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Proteins
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Network 1: protein-protein interaction
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Network 2: metabolic network
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Network 3: gene regulatory network
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Data available

Biologists have collected a lot of data about proteins. e.g.,

Gene expression measurements
Phylogenetic profiles
Location of proteins/enzymes in the cell

How to use this information “intelligently” to find a good function that
predicts edges between nodes.
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Our goal

Data
Gene expression,
Gene sequence,
Protein localization, ...

Graph
Protein-protein interactions,
Metabolic pathways,
Signaling pathways, ...
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More precisely

Formalization
V = {1, . . . ,N} vertices (e.g., genes, proteins)
D = (x1, . . . , xN) ∈ HN data about the vertices (H Hilbert space)
Goal: predict edges E ⊂ V × V.

“De novo” inference
Given data about individual genes and proteins D, ...
... Infer the edges between genes and proteins E

“Supervised” inference
Given data about individual genes and proteins D, ...
... and given some known interactions Etrain ⊂ E , ...
... infer unknown interactions Etest = E\Etrain
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Outline

1 De novo methods

2 Supervised methods

3 Extension: collaborative filtering with attributes

4 Conclusion
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De novo methods

Typical strategies
Fit a dynamical system to time series (e.g., PDE, boolean
networks, state-space models)
Detect statistical conditional independence or dependency
(Bayesian netwok, mutual information networks, co-expression)

Pros
Excellent approach if the
model is correct and
enough data are available
Interpretability of the model
Inclusion of prior
knowledge

Cons
Specific to particular data
and networks
Needs a correct model!
Difficult integration of
heterogeneous data
Often needs a lot of data
and long computation time
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Evaluation on metabolic network reconstruction

The known metabolic network of the yeast involves 769 proteins.
Predict edges from distances between a variety of genomic data
(expression, localization, phylogenetic profiles, interactions).
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Evaluation on regulatory network reconstruction
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Outline

1 De novo methods

2 Supervised methods

3 Extension: collaborative filtering with attributes

4 Conclusion
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Supervised methods

Motivation
In actual applications,

we know in advance parts of the network to be inferred
the problem is to add/remove nodes and edges using genomic
data as side information

Supervised method
Given genomic data and
the currently known
network...
Infer missing edges
between current nodes and
additional nodes.
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Pattern recognition

Given a training set of patterns in two classes, learn to
discriminate them
Many algorithms (ANN, SVM, Decision tress, ...)

Jean-Philippe Vert (ParisTech) Inference of biological networks 15 / 57



Pattern recognition

Given a training set of patterns in two classes, learn to
discriminate them
Many algorithms (ANN, SVM, Decision tress, ...)

Jean-Philippe Vert (ParisTech) Inference of biological networks 15 / 57



Pattern recognition

Given a training set of patterns in two classes, learn to
discriminate them
Many algorithms (ANN, SVM, Decision tress, ...)

Jean-Philippe Vert (ParisTech) Inference of biological networks 15 / 57



Pattern recognition

Given a training set of patterns in two classes, learn to
discriminate them
Many algorithms (ANN, SVM, Decision tress, ...)

Jean-Philippe Vert (ParisTech) Inference of biological networks 15 / 57



Pattern recognition and graph inference

Pattern recognition
Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (X1,X2)

Two solutions
Consider each pair (X1,X2) as a single data -> learning over pairs
Reformulate the graph inference problem as a pattern recognition
problem at the level of individual vertices -> local models
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Pattern recognition for pairs

Formulation and basic issue
A pair can be connected (1) or not connected (-1)
From the known subgraph we can extract examples of connected
and non-connected pairs
However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Pattern recognition for pairs

Representing a pair as a vector
Each individual protein is represented by a vector v ∈ Rp

We must represent a pair of proteins (u, v) by a vector
ψ(u, v) ∈ Rq in order to estimate a linear classifier
Question: how build ψ(u, v) from u and v?

Jean-Philippe Vert (ParisTech) Inference of biological networks 18 / 57



Representing a pair

Direct sum
A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

ψ(u, v) = u ⊕ v =

(
u
v

)
.

Problem: a linear function then becomes additive...

f (u, v) = w>ψ(u, v) = w>
1 u + w>v .
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Representing a pair

Direct product

Alternatively, make the direct product, i.e., the p2-dimensional
vector whose entries are all products of entries of u by entries of
v :

ψ(u, v) = u ⊗ v

Problem: can get really large-dimensional...
Good news: inner product factorizes:

(u1 ⊗ v1)
> (u2 ⊗ v2) =

(
u>1 u2

)
×

(
v>1 v2

)
,

which is good for algorithms that use only inner products (SVM...)
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Other representations for pairs

Symmetric tensor product (Ben-Hur and Noble, 2006)

ψ(u, v) = (u ⊗ v) + (v ⊗ u) .

Intuition: a pair (A,B) is similar to a pair (C,D) if:
A is similar to C and B is similar to D, or...
A is similar to D and B is similar to C

Metric learning (V. et al, 2007)

ψ(u, v) = (u − v)⊗2 .

