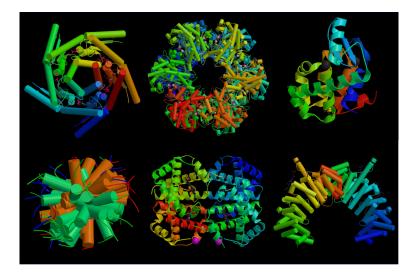
Inference of missing edges in biological networks

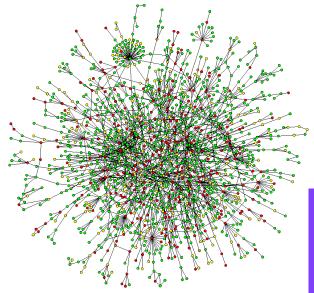
Jean-Philippe Vert Jean-Philippe.Vert@mines-paristech.fr

Mines ParisTech, Institut Curie, INSERM U900

Telecom ParisTech, October 23, 2008.

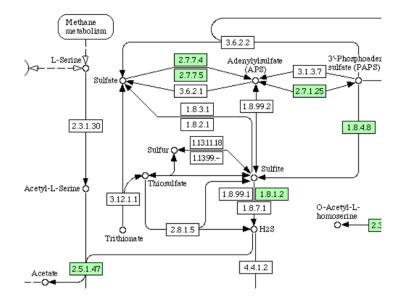


Network 1: protein-protein interaction

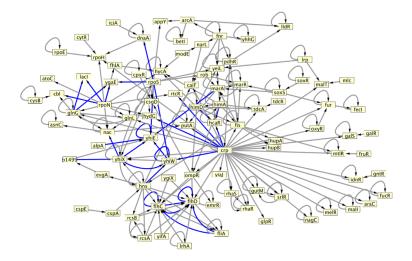




Network 2: metabolic network



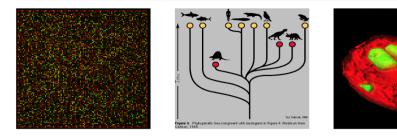
Network 3: gene regulatory network



Data available

Biologists have collected a lot of data about proteins. e.g.,

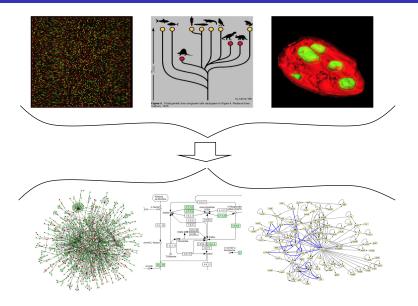
- Gene expression measurements
- Phylogenetic profiles
- Location of proteins/enzymes in the cell



How to use this information "intelligently" to find a good function that predicts edges between nodes.

Jean-Philippe Vert (ParisTech)

Our goal



Formalization

- $\mathcal{V} = \{1, \dots, N\}$ vertices (*e.g., genes, proteins*)
- $\mathcal{D} = (x_1, \dots, x_N) \in \mathcal{H}^N$ data about the vertices (\mathcal{H} Hilbert space)
- Goal: predict edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$.

'De novo" inference

- Given data about individual genes and proteins \mathcal{D}, \dots
- $\bullet\,\ldots\,$ Infer the edges between genes and proteins ${\cal E}$

"Supervised" inference

- Given data about individual genes and proteins \mathcal{D}, \dots
- ... and given some known interactions $\mathcal{E}_{train} \subset \mathcal{E}$, ...
- ... infer unknown interactions $\mathcal{E}_{test} = \mathcal{E} \setminus \mathcal{E}_{train}$

Formalization

- $\mathcal{V} = \{1, \dots, N\}$ vertices (*e.g., genes, proteins*)
- $\mathcal{D} = (x_1, \dots, x_N) \in \mathcal{H}^N$ data about the vertices (\mathcal{H} Hilbert space)
- Goal: predict edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$.

"De novo" inference

- $\bullet\,$ Given data about individual genes and proteins $\mathcal{D},\,...$
- \bullet ... Infer the edges between genes and proteins ${\cal E}$

"Supervised" inference

- Given data about individual genes and proteins \mathcal{D}, \dots
- ... and given some known interactions $\mathcal{E}_{train} \subset \mathcal{E}, ...$
- ... infer unknown interactions $\mathcal{E}_{test} = \mathcal{E} \setminus \mathcal{E}_{train}$

Formalization

- $\mathcal{V} = \{1, \dots, N\}$ vertices (*e.g., genes, proteins*)
- $\mathcal{D} = (x_1, \dots, x_N) \in \mathcal{H}^N$ data about the vertices (\mathcal{H} Hilbert space)
- Goal: predict edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$.

"De novo" inference

- Given data about individual genes and proteins $\mathcal{D}, ...$
- \bullet ... Infer the edges between genes and proteins ${\cal E}$

"Supervised" inference

- $\bullet\,$ Given data about individual genes and proteins $\mathcal{D},\,...$
- ... and given some known interactions $\mathcal{E}_{\textit{train}} \subset \mathcal{E}, ...$
- ... infer unknown interactions $\mathcal{E}_{test} = \mathcal{E} \setminus \mathcal{E}_{train}$

- 2 Supervised methods
- 3 Extension: collaborative filtering with attributes
- 4 Conclusion

Typical strategies

- Fit a dynamical system to time series (e.g., PDE, boolean networks, state-space models)
- Detect statistical conditional independence or dependency (Bayesian netwok, mutual information networks, co-expression)

Pros

- Excellent approach if the model is correct and enough data are available
- Interpretability of the model
- Inclusion of prior knowledge

Cons

- Specific to particular data and networks
- Needs a correct model!
- Difficult integration of heterogeneous data
- Often needs a lot of data and long computation time

Typical strategies

- Fit a dynamical system to time series (e.g., PDE, boolean networks, state-space models)
- Detect statistical conditional independence or dependency (Bayesian netwok, mutual information networks, co-expression)

Pros

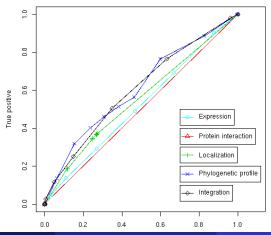
- Excellent approach if the model is correct and enough data are available
- Interpretability of the model
- Inclusion of prior knowledge

Cons

- Specific to particular data and networks
- Needs a correct model!
- Difficult integration of heterogeneous data
- Often needs a lot of data and long computation time

Evaluation on metabolic network reconstruction

- The known metabolic network of the yeast involves 769 proteins.
- Predict edges from distances between a variety of genomic data (expression, localization, phylogenetic profiles, interactions).

