Inference of biological networks with supervised machine learning

Jean-Philippe Vert

Jean-Philippe.Vert@ensmp.fr

Mines ParisTech Institut Curie INSERM U900

"Statistical modelling and analysis of biological network" INSERM workshop, Saint-Raphael, France, May 16, 2008.

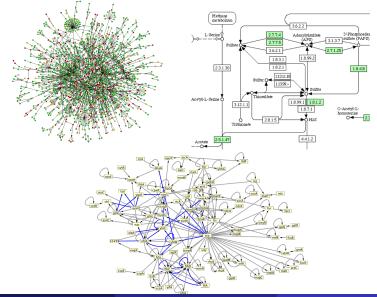
2 De novo methods

3 Supervised methods

2 De novo methods

3 Supervised methods

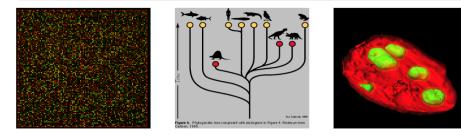
Inference of biological networks



Inference of biological networks

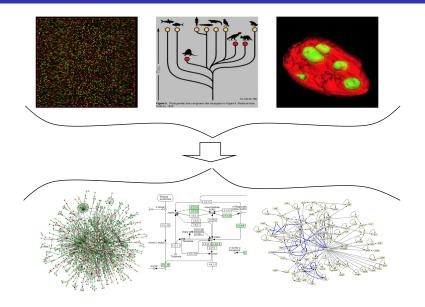
De novo methods

3 Supervised methods


Biological networks

Data available

Biologists have collected a lot of data about proteins. e.g.,


- Gene expression measurements
- Phylogenetic profiles
- Location of proteins/enzymes in the cell

How to use this information "intelligently" to find a good function that predicts edges between nodes.

Jean-Philippe Vert (ParisTech-Curie)

Our goal

"De novo" inference

- Given data about individual genes and proteins
- Infer the edges between genes and proteins

"Supervised" inference

- Given data about individual genes and proteins
- and given some known interactions
- infer unknown interactions

"De novo" inference

- Given data about individual genes and proteins
- Infer the edges between genes and proteins

"Supervised" inference

- Given data about individual genes and proteins
- and given some known interactions
- infer unknown interactions

- Many methods developed so far are "de novo" (e.g., co-expression, Bayesian networks, mutual information nets, dynamical systems...)
- e Here I will focus instead on supervised methods:
- Indeed, many real-world applications can be formulated in the supervised framework,
- The hypothesis behind the supervised inference paradigm can be easily justified,
- And we obtain very good results at the end.

- Many methods developed so far are "de novo" (e.g., co-expression, Bayesian networks, mutual information nets, dynamical systems...)
- e Here I will focus instead on supervised methods:
- Indeed, many real-world applications can be formulated in the supervised framework,
- The hypothesis behind the supervised inference paradigm can be easily justified,
- 6 And we obtain very good results at the end.

- Many methods developed so far are "de novo" (e.g., co-expression, Bayesian networks, mutual information nets, dynamical systems...)
- e Here I will focus instead on supervised methods:
- Indeed, many real-world applications can be formulated in the supervised framework,
- The hypothesis behind the supervised inference paradigm can be easily justified,
- 6 And we obtain very good results at the end.

- Many methods developed so far are "de novo" (e.g., co-expression, Bayesian networks, mutual information nets, dynamical systems...)
- e Here I will focus instead on supervised methods:
- Indeed, many real-world applications can be formulated in the supervised framework,
- The hypothesis behind the supervised inference paradigm can be easily justified,
- And we obtain very good results at the end.

- Many methods developed so far are "de novo" (e.g., co-expression, Bayesian networks, mutual information nets, dynamical systems...)
- e Here I will focus instead on supervised methods:
- Indeed, many real-world applications can be formulated in the supervised framework,
- The hypothesis behind the supervised inference paradigm can be easily justified,
- And we obtain very good results at the end.

