Inferring and using biological networks

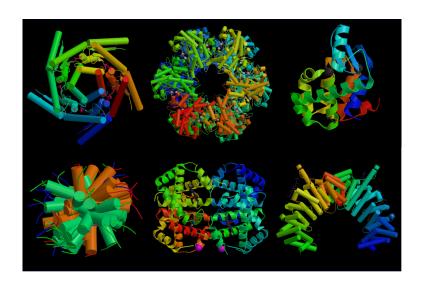
Jean-Philippe Vert

Jean-Philippe. Vert@mines-paristech.fr

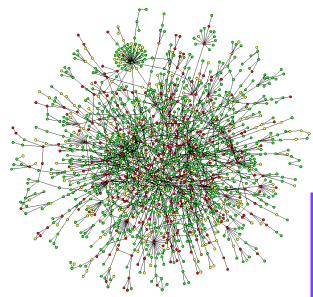
Mines ParisTech / Institut Curie / INSERM U900

University of Laval, Quebec, Canada, December 4, 2008.

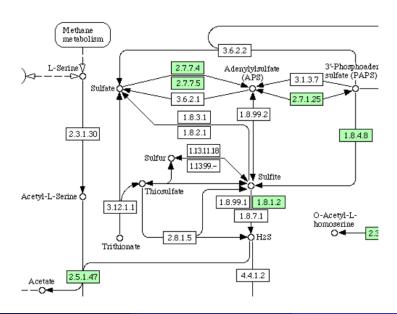
We have many genes and proteins...



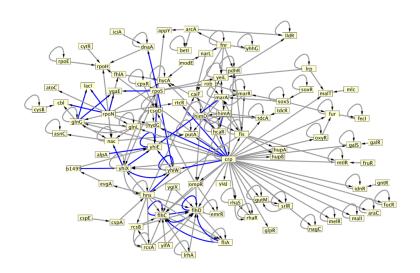
Network 1: protein-protein interaction



Network 2: metabolic network



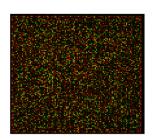
Network 3: gene regulatory network

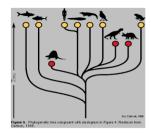


Data available

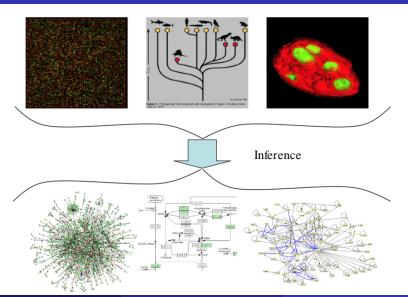
Biologists have collected a lot of data about proteins. e.g.,

- Gene expression measurements
- Phylogenetic profiles
- Location of proteins/enzymes in the cell

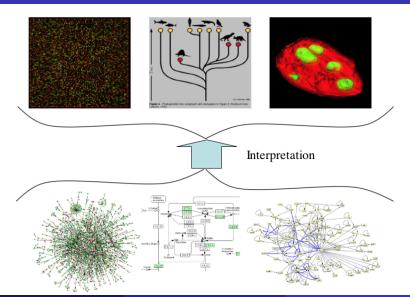




Problem 1 : how to infer relationships between genes from biological data?



Problem 2: how to use biological networks to help in the analysis of genomic data?



Outline

- How to infer relationships between genes from biological data?
- 2 How to use biological networks to help in the analysis of genomic data?

Conclusion

Outline

- How to infer relationships between genes from biological data?
- 2 How to use biological networks to help in the analysis of genomic data?

3 Conclusion

De novo methods

"De novo" inference

- Given data about individual genes and proteins, ...
- ... Infer the edges between genes and proteins

Typical strategies

- Fit a dynamical system to time series (e.g., PDE, boolean networks, state-space models)
- Detect statistical conditional independence or dependency (Bayesian netwok, mutual information networks, co-expression)

De novo methods

"De novo" inference

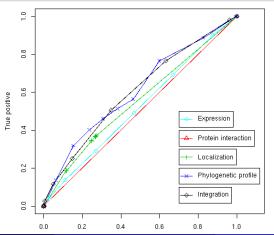
- Given data about individual genes and proteins, ...
- ... Infer the edges between genes and proteins

Typical strategies

- Fit a dynamical system to time series (e.g., PDE, boolean networks, state-space models)
- Detect statistical conditional independence or dependency (Bayesian netwok, mutual information networks, co-expression)

Evaluation on metabolic network reconstruction

- The known metabolic network of the yeast involves 769 proteins.
- Predict edges from distances between a variety of genomic data (expression, localization, phylogenetic profiles, interactions).