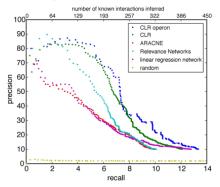


Evaluation on regulatory network reconstruction

OPEN a ACCESS Freely available online

Large-Scale Mapping and Validation of *Escherichia coli* Transcriptional Regulation from a Compendium of Expression Profiles

Jeremiah J. Faith¹⁰, Boris Hayete¹⁰, Joshua T. Thaden^{2,3}, Ilaria Mogno^{2,4}, Jamey Wierzbowski^{2,5}, Guillaume Cottarel^{2,5}, Simon Kasif^{1,2}, James J. Collins^{1,2}, Timothy S. Gardner^{1,2*}



2 Supervised methods

3 Extension: collaborative filtering with attributes

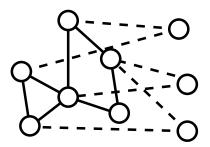
4 Conclusion

Supervised methods

Motivation

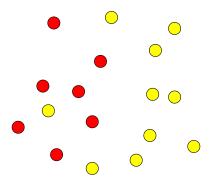
In actual applications,

- we know in advance parts of the network to be inferred
- the problem is to add/remove nodes and edges using genomic data as side information

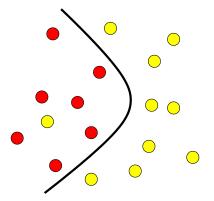


Supervised method

- Given genomic data and the currently known network...
- Infer missing edges between current nodes and additional nodes.



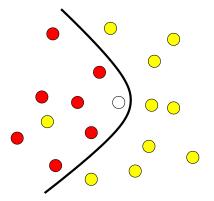
- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)



- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

Jean-Philippe Vert (ParisTech)

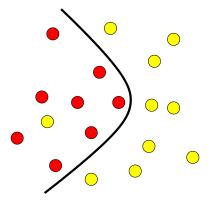
Inference of biological networks



- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

Jean-Philippe Vert (ParisTech)

Inference of biological networks



- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

Associate a binary label Y to each data X

Graph inference

Associate a binary label Y to each pair of data (X_1, X_2)

Two solutions

- Consider each pair (X_1, X_2) as a single data -> learning over pairs
- Reformulate the graph inference problem as a pattern recognition problem at the level of individual vertices -> local models

Associate a binary label Y to each data X

Graph inference

Associate a binary label Y to each pair of data (X_1, X_2)

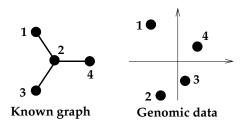
Two solutions

- Consider each pair (X_1, X_2) as a single data -> learning over pairs
- Reformulate the graph inference problem as a pattern recognition problem at the level of individual vertices -> local models

Pattern recognition for pairs

Formulation and basic issue

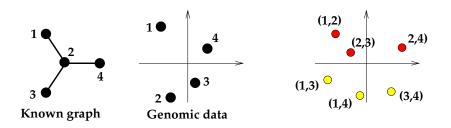
- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!



Pattern recognition for pairs

Formulation and basic issue

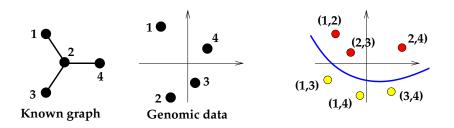
- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!



Pattern recognition for pairs

Formulation and basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!



Representing a pair as a vector

- Each individual protein is represented by a vector $v \in \mathbb{R}^{p}$
- We must represent a pair of proteins (u, v) by a vector ψ(u, v) ∈ ℝ^q in order to estimate a linear classifier
- Question: how build $\psi(u, v)$ from u and v?

Direct sum

• A simple idea is to concatenate the vectors *u* and *v* to obtain a 2*p*-dimensional vector of (*u*, *v*):

$$\psi(u,v) = u \oplus v = \left(egin{array}{c} u \\ v \end{array}
ight) \, .$$

• Problem: a linear function then becomes additive...

 $f(u,v) = w^{\top}\psi(u,v) = w_1^{\top}u + w^{\top}v.$

Direct sum

• A simple idea is to concatenate the vectors *u* and *v* to obtain a 2*p*-dimensional vector of (*u*, *v*):

$$\psi(u,v) = u \oplus v = \left(egin{array}{c} u \\ v \end{array}
ight) \, .$$

• Problem: a linear function then becomes additive...

$$f(u, v) = w^{\top} \psi(u, v) = w_1^{\top} u + w^{\top} v.$$

Direct product

 Alternatively, make the direct product, i.e., the p²-dimensional vector whose entries are all products of entries of u by entries of v:

 $\psi(u,v)=u\otimes v$

Problem: can get really large-dimensional... Good news: inner product factorizes:

$$(u_1 \otimes v_1)^{\top} (u_2 \otimes v_2) = (u_1^{\top} u_2) \times (v_1^{\top} v_2) ,$$

which is good for algorithms that use only inner products (SVM...)

Direct product

 Alternatively, make the direct product, i.e., the p²-dimensional vector whose entries are all products of entries of u by entries of v:

 $\psi(u,v)=u\otimes v$

- Problem: can get really large-dimensional...
- Good news: inner product factorizes:

$$(u_1 \otimes v_1)^\top (u_2 \otimes v_2) = (u_1^\top u_2) \times (v_1^\top v_2) ,$$

which is good for algorithms that use only inner products (SVM...)