Inference of biological networks

2 De novo methods

3 Supervised methods

De novo methods

Typical strategies

- Fit a dynamical system to time series (e.g., PDE, boolean networks, state-space models)
- Detect statistical conditional independence or dependency (Bayesian netwok, mutual information networks, co-expression)

Pros

- Excellent approach if the model is correct and enough data are available
- Interpretability of the model
- Inclusion of prior knowledge

Cons

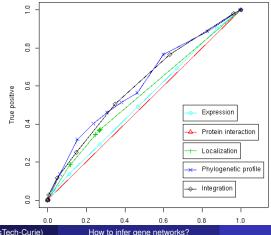
- Specific to particular data and networks
- Needs a correct model!
- Difficult integration of heterogeneous data
- Often needs a lot of data and long computation time

De novo methods

Typical strategies

- Fit a dynamical system to time series (e.g., PDE, boolean networks, state-space models)
- Detect statistical conditional independence or dependency (Bayesian netwok, mutual information networks, co-expression)

Pros

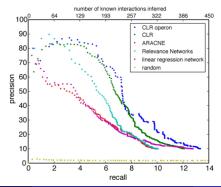

- Excellent approach if the model is correct and enough data are available
- Interpretability of the model
- Inclusion of prior knowledge

Cons

- Specific to particular data and networks
- Needs a correct model!
- Difficult integration of heterogeneous data
- Often needs a lot of data and long computation time

Evaluation on metabolic network reconstruction

- The known metabolic network of the yeast involves 769 proteins.
- Predict edges from distances between a variety of genomic data (expression, localization, phylogenetic profiles, interactions).



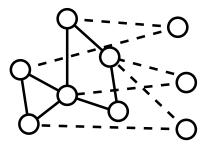
Jean-Philippe Vert (ParisTech-Curie)

Evaluation on regulatory network reconstruction

Large-Scale Mapping and Validation of *Escherichia coli* Transcriptional Regulation from a Compendium of Expression Profiles

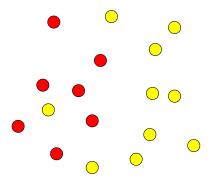
Jeremiah J. Faith¹⁰, Boris Hayete¹⁰, Joshua T. Thaden^{2,3}, Ilaria Mogno^{2,4}, Jamey Wierzbowski^{2,5}, Guillaume Cottarel^{2,5}, Simon Kasif^{1,2}, James J. Collins^{1,2}, Timothy S. Gardner^{1,2*}

Inference of biological networks

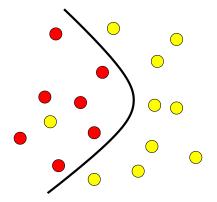


Supervised methods

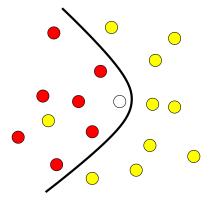
Motivation

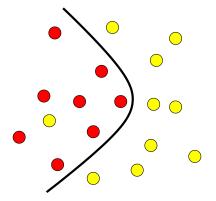

In actual applications,

- we know in advance parts of the network to be inferred
- the problem is to add/remove nodes and edges using genomic data as side information



Supervised method


- Given genomic data and the currently known network...
- Infer missing edges between current nodes and additional nodes.


- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

Associate a binary label Y to each data X

Graph inference

Associate a binary label Y to each pair of data (X_1, X_2)

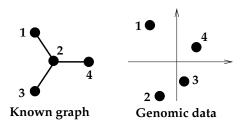
Two solutions

- Consider each pair (X_1, X_2) as a single data -> learning over pairs
- Reformulate the graph inference problem as a pattern recognition problem at the level of individual vertices -> local models

Associate a binary label Y to each data X

Graph inference

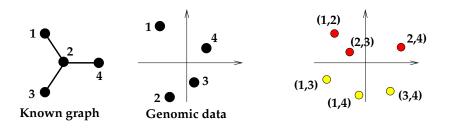
Associate a binary label Y to each pair of data (X_1, X_2)