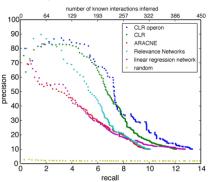
Evaluation on regulatory network reconstruction

OPEN @ ACCESS Freely available online

PLOS BIOLOGY

Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles

Jeremiah J. Faith^{1©}, Boris Hayete^{1©}, Joshua T. Thaden^{2,3}, Ilaria Mogno^{2,4}, Jamey Wierzbowski^{2,5}, Guillaume Cottarel^{2,5}, Simon Kasif^{1,2}, James J. Collins^{1,2}, Timothy S. Gardner^{1,2*}

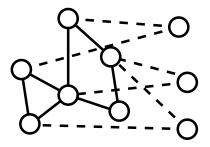


Supervised methods

Motivation

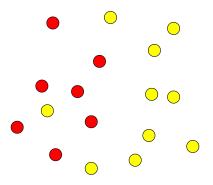
In actual applications,

- we know in advance parts of the network to be inferred
- the problem is to add/remove nodes and edges using genomic data as side information

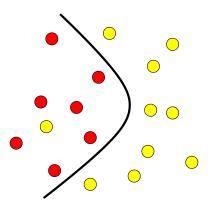


Supervised method

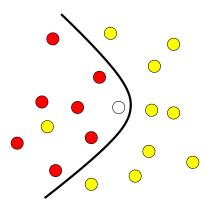
- Given genomic data and the currently known network...
- Infer missing edges between current nodes and additional nodes.



- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)



- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)



- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)



- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

Pattern recognition and graph inference

Pattern recognition

Associate a binary label Y to each data X

Graph inference

Associate a binary label Y to each pair of data (X_1, X_2)

Two solutions

- Consider each pair (X_1, X_2) as a single data -> learning over pairs
- Reformulate the graph inference problem as a pattern recognition problem at the level of individual vertices -> local models

Pattern recognition and graph inference

Pattern recognition

Associate a binary label Y to each data X

Graph inference

Associate a binary label Y to each pair of data (X_1, X_2)

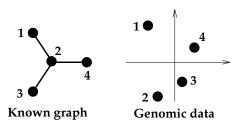
Two solutions

- Consider each pair (X_1, X_2) as a single data -> learning over pairs
- Reformulate the graph inference problem as a pattern recognition problem at the level of individual vertices -> local models

Pattern recognition for pairs

Formulation and basic issue

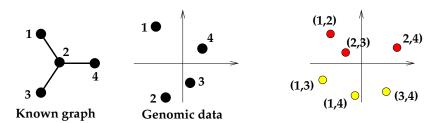
- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!



Pattern recognition for pairs

Formulation and basic issue

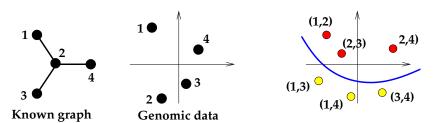
- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!



Pattern recognition for pairs

Formulation and basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!



Representing a pair

Concatenation

• A simple idea is to concatenate the vectors *u* and *v* describing two proteins to obtain a description of the pair:

$$\psi(u,v)=\left(\begin{array}{c}u\\v\end{array}\right).$$

Symmetric tensor product (Ben-Hur and Noble, 2006)

$$K_{pair}[(A, B), (C, D)] = k(A, C)k(B, D) + k(A, D)k(B, C)$$

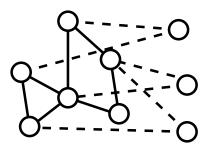
Intuition: a pair (A, B) is similar to a pair (C, D) if:

- A is similar to C and B is similar to D, or...
- A is similar to D and B is similar to C

Supervised inference with local models

The idea (Bleakley et al., 2007)

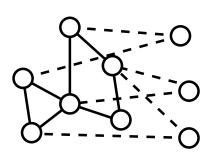
- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.

