Collaborative filtering with attributes

Jacob Abernethy ${ }^{1}$ Francis Bach ${ }^{2}$ Theodoros Evgeniou ${ }^{3}$ Jean-Philippe Vert ${ }^{4}$
${ }^{1}$ UC Berkeley
${ }^{2}$ INRIA / Ecole normale superieure de Paris
${ }^{3}$ INSEAD
${ }^{4}$ ParisTech / Institut Curie / INSERM

Xerox Research Center Europe, Grenoble, France, May 23, 2008.

Collaborative Filtering (CF)

The problem

- Given a set of $n_{\mathcal{X}}$ "movies" $\mathbf{x} \in \mathcal{X}$ and a set of $n_{\mathcal{Y}}$ "customers" $\mathbf{y} \in \mathcal{Y}$,
- predict the "rating" $z(\mathbf{x}, \mathbf{y}) \in \mathcal{Z}$ of customer \mathbf{y} for movie \mathbf{x}
- Training data: large $n_{\mathcal{X}} \times n_{\mathcal{Y}}$ incomplete matrix Z that describes the known ratings of some customers for some movies
- Goal: complete the matrix.

Another CF example

Drug design

- Given a family of proteins of therapeutic interest (e.g., GPCR's)
- Given all known small molecules that bind to these proteins
- Can we predict unknown interactions?

CF by low-rank matrix approximation

- A common strategy for CF
- Z has rank less than $k \Leftrightarrow Z=U V^{\top} U \in \mathbb{R}^{n_{\mathcal{X}} \times k}, V \in \mathbb{R}^{n_{\mathcal{Y}} \times k}$
- Examples: PLSA (Hoffmann, 2001), MMMF (Srebro et al, 2004)
- Numerical and statistical efficiency

CF by low-rank matrix approximation example

Fitting low-rank models (Srebro et al, 2004)

- Relax the (non-convex) rank of Z into the (convex) trace norm of Z : if $\sigma_{i}(Z)$ are the singular values of Z,

$$
\operatorname{rank} Z=\sum_{i} 1_{\sigma_{i}(Z)>0} \quad\|Z\|_{*}=\sum_{i} \sigma_{i}(Z) .
$$

- n observations z_{u} corresponding to $\mathbf{x}_{i(u)}$ and $\mathbf{y}_{j(u)}, u=1$
where $\ell\left(z, z^{\prime}\right)$ is a convex loss function. - This is an SDP if ℓ is SDP-representable

CF by low-rank matrix approximation example

Fitting low-rank models (Srebro et al, 2004)

- Relax the (non-convex) rank of Z into the (convex) trace norm of Z : if $\sigma_{i}(Z)$ are the singular values of Z,

$$
\operatorname{rank} Z=\sum_{i} 1_{\sigma_{i}(Z)>0} \quad\|Z\|_{*}=\sum_{i} \sigma_{i}(Z)
$$

- n observations z_{u} corresponding to $\mathbf{x}_{i(u)}$ and $\mathbf{y}_{j(u)}, u=1, \ldots, n$:

$$
\min _{Z \in \mathbb{R}^{n \mathcal{X}} \times n_{\mathcal{y}}} \sum_{u=1}^{n} \ell\left(z_{u}, Z_{i(u), j(u)}\right)+\lambda\|Z\|_{*},
$$

where $\ell\left(z, z^{\prime}\right)$ is a convex loss function.

- This is an SDP if ℓ is SDP-representable

CF with attributes

The problem

- Often we have additional attributes:
- gender, age of customers; type, actors of movies..
- 3D structures of proteins and ligands for protein-ligand interaction prediction
- How to include attributes in CF?
- Expected gains: increase performance, allow predictions on new movie and/or customers.

Our contributions

- A general framework for CF with or without attributes, using kernels to describe attributes ("kernel-CF") - A family of algorithms for CF in this setting

CF with attributes

The problem

- Often we have additional attributes:
- gender, age of customers; type, actors of movies..
- 3D structures of proteins and ligands for protein-ligand interaction prediction
- How to include attributes in CF?
- Expected gains: increase performance, allow predictions on new movie and/or customers.