Two solutions

- Consider each pair (X_1, X_2) as a single data -> learning over pairs
- Reformulate the graph inference problem as a pattern recognition problem at the level of individual vertices -> local models

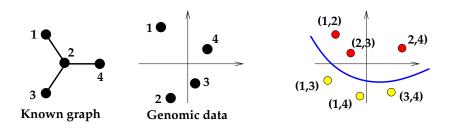
Pattern recognition for pairs

Formulation and basic issue


- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!

Pattern recognition for pairs

Formulation and basic issue


- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!

Pattern recognition for pairs

Formulation and basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!

Representing a pair as a vector

- Each individual protein is represented by a vector $v \in \mathbb{R}^{p}$
- We must represent a pair of proteins (u, v) by a vector ψ(u, v) ∈ ℝ^q in order to estimate a linear classifier
- Question: how build $\psi(u, v)$ from u and v?

Direct sum

• A simple idea is to concatenate the vectors *u* and *v* to obtain a 2*p*-dimensional vector of (*u*, *v*):

$$\psi(\boldsymbol{u},\boldsymbol{v})=\boldsymbol{u}\oplus\boldsymbol{v}=\left(\begin{array}{c}\boldsymbol{u}\\\boldsymbol{v}\end{array}\right)\,.$$

• Problem: a linear function then becomes additive...

$$f(u,v) = w^{\top}\psi(u,v) = w_1^{\top}u + w^{\top}v.$$

Direct sum

• A simple idea is to concatenate the vectors *u* and *v* to obtain a 2*p*-dimensional vector of (*u*, *v*):

$$\psi(u,v) = u \oplus v = \begin{pmatrix} u \\ v \end{pmatrix}$$
.

• Problem: a linear function then becomes additive...

$$f(u, v) = w^{\top} \psi(u, v) = w_1^{\top} u + w^{\top} v.$$

Representing a pair

Direct product

 Alternatively, make the direct product, i.e., the p²-dimensional vector whose entries are all products of entries of u by entries of v:

 $\psi(u,v)=u\otimes v$

Problem: can get really large-dimensional...
Good news: inner product factorizes:

$$(u_1 \otimes v_1)^\top (u_2 \otimes v_2) = \left(u_1^\top u_2\right) \times \left(v_1^\top v_2\right) \,,$$

which is good for algorithms that use only inner products (SVM...)

Representing a pair

Direct product

 Alternatively, make the direct product, i.e., the p²-dimensional vector whose entries are all products of entries of u by entries of v:

 $\psi(u,v)=u\otimes v$

- Problem: can get really large-dimensional...
- Good news: inner product factorizes:

$$(u_1 \otimes v_1)^\top (u_2 \otimes v_2) = \left(u_1^\top u_2\right) \times \left(v_1^\top v_2\right) \,,$$

which is good for algorithms that use only inner products (SVM...)

Representing a pair

Direct product

 Alternatively, make the direct product, i.e., the p²-dimensional vector whose entries are all products of entries of u by entries of v:

 $\psi(u,v)=u\otimes v$

- Problem: can get really large-dimensional...
- Good news: inner product factorizes:

$$(u_1 \otimes v_1)^{\top} (u_2 \otimes v_2) = \left(u_1^{\top} u_2\right) \times \left(v_1^{\top} v_2\right) \,,$$

which is good for algorithms that use only inner products (SVM ...)

Symmetric tensor product (Ben-Hur and Noble, 2006

 $\psi(\boldsymbol{u},\boldsymbol{v})=(\boldsymbol{u}\otimes\boldsymbol{v})+(\boldsymbol{v}\otimes\boldsymbol{u})\;.$

Intuition: a pair (A, B) is similar to a pair (C, D) if:

- A is similar to C and B is similar to D, or...
- A is similar to D and B is similar to C

Metric learning (V. et al, 2007)

 $\psi(u,v)=(u-v)^{\otimes 2}$.