Direct product

 Alternatively, make the direct product, i.e., the p²-dimensional vector whose entries are all products of entries of u by entries of v:

 $\psi(\mathbf{U},\mathbf{V})=\mathbf{U}\otimes\mathbf{V}$

- Problem: can get really large-dimensional...
- Good news: inner product factorizes:

$$(u_1 \otimes v_1)^{\top} (u_2 \otimes v_2) = \left(u_1^{\top} u_2\right) \times \left(v_1^{\top} v_2\right) \,,$$

which is good for algorithms that use only inner products (SVM...)

Symmetric tensor product (Ben-Hur and Noble, 2006)

 $\psi(\boldsymbol{u},\boldsymbol{v})=(\boldsymbol{u}\otimes\boldsymbol{v})+(\boldsymbol{v}\otimes\boldsymbol{u})\;.$

Intuition: a pair (A, B) is similar to a pair (C, D) if:

- A is similar to C and B is similar to D, or...
- A is similar to D and B is similar to C

Metric learning (V. et al, 2007)

 $\psi(u,v)=(u-v)^{\otimes 2}$.

Intuition: a pair (A, B) is similar to a pair (C, D) if:

- A B is similar to C D, or...
- A B is similar to D C.

Symmetric tensor product (Ben-Hur and Noble, 2006)

 $\psi(\boldsymbol{u},\boldsymbol{v})=(\boldsymbol{u}\otimes\boldsymbol{v})+(\boldsymbol{v}\otimes\boldsymbol{u})\;.$

Intuition: a pair (A, B) is similar to a pair (C, D) if:

- A is similar to C and B is similar to D, or...
- A is similar to D and B is similar to C

Metric learning (V. et al, 2007)

$$\psi(u,v)=(u-v)^{\otimes 2}.$$

Intuition: a pair (A, B) is similar to a pair (C, D) if:

•
$$A - B$$
 is similar to $C - D$, or...

• A - B is similar to D - C.

Metric learning

For two vectors $u, v \in \mathcal{H}$ let the metric:

$$d_M(u,v) = (u-v)^\top M(u-v).$$

Consider the problem:

$$\min_{M\geq 0}\sum_{i} I(u_i, v_i, y_i) + \lambda ||M||_{\text{Frobenius}}^2,$$

where I is a hinge loss to enforce:

$$d_M(u_i, v_i) \begin{cases} \leq 1 - \gamma & \text{if}(u_i, v_i) \text{is connected}, \\ \geq 1 + \gamma & \text{otherwise.} \end{cases}$$

Metric learning

For two vectors $u, v \in \mathcal{H}$ let the metric:

$$d_M(u,v) = (u-v)^\top M(u-v).$$

Consider the problem:

$$\min_{M\geq 0}\sum_{i} I(u_i, v_i, y_i) + \lambda ||M||_{\text{Frobenius}}^2,$$

where I is a hinge loss to enforce:

$$d_M(u_i, v_i) egin{cases} \leq 1 - \gamma & ext{if}(u_i, v_i) ext{is connected} \,, \ \geq 1 + \gamma & ext{otherwise.} \end{cases}$$

Theorem (V. et al., 2007)

A SVM with the representation

$$\psi(u,v) = (u-v)^{\otimes 2}$$

solves this metric learning problem without the constraint $M \ge 0$.

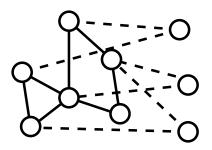
• Equivalently, train the SVM over pairs with the metric learning pairwise kernel:

$$\begin{split} K_{MLPK}\left((u_1, v_1), (u_2, v_2)\right) &= \psi(u_1, v_1)^\top \psi(u_2, v_2) \\ &= \left[K(u_1, u_2) - K(u_1, v_2) - K(v_1, u_2) + K(u_2, v_2)\right]^2 \,. \end{split}$$

Supervised inference with local models

The idea (Bleakley et al., 2007)

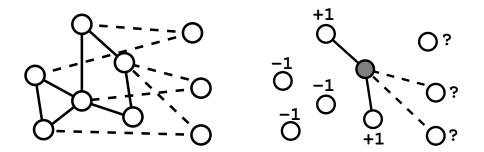
- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.

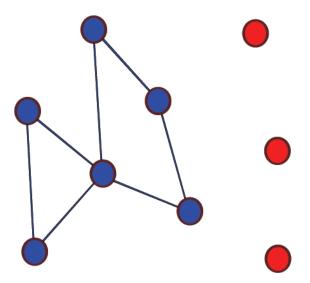


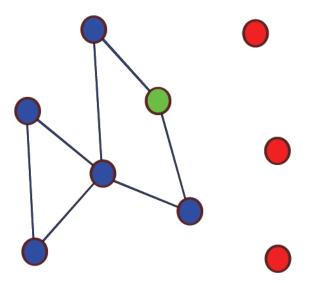
Supervised inference with local models

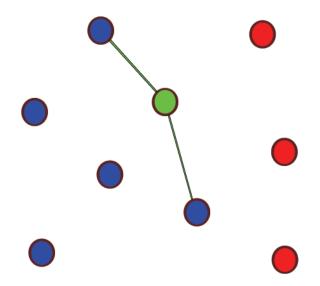
The idea (Bleakley et al., 2007)

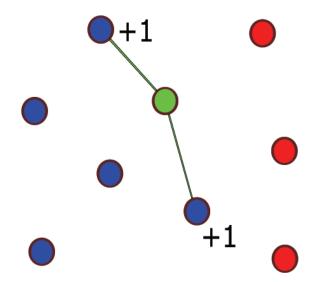
- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.