Our contributions

- A general framework for CF with or without attributes, using kernels to describe attributes ("kernel-CF")
- A family of algorithms for CF in this setting

The idea

Basic facts

- $n_{\mathcal{X}}$ movies and $n_{\mathcal{Y}}$ customers
- The known rating $z(i, j)$ of customer j for movie i is stored in the (i, j)-th entry of a matrix M (of size $n_{\mathcal{X}} \times n_{\mathcal{Y}}$).
- M represents a linear application / bilinear form:

$$
M: \mathbb{R}^{n_{\mathcal{Y}}} \rightarrow \mathbb{R}^{n_{\mathcal{X}}}
$$

defined by:

$$
e_{i}^{\top} M f_{j}=M_{i, j}
$$

- Rank / trace norm are spectral properties of the linear application

The idea

Reformulations

- Represent the i movie $x_{i} \in \mathcal{X}$ (resp. j-th customer $y_{j} \in \mathcal{Y}$) by the i-th basis vector $e_{i} \in \mathbb{R}^{n_{\mathcal{X}}}$ (resp. $f_{j} \in \mathbb{R}^{n_{\mathcal{Y}}}$):

$$
\phi_{X}\left(x_{i}\right)=e_{i}, \quad \phi_{Y}\left(y_{j}\right)=f_{j}
$$

- Approximate the rating function by a bilinear form:

$$
\forall\left(x_{i}, y_{j}\right) \in \mathcal{X} \times \mathcal{Y}, \quad G_{M}\left(x_{i}, y_{j}\right)=\phi_{X}\left(x_{i}\right)^{\top} M \phi_{Y}\left(y_{j}\right)
$$

by constraining a spectral property of $M: \mathbb{R}^{n_{\mathcal{X}}} \mapsto \mathbb{R}^{n_{\mathcal{X}}}$.
An idea
If we have additional attributes about movies / customer, why not include them in $\phi(x)$ and $\phi(y)$?

The idea

Reformulations

- Represent the i movie $x_{i} \in \mathcal{X}$ (resp. j-th customer $y_{j} \in \mathcal{Y}$) by the i-th basis vector $e_{i} \in \mathbb{R}^{n_{\mathcal{X}}}$ (resp. $f_{j} \in \mathbb{R}^{n_{\mathcal{Y}}}$):

$$
\phi_{X}\left(x_{i}\right)=e_{i}, \quad \phi_{Y}\left(y_{j}\right)=f_{j}
$$

- Approximate the rating function by a bilinear form:

$$
\forall\left(x_{i}, y_{j}\right) \in \mathcal{X} \times \mathcal{Y}, \quad G_{M}\left(x_{i}, y_{j}\right)=\phi_{X}\left(x_{i}\right)^{\top} M \phi_{Y}\left(y_{j}\right)
$$

by constraining a spectral property of $M: \mathbb{R}^{n_{\mathcal{X}}} \mapsto \mathbb{R}^{n_{\mathcal{X}}}$.

An idea

If we have additional attributes about movies / customer, why not include them in $\phi(x)$ and $\phi(y) ?$

Setting

- Movies: points in a Hilbert space \mathcal{X}
- Customers: points in a Hilbert space \mathcal{Y}
- We model the preference of customer \mathbf{y} for a movie \mathbf{x} by a bilinear form:

$$
f(\mathbf{x}, \mathbf{y})=\langle\mathbf{x}, F \mathbf{y}\rangle_{\mathcal{X}},
$$

where $F \in \mathcal{B}_{0}(\mathcal{Y}, \mathcal{X})$ is a compact linear operator (i.e., a "matrix").

Spectra of compact operators

Classical results

- For (\mathbf{x}, \mathbf{y}) in $\mathcal{X} \times \mathcal{Y}$ the tensor product $\mathbf{x} \otimes \mathbf{y}$ is the operator

$$
\forall \mathbf{h} \in \mathcal{Y}, \quad(\mathbf{x} \otimes \mathbf{y}) \mathbf{h}=\langle\mathbf{y}, \mathbf{h}\rangle_{\mathcal{Y}} \mathbf{x}
$$

- Any compact operator $F: \mathcal{Y} \rightarrow \mathcal{X}$ admits a spectral decomposition:

$$
F=\sum_{i=1}^{\infty} \sigma_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i}
$$

where the $\sigma_{i} \geq 0$ are the singular values and $\left(\mathbf{u}_{i}\right)_{i \in \mathbb{N}}$ and $\left(\mathbf{v}_{i}\right)_{i \in \mathbb{N}}$ are orthonormal families in \mathcal{X} and \mathcal{Y}.

- The spectrum of F is the set of singular values sorted in decreasing order: $\sigma_{1}(F) \geq \sigma_{2}(F) \geq \ldots \geq 0$.
- This is the natural generalization of singular values for matrices.