Intuition: a pair (A, B) is similar to a pair (C, D) if:

• A - B is similar to C - D, or...

• A - B is similar to D - C.

Symmetric tensor product (Ben-Hur and Noble, 2006

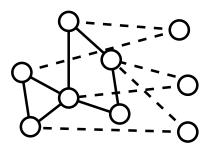
 $\psi(\boldsymbol{u},\boldsymbol{v})=(\boldsymbol{u}\otimes\boldsymbol{v})+(\boldsymbol{v}\otimes\boldsymbol{u})\;.$

Intuition: a pair (A, B) is similar to a pair (C, D) if:

- A is similar to C and B is similar to D, or...
- A is similar to D and B is similar to C

Metric learning (V. et al, 2007)

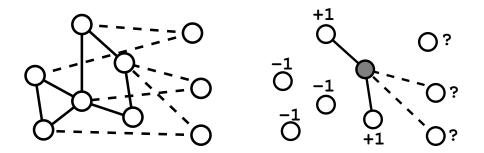
 $\psi(u,v)=(u-v)^{\otimes 2}.$

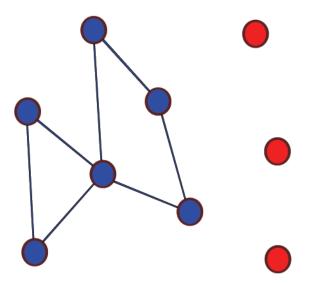

Intuition: a pair (A, B) is similar to a pair (C, D) if:

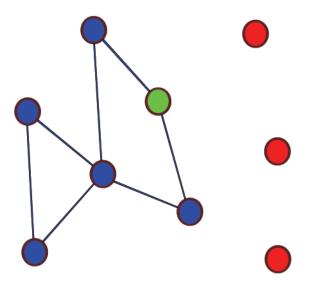
- A B is similar to C D, or...
- A B is similar to D C.

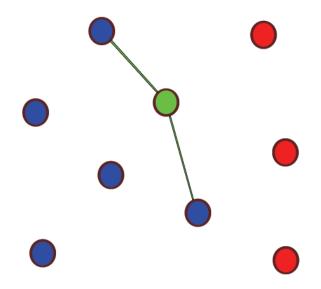
Supervised inference with local models

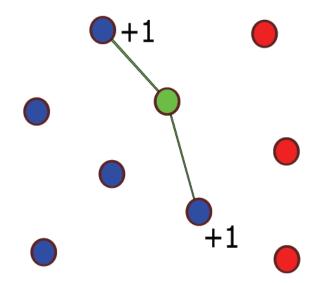
The idea (Bleakley et al., 2007)

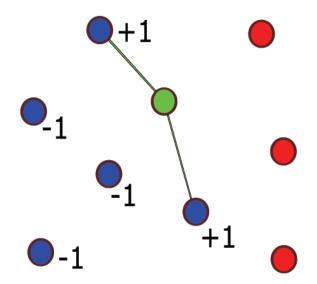

- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.

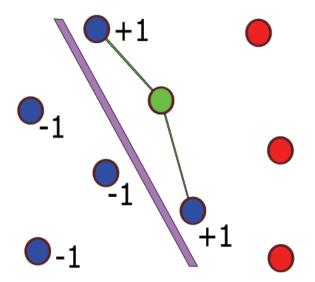


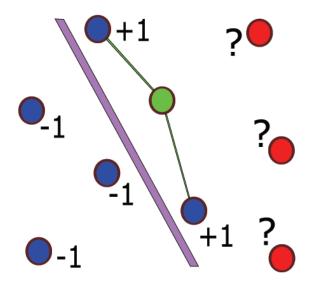

Supervised inference with local models

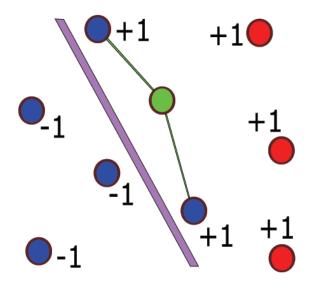

The idea (Bleakley et al., 2007)