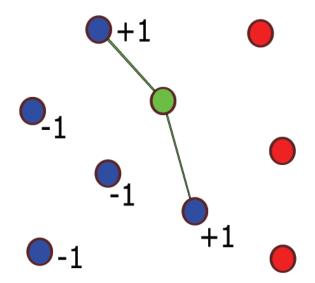


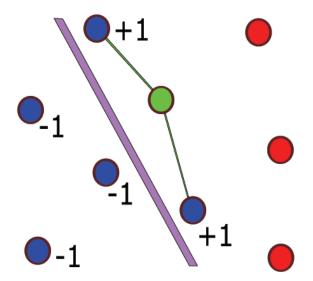


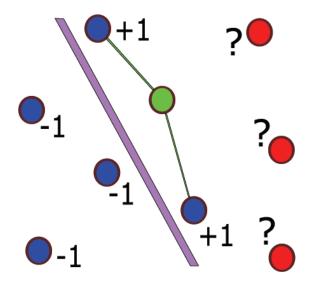


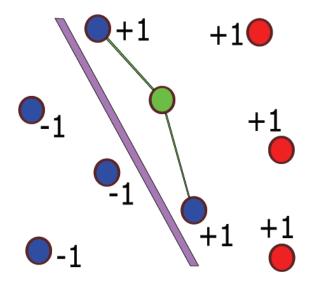


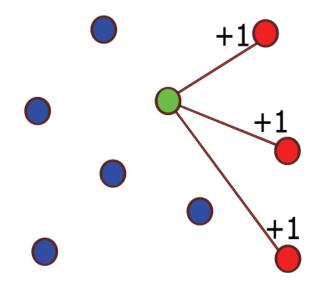


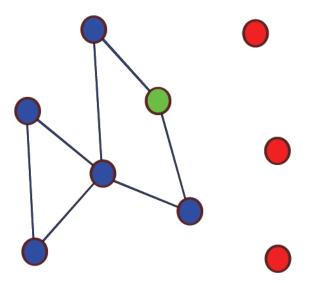


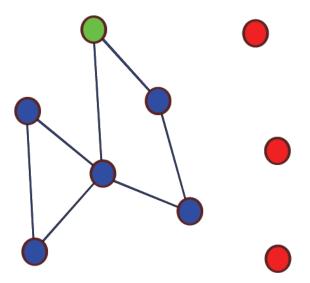


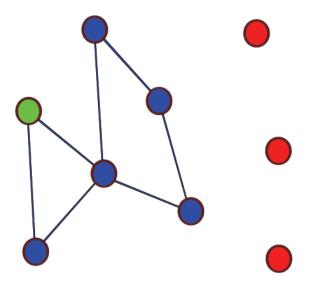


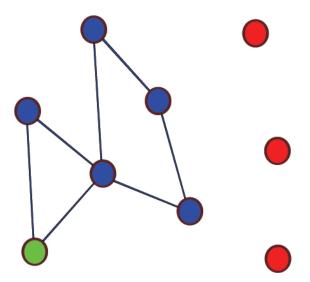


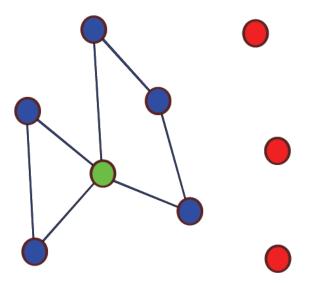


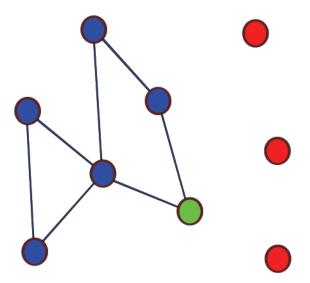












Weak hypothesis:

- if A is connected to B,
- if C is similar to B,
- then A is likely to be connected to C.
- Computationally: much faster to train *N* local models with *N* training points each, than to train 1 model with *N*² training points.
- Caveats:
 - each local model may have very few training points
 - no sharing of information between different local models

Weak hypothesis:

- if A is connected to B,
- if C is similar to B,
- then A is likely to be connected to C.
- Computationally: much faster to train *N* local models with *N* training points each, than to train 1 model with *N*² training points.

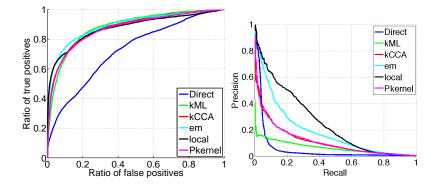
• Caveats:

- each local model may have very few training points
- no sharing of information between different local models

Weak hypothesis:

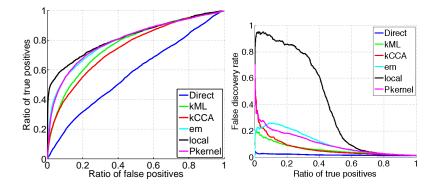
- if A is connected to B,
- if C is similar to B,
- then A is likely to be connected to C.
- Computationally: much faster to train *N* local models with *N* training points each, than to train 1 model with *N*² training points.
- Caveats:
 - each local model may have very few training points
 - no sharing of information between different local models

Results: protein-protein interaction (yeast)



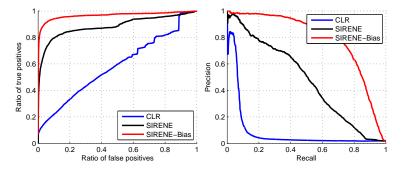
(from Bleakley et al., 2007)

Results: metabolic gene network (yeast)



(from Bleakley et al., 2007)

Results: regulatory network (E. coli)



Method	Recall at 60%	Recall at 80%
SIRENE	44.5%	17.6%
CLR	7.5%	5.5%
Relevance networks	4.7%	3.3%
ARACNe	1%	0%
Bayesian network	1%	0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)

Jean-Philippe Vert (ParisTech)

Applications: missing enzyme prediction

Prediction of missing enzyme genes in a bacterial metabolic network

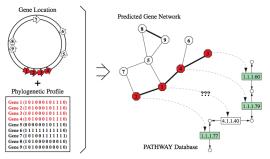
Reconstruction of the lysine-degradation pathway of *Pseudomonas* aeruginosa