Intuition: a pair (A,B) is similar to a pair (C,D) if:
A− B is similar to C − D, or...
A− B is similar to D − C.
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Link with metric learning

Metric learning
For two vectors u, v ∈ H let the metric:

dM(u, v) = (u − v)>M(u − v) .

Consider the problem:

min
M≥0

∑
i

l(ui , vi , yi) + λ||M||2Frobenius ,

where l is a hinge loss to enforce:

dM(ui , vi)

{
≤ 1− γ if(ui , vi)is connected ,
≥ 1 + γ otherwise.
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Link with metric learning

Theorem (V. et al., 2007)
A SVM with the representation

ψ(u, v) = (u − v)⊗2

solves this metric learning problem without the constraint M ≥ 0 .
Equivalently, train the SVM over pairs with the metric learning
pairwise kernel:

KMLPK ((u1, v1), (u2, v2)) = ψ(u1, v1)
>ψ(u2, v2)

= [K (u1,u2)− K (u1, v2)− K (v1,u2) + K (u2, v2)]
2 .
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Supervised inference with local models

The idea (Bleakley et al., 2007)
Motivation: define specific models for each target node to
discriminate between its neighbors and the others
Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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The LOCAL model
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The LOCAL model
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A few remarks

Weak hypothesis:
if A is connected to B,
if C is similar to B,
then A is likely to be connected to C.

Computationally: much faster to train N local models with N
training points each, than to train 1 model with N2 training points.
Caveats:

each local model may have very few training points
no sharing of information between different local models
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Results: protein-protein interaction (yeast)
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Results: metabolic gene network (yeast)
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Results: regulatory network (E. coli)
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Method Recall at 60% Recall at 80%
SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)
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Applications: missing enzyme prediction

Jean-Philippe Vert (ParisTech) Inference of biological networks 30 / 57



Applications: missing enzyme prediction

Jean-Philippe Vert (ParisTech) Inference of biological networks 31 / 57



Applications: missing enzyme prediction
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Applications: function annotation
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Application: predicted regulatory network (E. coli)

Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).
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Outline

1 De novo methods

2 Supervised methods

3 Extension: collaborative filtering with attributes

4 Conclusion
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Graph learning = learning over pairs of vertices
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Extension (not symmetric)

Chemogenomics
Given a family of proteins of therapeutic interest (e.g., GPCR’s)
Given all known small molecules that bind to these proteins
Can we predict unknown interactions?
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Collaborative Filtering (CF)

Given a set of nX “movies” x ∈ X and a set of nY “customers”
y ∈ Y,
predict the “rating” z(x,y) ∈ Z of customer y for movie x
Training data: large nX × nY incomplete matrix Z that describes
the known ratings of some customers for some movies
Goal: complete the matrix.
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CF by low-rank matrix approximation

A common strategy for CF

Z has rank less than k ⇔ Z = UV> U ∈ RnX×k , V ∈ RnY×k

Examples: PLSA (Hoffmann, 2001), MMMF (Srebro et al, 2004)
Numerical and statistical efficiency

U

V
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CF by low-rank matrix approximation example

Fitting low-rank models (Srebro et al, 2004)
Relax the (non-convex) rank of Z into the (convex) trace norm of
Z : if σi(Z ) are the singular values of Z ,

rankZ =
∑

i

1σi (Z )>0 ‖Z‖∗ =
∑

i

σi(Z ) .

n observations zu corresponding to xi(u) and yj(u), u = 1, . . . ,n:

min
Z∈RnX×nY

n∑
u=1

`(zu,Zi(u),j(u)) + λ‖Z‖∗ ,

where `(z, z ′) is a convex loss function.
This is an SDP if ` is SDP-representable
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Remark

Basic facts
nX movies and nY customers
The known rating z(xi ,yj) of customer yj for movie xi is stored in
the (i , j)-th entry of a matrix M (of size nX × nY ).
M represents a linear application / bilinear form:

M : RnY → RnX

defined by:
e>i Mfj = Mi,j

Rank / trace norm are spectral properties of the linear application
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Reformulation

Represent the i-th movie xi ∈ X (resp. j-th customer yj ∈ Y) by
the i-th basis vector ei ∈ RnX (resp. fj ∈ RnY ):

φX (xi) = ei , φY (yj) = fj .

Approximate the rating function by a bilinear form:

∀(xi ,yj) ∈ X × Y , GM(xi ,yj) = φX (xi)
>MφY (yj) ,

by constraining a spectral property of M : RnX 7→ RnX .

An idea
If we have additional attributes about movies / customer, why not
include them in φX (x) and φY (y)?
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Setting

Movies: points in a Hilbert space X
Customers: points in a Hilbert space Y
We model the preference of customer y for a movie x by a bilinear
form:

f (x,y) = 〈x,Fy〉X ,

where F ∈ B0 (Y,X ) is a compact linear operator (i.e., a “matrix”).

Y

F

X
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Spectra of compact operators

Classical results
For (x,y) in X × Y the tensor product x⊗ y is the operator

∀h ∈ Y , (x⊗ y) h = 〈y,h〉Y x .