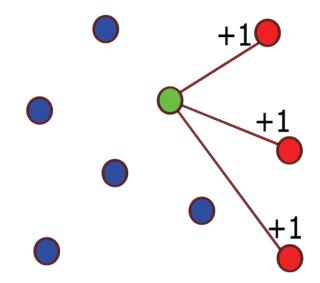

- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.

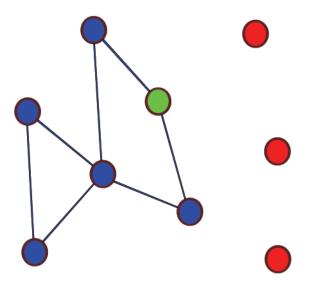


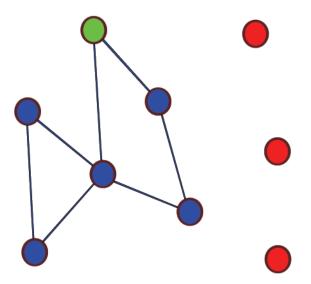


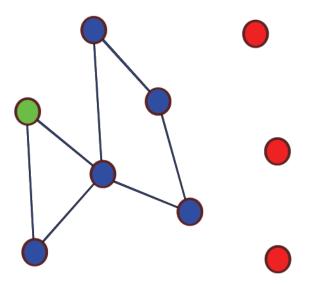


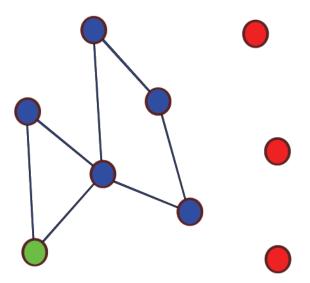


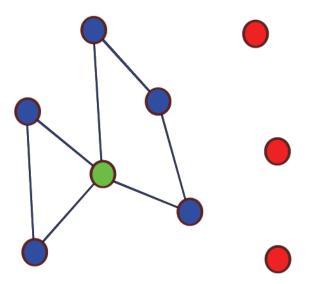


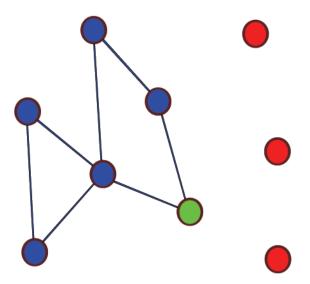


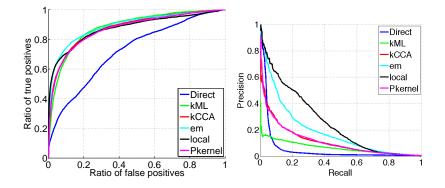


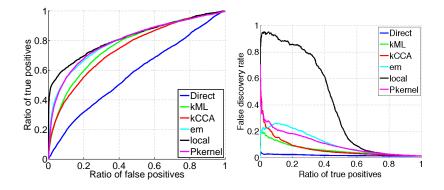




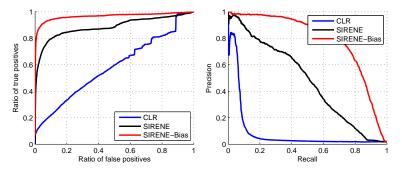








Results: protein-protein interaction (yeast)


(from Bleakley et al., 2007)

Results: metabolic gene network (yeast)

(from Bleakley et al., 2007)

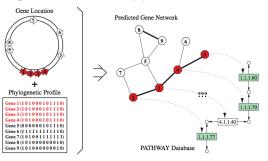
Results: regulatory network (E. coli)