Yoshihiro Yamanishi¹, Hisaaki Mihara², Motoharu Osaki², Hisashi Muramatsu³, Nobuyoshi Esaki², Tetsuya Sato¹, Yoshiyuki Hizukuri¹, Susumu Goto¹ and Minoru Kanehisa¹

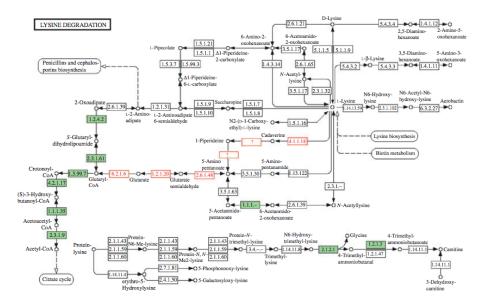
1 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan

2 Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Japan

3 Department of Biology, Graduate School of Science, Osaka University, Japan



Applications: missing enzyme prediction



900

DOI 10.1002/pmic.200600862

Proteomics 2007, 7, 900-909

RESEARCH ARTICLE

Prediction of nitrogen metabolism-related genes in *Anabaena* by kernel-based network analysis

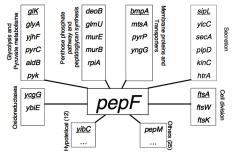
Shinobu Okamoto¹*, Yoshihiro Yamanishi¹, Shigeki Ehira², Shuichi Kawashima³, Koichiro Tonomura¹** and Minoru Kanehisa¹

¹ Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
 ² Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
 ³ Human Genome Center, Institute of Medical Science, University of Tokyo, Meguro, Japan

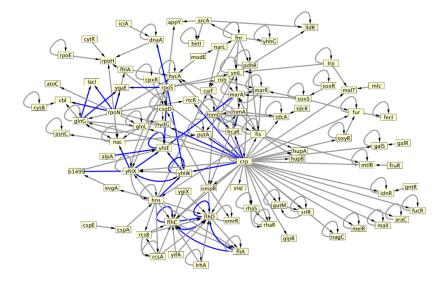
Determination of the role of the bacterial peptidase PepF by statistical inference and further experimental validation

Liliana LOPEZ KLEINE^{1,2}, Alain TRUBUIL¹, Véronique MONNET²

¹Unité de Mathématiques et Informatiques Appliquées. INRA Jouy en Josas 78352, France. ²Unité de Biochimie Bactérienne. INRA Jouy en Josas 78352, France.



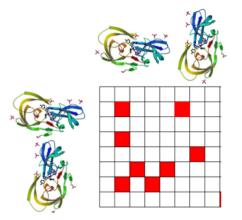
Application: predicted regulatory network (E. coli)



Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).

4 Conclusion

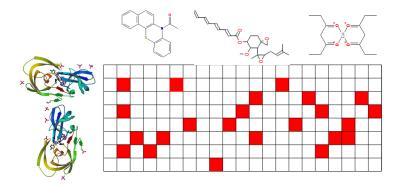
Graph learning = learning over pairs of vertices



Extension (not symmetric)

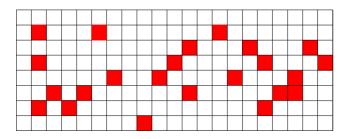
Chemogenomics

- Given a family of proteins of therapeutic interest (e.g., GPCR's)
- Given all known small molecules that bind to these proteins
- Can we predict unknown interactions?



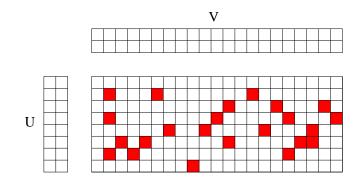
Collaborative Filtering (CF)

- Given a set of n_X "movies" x ∈ X and a set of n_y "customers" y ∈ Y,
- predict the "rating" $z(\mathbf{x}, \mathbf{y}) \in \mathcal{Z}$ of customer \mathbf{y} for movie \mathbf{x}
- Training data: large $n_X \times n_Y$ incomplete matrix *Z* that describes the known ratings of some customers for some movies
- Goal: complete the matrix.



CF by low-rank matrix approximation

- A common strategy for CF
- Z has rank less than $k \Leftrightarrow Z = UV^{\top}$ $U \in \mathbb{R}^{n_{\mathcal{X}} \times k}, V \in \mathbb{R}^{n_{\mathcal{Y}} \times k}$
- Examples: PLSA (Hoffmann, 2001), MMMF (Srebro et al, 2004)
- Numerical and statistical efficiency



CF by low-rank matrix approximation example

Fitting low-rank models (Srebro et al, 2004)

Relax the (non-convex) rank of Z into the (convex) trace norm of Z: if σ_i(Z) are the singular values of Z,

$$\operatorname{rank} Z = \sum_{i} \mathbf{1}_{\sigma_i(Z)>0} \qquad \|Z\|_* = \sum_{i} \sigma_i(Z) \,.$$

• *n* observations z_u corresponding to $\mathbf{x}_{i(u)}$ and $\mathbf{y}_{j(u)}$, u = 1, ..., n:

$$\min_{Z\in\mathbb{R}^{n_{\mathcal{X}}\times n_{\mathcal{Y}}}}\sum_{u=1}^{n}\ell(z_{u},Z_{i(u),j(u)})+\lambda\|Z\|_{*},$$

where ℓ(z, z') is a convex loss function.
This is an SDP if ℓ is SDP-representable

CF by low-rank matrix approximation example

Fitting low-rank models (Srebro et al, 2004)

Relax the (non-convex) rank of Z into the (convex) trace norm of Z: if σ_i(Z) are the singular values of Z,

$$\operatorname{rank} Z = \sum_{i} \mathbf{1}_{\sigma_i(Z)>0} \qquad \|Z\|_* = \sum_{i} \sigma_i(Z) \,.$$

• *n* observations z_u corresponding to $\mathbf{x}_{i(u)}$ and $\mathbf{y}_{j(u)}$, u = 1, ..., n:

$$\min_{Z\in\mathbb{R}^{n_{\mathcal{X}}\times n_{\mathcal{Y}}}}\sum_{u=1}^{n}\ell(z_{u},Z_{i(u),j(u)})+\lambda\|Z\|_{*},$$

where $\ell(z, z')$ is a convex loss function.