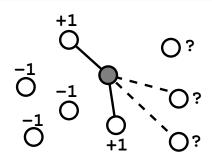


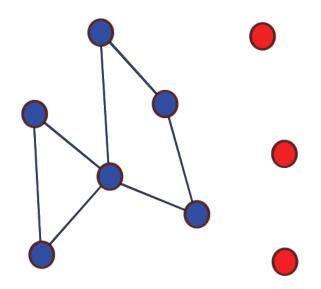
Supervised inference with local models

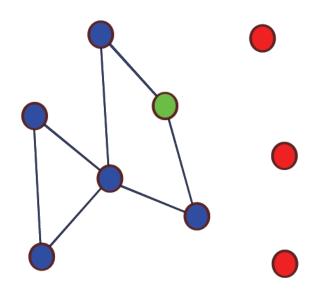
The idea (Bleakley et al., 2007)

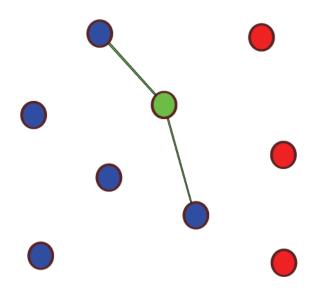
- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.

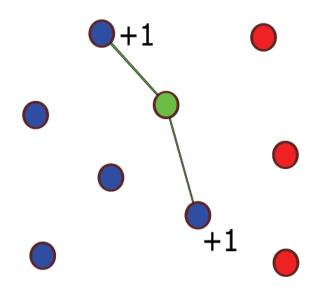


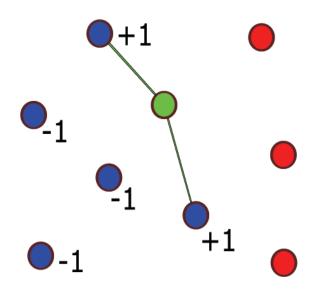


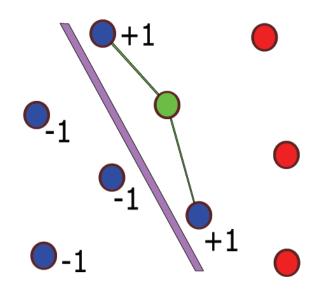


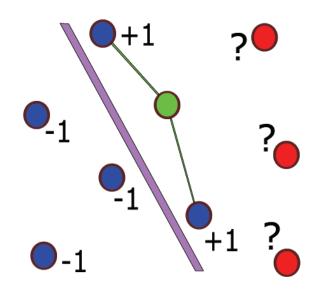


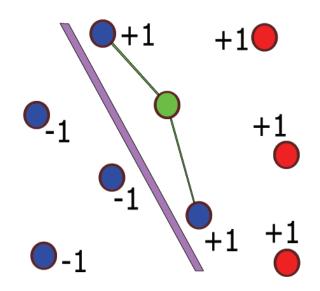


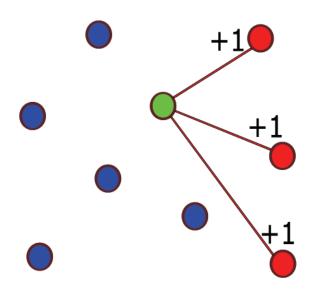




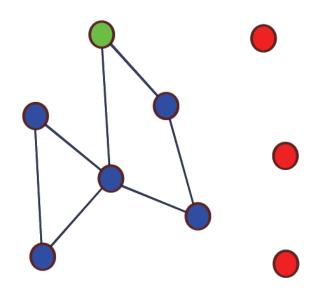


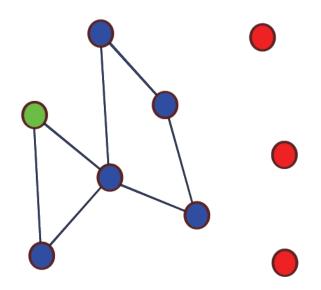


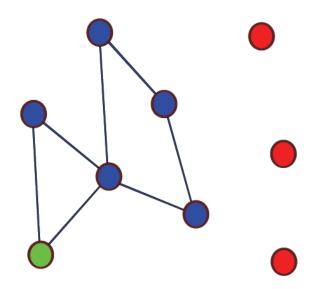


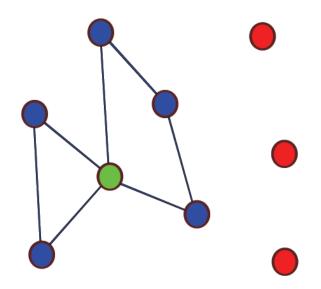


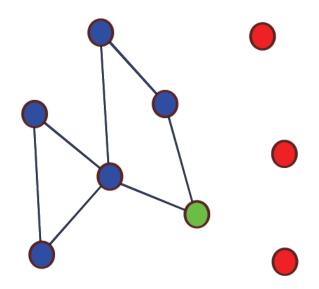












A few remarks about the local approach

- Weak hypothesis:
 - if A is connected to B,
 - if C is similar to B,
 - then A is likely to be connected to C.
- Computationally: much faster to train N local models with N training points each, than to train 1 model with N² training points.
- Caveats:
 - each local model may have very few training points
 - no sharing of information between different local models

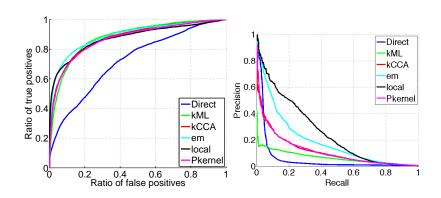
A few remarks about the local approach

- Weak hypothesis:
 - if A is connected to B,
 - if C is similar to B,
 - then A is likely to be connected to C.
- Computationally: much faster to train N local models with N training points each, than to train 1 model with N² training points.
- Caveats
 - each local model may have very few training points
 - no sharing of information between different local models

A few remarks about the local approach

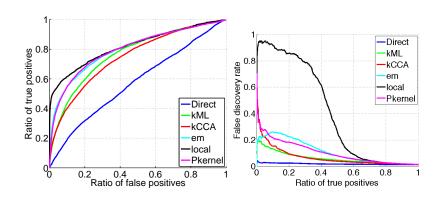
- Weak hypothesis:
