technical details

• This will work very well if the distance
d(X,X’) satisfies some mathematical
conditions (« conditionally positive
definiteness »)

• If not there still exist tricks to make it work



Example: nonlinear SVM

• Take a Gaussian distance:

• We can then learn nonlinear predictors:



The fundamental trade-off:
regularity (margin) vs error



C controls the trade-off

• Large C :
– makes few errors

• Small C :
– ensure a large margin

• Intermediate C:
– finds a trade-off



Why it is important to care about
the trade-off



Choosing C

• Split the annotated data in 2: training /
validation

• Train a predictor on the training set
• Evaluate the performance on the validation

set
• Choose C to minimize the validation error
• (you may repeat all this several times ->

cross-validation)



SVM: summary

• You need a training set of labeled patterns,
i.e., of (X,Y) pairs

• You need a distance d(X,X’) between
patterns

• You need to choose the parameter C (e.g.,
cross-validation)

• You plug this into any SVM
implementation to train a predictor



SVM in practice
(eg: libsvm with Python)



How to choose the distance

• The distance is where you can put prior
knowledge

• « Similar points have similar labels »
• Strategy 1: define features to represent a pattern as

a vector, then use a distance for vectors (Euclidean,
Gaussian…)

• Strategy 2: use directly your own distance (but be
careful if it is not conditionally positive definite)



Example: sequence classification



The spectrum kernel

• Features are the number of occurrences of
each k-mer

• Example: X=AATCGCAA
• For k=2: [AA:2, AC:0, AG:0, AT:1, CA:1,

CC:0, CG:1, CT:0, GA:0, GC:1, GG:0,
GT:0, TA:0, TC:1, TG:0, TT:0]

• Fast (tricks…) and good baseline



Motif kernel



Local alignment kernel



Application: remote homology
detection



SCOP hierarchy



Performance of different
distances



Take-home messages

• Machine learning relevant in bioinformatics
• Must find a trade-off between fitting the

training set and controlling the capacity
• SVM is easy to use
• Prior knowledge can be put in the

kernel/distance