• This is an SDP if ℓ is SDP-representable

Remark

Basic facts

- n_{χ} movies and n_{χ} customers
- The known rating z(x_i, y_j) of customer y_j for movie x_i is stored in the (i, j)-th entry of a matrix M (of size n_X × n_y).
- *M* represents a linear application / bilinear form:

$$M:\mathbb{R}^{n_{\mathcal{Y}}}\to\mathbb{R}^{n_{\mathcal{X}}}$$

defined by:

$$e_i^{\top} M f_j = M_{i,j}$$

• Rank / trace norm are spectral properties of the linear application

Reformulation

• Represent the *i*-th movie $\mathbf{x}_i \in \mathcal{X}$ (resp. *j*-th customer $\mathbf{y}_j \in \mathcal{Y}$) by the *i*-th basis vector $\mathbf{e}_i \in \mathbb{R}^{n_{\mathcal{X}}}$ (resp. $f_i \in \mathbb{R}^{n_{\mathcal{Y}}}$):

$$\phi_X(\mathbf{x}_i) = \mathbf{e}_i, \quad \phi_Y(\mathbf{y}_j) = f_j.$$

Approximate the rating function by a bilinear form:

 $\forall (\mathbf{x}_i, \mathbf{y}_j) \in \mathcal{X} \times \mathcal{Y}, \quad \boldsymbol{G}_{\boldsymbol{\mathcal{M}}}(\mathbf{x}_i, \mathbf{y}_j) = \phi_{\boldsymbol{\mathcal{X}}}(\mathbf{x}_i)^\top \boldsymbol{\mathcal{M}} \phi_{\boldsymbol{\mathcal{Y}}}(\mathbf{y}_j),$

by constraining a spectral property of $M : \mathbb{R}^{n_{\chi}} \mapsto \mathbb{R}^{n_{\chi}}$.

An idea

If we have additional attributes about movies / customer, why not include them in $\phi_X(\mathbf{x})$ and $\phi_Y(\mathbf{y})$?

Reformulation

• Represent the *i*-th movie $\mathbf{x}_i \in \mathcal{X}$ (resp. *j*-th customer $\mathbf{y}_j \in \mathcal{Y}$) by the *i*-th basis vector $\mathbf{e}_i \in \mathbb{R}^{n_{\mathcal{X}}}$ (resp. $f_i \in \mathbb{R}^{n_{\mathcal{Y}}}$):

$$\phi_X(\mathbf{x}_i) = \mathbf{e}_i, \quad \phi_Y(\mathbf{y}_j) = f_j.$$

Approximate the rating function by a bilinear form:

 $\forall (\mathbf{x}_i, \mathbf{y}_j) \in \mathcal{X} \times \mathcal{Y}, \quad \boldsymbol{G}_{\boldsymbol{\mathcal{M}}}(\mathbf{x}_i, \mathbf{y}_j) = \phi_{\boldsymbol{\mathcal{X}}}(\mathbf{x}_i)^\top \boldsymbol{\mathcal{M}} \phi_{\boldsymbol{\mathcal{Y}}}(\mathbf{y}_j),$

by constraining a spectral property of $M : \mathbb{R}^{n_{\chi}} \mapsto \mathbb{R}^{n_{\chi}}$.

An idea

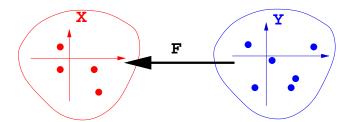
If we have additional attributes about movies / customer, why not include them in $\phi_X(\mathbf{x})$ and $\phi_Y(\mathbf{y})$?

Setting

- Movies: points in a Hilbert space X
- \bullet Customers: points in a Hilbert space ${\cal Y}$
- We model the preference of customer **y** for a movie **x** by a bilinear form:

$$f(\mathbf{x},\mathbf{y}) = \langle \mathbf{x}, F\mathbf{y}
angle_{\mathcal{X}} ,$$

where $F \in \mathcal{B}_0(\mathcal{Y}, \mathcal{X})$ is a compact linear operator (i.e., a "matrix").



Spectra of compact operators

Classical results

• For (x, y) in $\mathcal{X} \times \mathcal{Y}$ the tensor product $x \otimes y$ is the operator

$$orall \mathbf{h} \in \mathcal{Y}, \quad (\mathbf{x} \otimes \mathbf{y}) \, \mathbf{h} = \langle \mathbf{y}, \mathbf{h}
angle_{\mathcal{Y}} \, \mathbf{x} \, .$$

Any compact operator *F* : *Y* → *X* admits a spectral decomposition:

$$F = \sum_{i=1}^{\infty} \sigma_i \mathbf{u}_i \otimes \mathbf{v}_i \,.$$

where the $\sigma_i \ge 0$ are the singular values and $(\mathbf{u}_i)_{i \in \mathbb{N}}$ and $(\mathbf{v}_i)_{i \in \mathbb{N}}$ are orthonormal families in \mathcal{X} and \mathcal{Y} .

The spectrum of *F* is the set of singular values sorted in decreasing order: σ₁(*F*) ≥ σ₂(*F*) ≥ ... ≥ 0.

• This is the natural generalization of singular values for matrices.

Spectra of compact operators

Classical results

• For (x, y) in $\mathcal{X} \times \mathcal{Y}$ the tensor product $x \otimes y$ is the operator

$$orall \mathbf{h} \in \mathcal{Y}, \quad (\mathbf{x} \otimes \mathbf{y}) \, \mathbf{h} = \langle \mathbf{y}, \mathbf{h}
angle_{\mathcal{Y}} \, \mathbf{x} \, .$$

Any compact operator *F* : *Y* → *X* admits a spectral decomposition:

$$F = \sum_{i=1}^{\infty} \sigma_i \mathbf{u}_i \otimes \mathbf{v}_i \,.$$

where the $\sigma_i \ge 0$ are the singular values and $(\mathbf{u}_i)_{i \in \mathbb{N}}$ and $(\mathbf{v}_i)_{i \in \mathbb{N}}$ are orthonormal families in \mathcal{X} and \mathcal{Y} .