Useful classes for operators

Operators of finite rank

- The rank of an operator is the number of strictly positive singular values.
- Hence operators of rank smaller or equal to k are characterized by:

$$
\sigma_{k+1}(F)=0
$$

Trace-class operators

The trace-class operators are the compact operators F that satisfy
\square

Useful classes for operators

Operators of finite rank

- The rank of an operator is the number of strictly positive singular values.
- Hence operators of rank smaller or equal to k are characterized by:

$$
\sigma_{k+1}(F)=0
$$

Trace-class operators

The trace-class operators are the compact operators F that satisfy:

$$
\|F\|_{*}:=\sum_{i=1}^{\infty} \sigma_{i}(F)<\infty
$$

$\|F\|_{*}$ is a norm over the trace-class operators, called the trace norm.

Useful classes for operators (cont.)

Hilbert-Schmidt operators

- The Hilbert-Schmidt operators are compact operators F that satisfy:

$$
\|F\|_{\text {Fro }}^{2}:=\sum_{i=1}^{\infty} \sigma_{i}(F)^{2}<\infty .
$$

- They form a Hilbert space with inner product:

$$
\left\langle\mathbf{x} \otimes \mathbf{y}, \mathbf{x}^{\prime} \otimes \mathbf{y}^{\prime}\right\rangle_{\mathcal{X} \otimes \mathcal{Y}}=\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle_{\mathcal{X}}\left\langle\mathbf{y}, \mathbf{y}^{\prime}\right\rangle_{\mathcal{Y}} .
$$

Spectral penalty function

Definition

A function $\Omega: \mathcal{B}_{0}(\mathcal{Y}, \mathcal{X}) \mapsto \mathbb{R} \cup\{+\infty\}$ is called a spectral penalty function if it can be written as:

$$
\Omega(F)=\sum_{i=1}^{\infty} s_{i}\left(\sigma_{i}(F)\right)
$$

where for any $i \geq 1, s_{i}: \mathbb{R}^{+} \mapsto \mathbb{R}^{+} \cup\{+\infty\}$ is a non-decreasing penalty function satisfying $s_{i}(0)=0$.

Spectral penalty function

Examples

- Rank constraint: take $s_{k+1}(0)=0$ and $s_{k+1}(u)=+\infty$ for $u>0$, and $s_{i}=0$ for $i \geq k$. Then

$$
\Omega(F)= \begin{cases}0 & \text { if } \operatorname{rank}(F) \leq k, \\ +\infty & \text { if } \operatorname{rank}(F)>k .\end{cases}
$$

- Trace norm: take $s_{i}(u)=u$ for all i, then:
- Hilbert-Schmidt norm: take $s_{i}(u)=u^{2}$ for all i, then

Spectral penalty function

Examples

- Rank constraint: take $s_{k+1}(0)=0$ and $s_{k+1}(u)=+\infty$ for $u>0$, and $s_{i}=0$ for $i \geq k$. Then

$$
\Omega(F)= \begin{cases}0 & \text { if } \operatorname{rank}(F) \leq k \\ +\infty & \text { if } \operatorname{rank}(F)>k\end{cases}
$$

- Trace norm: take $s_{i}(u)=u$ for all i, then:

$$
\Omega(F)=\|F\|_{*} .
$$

- Hilbert-Schmidt norm: take $s_{i}(u)=u^{2}$ for all i, then

Spectral penalty function

Examples

- Rank constraint: take $s_{k+1}(0)=0$ and $s_{k+1}(u)=+\infty$ for $u>0$, and $s_{i}=0$ for $i \geq k$. Then

$$
\Omega(F)= \begin{cases}0 & \text { if } \operatorname{rank}(F) \leq k, \\ +\infty & \text { if } \operatorname{rank}(F)>k .\end{cases}
$$

- Trace norm: take $s_{i}(u)=u$ for all i, then:

$$
\Omega(F)=\|F\|_{*}
$$

- Hilbert-Schmidt norm: take $s_{i}(u)=u^{2}$ for all i, then

$$
\Omega(F)=\|F\|_{\text {Fro }}^{2} .
$$

Learning operator with spectral regularization

Setting

- Training set: $\left(\mathbf{x}_{i}, \mathbf{y}_{i}, t_{i}\right)_{i=1, \ldots, N}$ a set of (movie,customer,preference).
- Loss function $I\left(t, t^{\prime}\right)$: cost of predicting preference t instead of t^{\prime}.
- Empirical risk of an operator F :

$$
R_{N}(F)=\frac{1}{N} \sum_{i=1}^{N} I\left(\left\langle\mathbf{x}_{i}, F \mathbf{y}_{i}\right\rangle_{\mathcal{X}}, t_{i}\right)
$$