Any compact operator F : Y → X admits a spectral
decomposition:

F =
∞∑

i=1

σiui ⊗ vi .

where the σi ≥ 0 are the singular values and (ui)i∈N and (vi)i∈N
are orthonormal families in X and Y.
The spectrum of F is the set of singular values sorted in
decreasing order: σ1(F ) ≥ σ2(F ) ≥ . . . ≥ 0.
This is the natural generalization of singular values for matrices.
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Useful classes for operators

Operators of finite rank
The rank of an operator is the number of strictly positive singular
values.
Hence operators of rank smaller or equal to k are characterized
by:

σk+1(F ) = 0 .

Trace-class operators
The trace-class operators are the compact operators F that satisfy:

‖F ‖∗ :=
∞∑

i=1

σi(F ) <∞ .

‖F ‖∗ is a norm over the trace-class operators, called the trace norm.
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Useful classes for operators (cont.)

Hilbert-Schmidt operators
The Hilbert-Schmidt operators are compact operators F that
satisfy:

‖F ‖2
Fro :=

∞∑
i=1

σi(F )2 <∞ .

They form a Hilbert space with inner product:〈
x⊗ y,x′ ⊗ y′

〉
X⊗Y =

〈
x,x′

〉
X

〈
y,y′

〉
Y .
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Spectral penalty function

Definition
A function Ω : B0 (Y,X ) 7→ R ∪ {+∞} is called a spectral penalty
function if it can be written as:

Ω(F ) =
∞∑

i=1

si (σi(F )) ,

where for any i ≥ 1, si : R+ 7→ R+ ∪ {+∞} is a non-decreasing
penalty function satisfying si(0) = 0.
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Spectral penalty function

Examples
Rank constraint: take sk+1(0) = 0 and sk+1(u) = +∞ for u > 0,
and si = 0 for i ≥ k . Then

Ω(F ) =

{
0 if rank(F ) ≤ k ,
+∞ if rank(F ) > k .

Trace norm: take si(u) = u for all i , then:

Ω(F ) = ‖F ‖∗ .

Hilbert-Schmidt norm: take si(u) = u2 for all i , then

Ω(F ) = ‖F ‖2
Fro .
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Learning operator with spectral regularization

Setting
Training set: (xi ,yi , ti)i=1,...,N a set of (movie,customer,preference).
Loss function l(t , t ′) : cost of predicting preference t instead of t ′.
Empirical risk of an operator F :

RN(F ) =
1
N

N∑
i=1

l (〈xi ,Fyi〉X , ti) .

Learning an operator

min
F∈B0(Y,X ), Ω(F )<∞

{RN(F ) + λΩ(F )} .
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Questions

Theory
Is it a "good" algorithm in theory?

To be investigated...
See Srebro et al. (2004), Bach (2007) for preliminary results with
the trace norm

Practice
Can we implement it? Does it work on real data?

Optimization problem in the space of compact operators... but we
show later that it boils down to a finite-dimensional optimization
problem
Promising results on real data
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A generalized representer theorem

Theorem
For any spectral penalty function Ω : B0 (Y,X ) 7→ R, let the
optimization problem:

min
F∈B0(Y,X ),Ω(F )<∞

{RN(F ) + λΩ(F )} .

If the set of solutions is not empty, then there is a solution F in
XN ⊗ YN , i.e., there exists α ∈ RmX×mY such that:

F =

mX∑
i=1

mY∑
j=1

αijui ⊗ vj ,

where (u1, . . . ,umX ) and
(
v1, . . . ,vmY

)
form orthonormal bases of XN

and YN , respectively.
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Summary

We obtain various algorithms by choosing:
1 A loss function (depends on the application)
2 A spectral regularization (that is amenable to optimization)
3 Two Gram matrices (aka kernel matrices)

Both kernels and spectral regularization can be used to constrain the
solution
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A family of kernels

Taken K⊗ = K ×G with{
K = ηK x

Attribute + (1− η)K x
Dirac ,

G = ζK y
Attribute + (1− ζ)K y

Dirac ,

for 0 ≤ η ≤ 1 and 0 ≤ ζ ≤ 1

ζ

?

multi−task prediction from attributes

multi−task
completion

matrix 1

1

0

η
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Movies

MovieLens 100k database, ratings with attributes
Experiments with 943 movies and 1,642 customers, 100,000
rankings in {1, . . . ,5}
Train on a subset of the ratings, test on the rest
error measured with MSE (best constant prediction: 1.26)
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Outline

1 De novo methods

2 Supervised methods

3 Extension: collaborative filtering with attributes

4 Conclusion

Jean-Philippe Vert (ParisTech) Inference of biological networks 55 / 57



Take-home messages

When the network is known in part, supervised methods can be
more adapted than unsupervised ones.
A variety of methods have been investigated recently (metric
learning, matrix completion, pattern recognition).

work for any network
work with any data
Can integrate heterogeneous data, which strongly improves
performance

Link with collaborative filtering with attributes
Current research: infer edges simultaneously with global
constraints on the graph?
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