The spectrum of *F* is the set of singular values sorted in decreasing order: σ₁(*F*) ≥ σ₂(*F*) ≥ ... ≥ 0.

• This is the natural generalization of singular values for matrices.

Jean-Philippe Vert (ParisTech)

Spectra of compact operators

Classical results

• For (x, y) in $\mathcal{X} \times \mathcal{Y}$ the tensor product $x \otimes y$ is the operator

$$orall \mathbf{h} \in \mathcal{Y}, \quad (\mathbf{x} \otimes \mathbf{y}) \, \mathbf{h} = \langle \mathbf{y}, \mathbf{h}
angle_{\mathcal{Y}} \, \mathbf{x} \, .$$

Any compact operator *F* : *Y* → *X* admits a spectral decomposition:

$$F = \sum_{i=1}^{\infty} \sigma_i \mathbf{u}_i \otimes \mathbf{v}_i \,.$$

where the $\sigma_i \ge 0$ are the singular values and $(\mathbf{u}_i)_{i \in \mathbb{N}}$ and $(\mathbf{v}_i)_{i \in \mathbb{N}}$ are orthonormal families in \mathcal{X} and \mathcal{Y} .

- The spectrum of *F* is the set of singular values sorted in decreasing order: σ₁(*F*) ≥ σ₂(*F*) ≥ ... ≥ 0.
- This is the natural generalization of singular values for matrices.

Useful classes for operators

Operators of finite rank

- The rank of an operator is the number of strictly positive singular values.
- Hence operators of rank smaller or equal to *k* are characterized by:

 $\sigma_{k+1}(F)=0.$

Trace-class operators

The trace-class operators are the compact operators *F* that satisfy:

 $\|F\|_*:=\sum_{i=1}^\infty \sigma_i(F)<\infty\,.$

$\|F\|_*$ is a norm over the trace-class operators, called the trace norm.

Useful classes for operators

Operators of finite rank

- The rank of an operator is the number of strictly positive singular values.
- Hence operators of rank smaller or equal to k are characterized by:

 $\sigma_{k+1}(F)=0.$

Trace-class operators

The trace-class operators are the compact operators *F* that satisfy:

$$\|F\|_* := \sum_{i=1}^{\infty} \sigma_i(F) < \infty.$$

 $|| F ||_*$ is a norm over the trace-class operators, called the trace norm.

Hilbert-Schmidt operators

• The Hilbert-Schmidt operators are compact operators *F* that satisfy:

$$\|F\|_{Fro}^2 := \sum_{i=1}^\infty \sigma_i(F)^2 < \infty.$$

• They form a Hilbert space with inner product:

$$\left< \bm{x} \otimes \bm{y}, \bm{x}' \otimes \bm{y}' \right>_{\mathcal{X} \otimes \mathcal{Y}} = \left< \bm{x}, \bm{x}' \right>_{\mathcal{X}} \left< \bm{y}, \bm{y}' \right>_{\mathcal{Y}} \, .$$

Definition

A function $\Omega : \mathcal{B}_0(\mathcal{Y}, \mathcal{X}) \mapsto \mathbb{R} \cup \{+\infty\}$ is called a spectral penalty function if it can be written as:

 $\Omega(F) = \sum_{i=1}^{\infty} s_i (\sigma_i(F)) ,$

where for any $i \ge 1, s_i : \mathbb{R}^+ \mapsto \mathbb{R}^+ \cup \{+\infty\}$ is a non-decreasing penalty function satisfying $s_i(0) = 0$.

Spectral penalty function

Examples

• Rank constraint: take $s_{k+1}(0) = 0$ and $s_{k+1}(u) = +\infty$ for u > 0, and $s_i = 0$ for $i \ge k$. Then

$$\Omega(F) = \begin{cases} 0 & \text{if } rank(F) \le k , \\ +\infty & \text{if } rank(F) > k . \end{cases}$$

• Trace norm: take $s_i(u) = u$ for all *i*, then:

 $\Omega(F) = \|F\|_*.$

• Hilbert-Schmidt norm: take $s_i(u) = u^2$ for all *i*, then

 $\Omega(F) = \|F\|_{Fro}^2$

Spectral penalty function

Examples

• Rank constraint: take $s_{k+1}(0) = 0$ and $s_{k+1}(u) = +\infty$ for u > 0, and $s_i = 0$ for $i \ge k$. Then

$$\Omega(F) = \begin{cases} 0 & \text{if } rank(F) \leq k \,, \\ +\infty & \text{if } rank(F) > k \,. \end{cases}$$

• Trace norm: take $s_i(u) = u$ for all *i*, then:

 $\Omega(F) = \|F\|_*.$

• Hilbert-Schmidt norm: take $s_i(u) = u^2$ for all *i*, then

 $\Omega(F) = \|F\|_{Fro}^2$

Spectral penalty function

Examples

• Rank constraint: take $s_{k+1}(0) = 0$ and $s_{k+1}(u) = +\infty$ for u > 0, and $s_i = 0$ for $i \ge k$. Then

$$\Omega(F) = \begin{cases} 0 & \text{if } rank(F) \leq k \,, \\ +\infty & \text{if } rank(F) > k \,. \end{cases}$$

• Trace norm: take $s_i(u) = u$ for all *i*, then:

 $\Omega(F) = \|F\|_*.$

• Hilbert-Schmidt norm: take $s_i(u) = u^2$ for all *i*, then

 $\Omega(F) = \|F\|_{Fro}^2.$

Setting

- Training set: $(\mathbf{x}_i, \mathbf{y}_i, t_i)_{i=1,...,N}$ a set of (movie,customer,preference).
- Loss function I(t, t') : cost of predicting preference t instead of t'.