Method	Recall at 60%	Recall at 80%
SIRENE	44.5%	17.6%
CLR	7.5%	5.5%
Relevance networks	4.7%	3.3%
ARACNe	1%	0%
Bayesian network	1%	0%

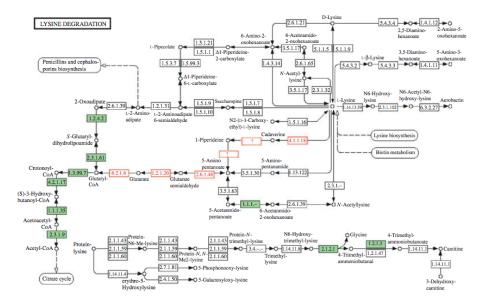
SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)

Jean-Philippe Vert (ParisTech-Curie)

Applications: missing enzyme prediction



Prediction of missing enzyme genes in a bacterial metabolic network


Reconstruction of the lysine-degradation pathway of *Pseudomonas* aeruginosa

Yoshihiro Yamanishi¹, Hisaaki Mihara², Motoharu Osaki², Hisashi Muramatsu³, Nobuyoshi Esaki², Tetsuya Sato¹, Yoshiyuki Hizukuri¹, Susumu Goto¹ and Minoru Kanehisa¹

Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan
 Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Japan
 Department of Biology, Craduate School of Science, Osaka University, Japan

Applications: missing enzyme prediction

900

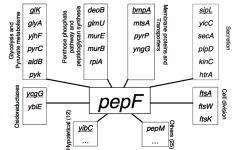
DOI 10.1002/pmic.200600862

Proteomics 2007, 7, 900-909

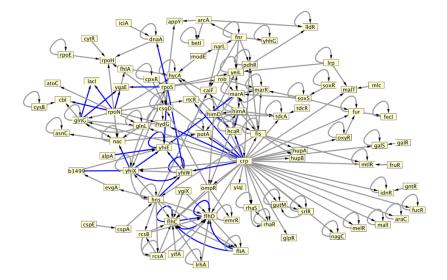
RESEARCH ARTICLE

Prediction of nitrogen metabolism-related genes in Anabaena by kernel-based network analysis

Shinobu Okamoto¹*, Yoshihiro Yamanishi¹, Shigeki Ehira², Shuichi Kawashima³, Koichiro Tonomura¹** and Minoru Kanehisa¹


¹ Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
 ² Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
 ³ Human Genome Center, Institute of Medical Science, University of Tokyo, Meguro, Japan

Applications: function annotation


Determination of the role of the bacterial peptidase PepF by statistical inference and further experimental validation

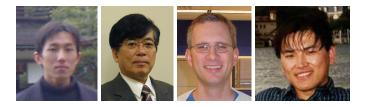
Liliana LOPEZ KLEINE^{1,2}, Alain TRUBUIL¹, Véronique MONNET²

¹Unité de Mathématiques et Informatiques Appliquées. INRA Jouy en Josas 78352, France. ²Unité de Biochimie Bactérienne. INRA Jouy en Josas 78352, France.

Application: predicted regulatory network (E. coli)

Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).

Inference of biological networks


De novo methods

3 Supervised methods

- When the network is known in part, supervised methods can be more adapted than unsupervised ones.
- A variety of methods have been investigated recently (metric learning, matrix completion, pattern recognition).
- The current winner on our benchmarks (metabolic, PPI and regulatory networks) is the local pattern recognition approach, which reaches high performance
- These methods:
 - work for any network
 - work with any data
 - can integrate heterogeneous data, which strongly improves performance

People I need to thank

Yoshihiro Yamanishi, Minoru Kanehisa (Univ. Kyoto): kCCA, kML

- Jian Qian, Bill Noble (Univ. Washington): pairwise SVM
- Kevin Bleakley, Gerard Biau (Univ. Montpellier), Fantine Mordelet (ParisTech/Curie): local SVM

Jean-Philippe Vert (ParisTech-Curie)