Learning an operator

Learning operator with spectral regularization

Setting

- Training set: $\left(\mathbf{x}_{i}, \mathbf{y}_{i}, t_{i}\right)_{i=1, \ldots, N}$ a set of (movie,customer,preference).
- Loss function $I\left(t, t^{\prime}\right)$: cost of predicting preference t instead of t^{\prime}.
- Empirical risk of an operator F :

$$
R_{N}(F)=\frac{1}{N} \sum_{i=1}^{N} I\left(\left\langle\mathbf{x}_{i}, F \mathbf{y}_{i}\right\rangle_{\mathcal{X}}, t_{i}\right)
$$

Learning an operator

$$
\min _{F \in \mathcal{B}_{0}(\mathcal{Y}, \mathcal{X}), \Omega(F)<\infty}\left\{R_{N}(F)+\lambda \Omega(F)\right\} .
$$

A classical representer theorem

Theorem

If \hat{F} is a solution the problem:

$$
\min _{F \in \mathcal{B}_{2}(\mathcal{Y}, \mathcal{X})}\left\{R_{N}(F)+\lambda \sum_{i=1}^{\infty} \sigma_{i}(F)^{2}\right\}
$$

then it is necessarily in the linear span of $\left\{\mathbf{x}_{i} \otimes \mathbf{y}_{i}: i=1, \ldots, N\right\}$, i.e., it can be written as:

$$
\hat{F}=\sum_{i=1}^{N} \alpha_{i} \mathbf{x}_{i} \otimes \mathbf{y}_{i}
$$

for some $\alpha \in \mathbb{R}^{N}$.

Proof sketch

- $\mathcal{B}_{2}(\mathcal{Y}, \mathcal{X})$ is isomorphic to the RKHS of the tensor product kernel:

$$
k_{\otimes}\left((\mathbf{x}, \mathbf{y}),\left(\mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right)\right)=\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle_{\mathcal{X}}\left\langle\mathbf{y}, \mathbf{y}^{\prime}\right\rangle_{\mathcal{Y}},
$$

by $f(\mathbf{x}, \mathbf{y})=\langle\mathbf{x}, F \mathbf{y}\rangle_{\mathcal{X}}$. In particular,

$$
\|f\|_{\mathcal{H}_{\otimes}}^{2}=\|F\|^{2}=\Omega(F) .
$$

- The problem is therefore a classical kernel method:

$$
\min _{f \in \mathcal{H}_{\otimes}}\left\{R_{N}(f)+\lambda\|f\|_{\otimes}^{2}\right\}
$$

so the classical representer theorem can be used. \square

A generalized representer theorem

Theorem

For any spectral penalty function $\Omega: \mathcal{B}_{0}(\mathcal{Y}, \mathcal{X}) \mapsto \mathbb{R}$, let the optimization problem:

$$
\min _{F \in \mathcal{B}_{0}(y, \mathcal{X}), \Omega(F)<\infty}\left\{R_{N}(F)+\lambda \Omega(F)\right\} .
$$

If the set of solutions is not empty, then there is a solution F in $\mathcal{X}_{N} \otimes \mathcal{Y}_{N}$, i.e., there exists $\alpha \in \mathbb{R}^{m_{\mathcal{X}} \times m_{y}}$ such that:

$$
F=\sum_{i=1}^{m_{x}} \sum_{j=1}^{m_{y}} \alpha_{i j} \mathbf{u}_{i} \otimes \mathbf{v}_{j},
$$

where $\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{m_{\mathcal{X}}}\right)$ and $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m_{y}}\right)$ form orthonormal bases of \mathcal{X}_{N} and \mathcal{Y}_{N}, respectively.

Proof sketch

- For any operator $F \in \mathcal{B}_{0}(\mathcal{Y}, \mathcal{X})$, let

$$
G=\Pi_{\mathcal{X}_{N}} F \Pi_{\mathcal{Y}_{N}}
$$

where Π_{U} is the orthogonal projection onto U.

- Lemma: we can show that for all $i \geq 0$:

$$
\sigma_{i}(G) \leq \sigma_{i}(F)
$$

- Therefore $\Omega(G) \leq \Omega(F)$.
- On the other hand $R_{N}(G)=R_{N}(F)$.
- Consequently for any solution F we have another solution $G \in \mathcal{X}_{N} \otimes \mathcal{Y}_{N}$. \square

Practical consequence

Theorem (cont.)