• Empirical risk of an operator F:

$$R_N(F) = \frac{1}{N} \sum_{i=1}^N I(\langle \mathbf{x}_i, F \mathbf{y}_i \rangle_{\mathcal{X}}, t_i) .$$

Learning an operator

 $\min_{F\in\mathcal{B}_0(\mathcal{Y},\mathcal{X}),\ \Omega(F)<\infty}\left\{R_N(F)+\lambda\Omega(F)\right\}\ .$

Setting

- Training set: $(\mathbf{x}_i, \mathbf{y}_i, t_i)_{i=1,...,N}$ a set of (movie,customer,preference).
- Loss function I(t, t') : cost of predicting preference t instead of t'.
- Empirical risk of an operator F:

$$R_N(F) = \frac{1}{N} \sum_{i=1}^N I(\langle \mathbf{x}_i, F \mathbf{y}_i \rangle_{\mathcal{X}}, t_i) .$$

Learning an operator

$$\min_{F\in\mathcal{B}_0(\mathcal{Y},\mathcal{X}),\ \Omega(F)<\infty}\left\{R_N(F)+\lambda\Omega(F)\right\}\ .$$

Is it a "good" algorithm in theory?

- To be investigated...
- See Srebro et al. (2004), Bach (2007) for preliminary results with the trace norm

Practice

- Optimization problem in the space of compact operators... but we show later that it boils down to a finite-dimensional optimization problem
- Promising results on real data

Is it a "good" algorithm in theory?

- To be investigated...
- See Srebro et al. (2004), Bach (2007) for preliminary results with the trace norm

Practice

- Optimization problem in the space of compact operators... but we show later that it boils down to a finite-dimensional optimization problem
- Promising results on real data

Is it a "good" algorithm in theory?

- To be investigated...
- See Srebro et al. (2004), Bach (2007) for preliminary results with the trace norm

Practice

- Optimization problem in the space of compact operators... but we show later that it boils down to a finite-dimensional optimization problem
- Promising results on real data

Is it a "good" algorithm in theory?

- To be investigated...
- See Srebro et al. (2004), Bach (2007) for preliminary results with the trace norm

Practice

- Optimization problem in the space of compact operators... but we show later that it boils down to a finite-dimensional optimization problem
- Promising results on real data

Theorem

For any spectral penalty function $\Omega : \mathcal{B}_0(\mathcal{Y}, \mathcal{X}) \mapsto \mathbb{R}$, let the optimization problem:

$$\min_{F\in\mathcal{B}_0(\mathcal{Y},\mathcal{X}),\Omega(F)<\infty}\left\{R_N(F)+\lambda\Omega(F)\right\}.$$

If the set of solutions is not empty, then there is a solution *F* in $\mathcal{X}_N \otimes \mathcal{Y}_N$, i.e., there exists $\alpha \in \mathbb{R}^{m_{\mathcal{X}} \times m_{\mathcal{Y}}}$ such that:

$$F = \sum_{i=1}^{m_{\mathcal{X}}} \sum_{j=1}^{m_{\mathcal{Y}}} \alpha_{ij} \mathbf{u}_i \otimes \mathbf{v}_j \,,$$

where $(\mathbf{u}_1, \ldots, \mathbf{u}_{m_{\mathcal{X}}})$ and $(\mathbf{v}_1, \ldots, \mathbf{v}_{m_{\mathcal{Y}}})$ form orthonormal bases of \mathcal{X}_N and \mathcal{Y}_N , respectively.

We obtain various algorithms by choosing:

- A loss function (depends on the application)
- A spectral regularization (that is amenable to optimization)
- Two Gram matrices (aka kernel matrices)

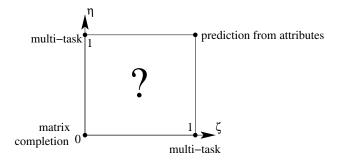
Both kernels and spectral regularization can be used to constrain the solution

A family of kernels

Taken $K_{\otimes} = K \times G$ with

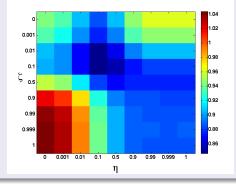
$$\begin{cases} \mathcal{K} = \eta \mathcal{K}_{Attribute}^{x} + (1 - \eta) \mathcal{K}_{Dirac}^{x}, \\ \mathcal{G} = \zeta \mathcal{K}_{Attribute}^{y} + (1 - \zeta) \mathcal{K}_{Dirac}^{y}, \end{cases}$$

for $0 \le \eta \le 1$ and $0 \le \zeta \le 1$



Movies

- MovieLens 100k database, ratings with attributes
- Experiments with 943 movies and 1,642 customers, 100,000 rankings in {1,...,5}
- Train on a subset of the ratings, test on the rest
- error measured with MSE (best constant prediction: 1.26)



Jean-Philippe Vert (ParisTech)

De novo methods

- 2 Supervised methods
- 3 Extension: collaborative filtering with attributes

4 Conclusion

- When the network is known in part, supervised methods can be more adapted than unsupervised ones.
- A variety of methods have been investigated recently (metric learning, matrix completion, pattern recognition).
 - work for any network
 - work with any data
 - Can integrate heterogeneous data, which strongly improves performance
- Link with collaborative filtering with attributes
- Current research: infer edges simultaneously with global constraints on the graph?

People I need to thank

- Yoshihiro Yamanishi, Minoru Kanehisa (Univ. Kyoto): kCCA, kML
- Jian Qian, Bill Noble (Univ. Washington): pairwise SVM
- Kevin Bleakley, Gerard Biau (Univ. Montpellier), Fantine Mordelet (ParisTech/Curie): local SVM
- Francis Bach (INRIA), Jake Abernethy (UC Berkeley), Theos Evgeniou (INSEAD): CF