The coefficients α that define the solution by

$$
F=\sum_{i=1}^{m_{\mathcal{X}}} \sum_{j=1}^{m_{\mathcal{Y}}} \alpha_{i j} \mathbf{u}_{i} \otimes \mathbf{v}_{j}
$$

can be found by solving the following finite-dimensional optimization problem:

$$
\min _{\alpha \in \mathbb{R}^{m_{\mathcal{X}} \times m_{\mathcal{Y}}, \Omega(\alpha)<\infty}} R_{N}\left(\operatorname{diag}\left(X \alpha Y^{\top}\right)\right)+\lambda \Omega(\alpha)
$$

where $\Omega(\alpha)$ refers to the spectral penalty function applied to the matrix α seen as an operator from $\mathbb{R}^{m_{\mathcal{Y}}}$ to $\mathbb{R}^{m_{\mathcal{X}}}$, and X and Y denote any matrices that satisfy $K=X X^{\top}$ and $G=Y Y^{\top}$ for the two Gram matrices K and G of \mathcal{X}_{N} and \mathcal{Y}_{N}.

Summary

We obtain various algorithms by choosing:
(1) A loss function (depends on the application)
(2) A spectral regularization (that is amenable to optimization)
© Two kernels.
Both kernels and spectral regularization can be used to constrain the solution

Examples

- Dirac kernel + spectral constraint (rank, trace norm) = matrix completion
- Attribute kernels + Hilbert-Schmidt regularization = kernel methods for pairs with tensor product kernel
- Attribute kernel on movies, Dirac on customers spectral regularization (rank, trace norm) $=$ multi-task learning (rank constraints enforces sharing the weights between customers).

Examples

- Dirac kernel + spectral constraint (rank, trace norm) = matrix completion
- Attribute kernels + Hilbert-Schmidt regularization = kernel methods for pairs with tensor product kernel
- Attribute kernel on movies, Dirac on customers, spectral regularization (rank, trace norm) = multi-task learning (rank constraints enforces sharing the weights between customers).

Examples

- Dirac kernel + spectral constraint (rank, trace norm) = matrix completion
- Attribute kernels + Hilbert-Schmidt regularization $=$ kernel methods for pairs with tensor product kernel
- Attribute kernel on movies, Dirac on customers, spectral regularization (rank, trace norm) = multi-task learning (rank constraints enforces sharing the weights between customers).

A family of kernels

Taken $K_{\otimes}=K \times G$ with

$$
\left\{\begin{array}{l}
K=\eta K_{\text {Attribute }}^{X}+(1-\eta) K_{\text {Dirac }}^{X}, \\
G=\zeta K_{\text {Attribute }}^{y}+(1-\zeta) K_{\text {Dirac }}^{y},
\end{array}\right.
$$

for $0 \leq \eta \leq 1$ and $0 \leq \zeta \leq 1$

Simulated data

Experiment

- Generate data $(\mathbf{x}, \mathbf{y}, z) \in \mathbb{R}^{f_{X}} \times \mathbb{R}^{f_{Y}} \times \mathbb{R}$ according to

$$
z=\mathbf{x}^{\top} B \mathbf{y}+\varepsilon
$$

- Observe only $n_{X}<f_{X}$ and $n_{Y}<f_{Y}$ features
- Low-rank assumption will find the missing features
- Observed attributes will help the low-rank formulation to concentrate mostly on the unknown features
- Comparison of
- Low-rank constraint without tracenorm (note that it requires regularization)
- Trace-norm formulation (regularization is implicit)

Simulated data: results

- Compare MSE
- Left: rank constraint (best: 0.1540), right: trace norm (best: 0.1522)

Movies

- MovieLens 100k database, ratings with attributes
- Experiments with 943 movies and 1,642 customers, 100,000 rankings in $\{1, \ldots, 5\}$
- Train on a subset of the ratings, test on the rest
- error measured with MSE (best constant prediction: 1.26)

Conclusion

What we saw

- A general framework for CF with or without attributes
- A generalized representation theorem valid for any spectral penalty function
- A family of new methods;

Future work

- The bottleneck is often practical optimization. Online version possible.
- Automatic kernel optimization

Reference

J. Abernethy, F. Bach, T. Evgeniou and J.-P. Vert, "A new approach to collaborative filtering: operator estimation with spectral constraint", technical report arXiv 0802-1430, 2008.

Annex: algorithms

The problem

- Let $\psi_{i}(t)=I\left(t, t_{i}\right)$, supposed to be convex.
- Suppose

$$
\Omega(A)=\sum_{i \geq 1} s\left(\sigma_{i}(A)\right)
$$

where s is a convex even function s.t. $s(0)=0$.

- The problem we wish to solve is:

$$
\min _{\alpha \in \mathbb{R}^{m_{x} \times m_{y}}} \sum_{i=1}^{n} \psi_{i}\left(\left(X \alpha Y^{\top}\right)_{i i}\right)+\lambda \Omega(\alpha)
$$

- One may directly solve this primal problem.

Fenchel conjugacy

- Let ψ_{i}^{*} denote the Fenchel conjugate of ϕ_{i} :

$$
\psi_{i}^{*}\left(\alpha_{i}\right)=\max _{v_{i} \in \mathbb{R}} \alpha_{i} v_{i}-\psi_{i}\left(v_{i}\right)
$$

- Let Ω^{*} denote the Fenchel conjugate of Ω :

$$
\Omega^{*}(\beta)=\max _{\in \mathbb{R}^{m_{x} \times m_{y}}} \operatorname{Tr}\left(\alpha^{\top} \beta\right)-\Omega(\alpha) .
$$

- In fact Ω^{*} is a spectral function corresponding to s^{*} :

$$
\Omega^{*}(\beta)=\sum_{i \geq 1} s^{*}\left(\sigma_{i}(\beta)\right) .
$$

Dual problem

- Primal:

$$
\min _{\alpha \in \mathbb{R}^{m_{x} \times m_{y}}} \sum_{i=1}^{N} \psi_{i}\left(\left(X \alpha Y^{\top}\right)_{i i}\right)+\lambda \Omega(\alpha)
$$

- Dual (strong duality):

$$
\max _{\beta \in \mathbb{R}^{N}}-\sum_{i=1}^{N} \psi_{i}^{*}\left(\beta_{i}\right)-\lambda \Omega^{*}\left(-\frac{1}{\lambda} X^{\top} \operatorname{Diag}(\beta) Y\right)
$$

- The solution α of the primal is among the Fenchel duals of $-\frac{1}{\lambda} X^{\top} \operatorname{Diag}(\beta) Y$ (closed form if s if differentiable).
- Choosing the primal or dual formulation depends on the number of training patterns N compared to $m_{x} \times m_{y}$.

Example: trace norm constraint

- Primal:

$$
\min _{\alpha \in \mathbb{R}^{m_{x} \times m_{y}}} \sum_{i=1}^{N} \psi_{i}\left(\left(X \alpha Y^{\top}\right)_{i i}\right)+\lambda\|\alpha\|_{*}
$$

- Large convex, non-smooth problem (can be cast as a SDP).
- Dual:

$$
\max _{\beta \in \mathbb{R}^{N}}-\sum_{i=1}^{N} \psi_{i}^{*}\left(\beta_{i}\right) \text { such that } \max _{i} \sigma_{i}\left(-X^{\top} \operatorname{Diag}(\beta) Y\right) \leq \lambda
$$

- Two tricks to (approximately) solve this problem:
- Make it smooth
- Make it low-rank

Smoothing the problem

Make the problem smooth by approximating the non smooth functions:

- loss: (depends on the loss)
- trace norm:

$$
f_{\varepsilon}(b)=\varepsilon \log \left(1+e^{\sigma / \varepsilon}\right)+\varepsilon \log \left(1+e^{-\sigma / \varepsilon}\right) .
$$

Making the problem low-rank

Trick

- Let $G(M)$ be a convex twice differentiable function to optimize over $\mathbb{R}^{p \times q}$.
- If the global minimum of G has rank r, then G restricted to matrices of rank $r+1$ have no local minimum apart from the global minimum.

Algorithm

(1) Start with small r.
(2) Find local minimum with Quasi-Newton.
(8) If solution is rank-defficient then we have the global optimum; otherwise increase r and start again in 2.

Making the problem low-rank

Trick

- Let $G(M)$ be a convex twice differentiable function to optimize over $\mathbb{R}^{p \times q}$.
- If the global minimum of G has rank r, then G restricted to matrices of rank $r+1$ have no local minimum apart from the global minimum.

Algorithm

(1) Start with small r.
(2) Find local minimum with Quasi-Newton.
(3) If solution is rank-defficient then we have the global optimum; otherwise increase r and start again in 2.