 - if A is connected to B.
 - if C is similar to B,
 - then A is likely to be connected to C.
- Computationally: much faster to train N local models with N training points each, than to train 1 model with N² training points.
- Caveats:
 - each local model may have very few training points
 - no sharing of information between different local models

Results: protein-protein interaction (yeast)



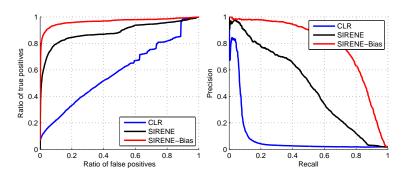
(from Bleakley et al., 2007)

Results: metabolic gene network (yeast)



(from Bleakley et al., 2007)

Results: regulatory network (E. coli)



Method	Recall at 60%	Recall at 80%
SIRENE	44.5%	17.6%
CLR	7.5%	5.5%
Relevance networks	4.7%	3.3%
ARACNe	1%	0%
Bayesian network	1%	0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)

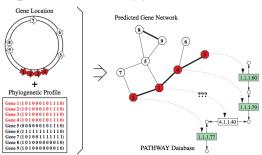
Applications: missing enzyme prediction

Prediction of missing enzyme genes in a bacterial metabolic network

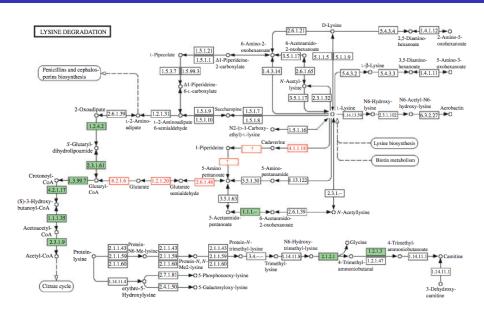
Reconstruction of the lysine-degradation pathway of *Pseudomonas* aeruginosa

Yoshihiro Yamanishi¹, Hisaaki Mihara², Motoharu Osaki², Hisashi Muramatsu³, Nobuyoshi Esaki², Tetsuya Sato¹, Yoshiyuki Hizukuri¹, Susumu Goto¹ and Minoru Kanehisa¹

- 1 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan
- 2 Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Japan
- 3 Department of Biology, Graduate School of Science, Osaka University, Japan



Applications: missing enzyme prediction



Applications: missing enzyme prediction

900

DOI 10.1002/pmic.200600862

Proteomics 2007, 7, 900-909

RESEARCH ARTICLE

Prediction of nitrogen metabolism-related genes in Anabaena by kernel-based network analysis

Shinobu Okamoto^{1*}, Yoshihiro Yamanishi¹, Shigeki Ehira², Shuichi Kawashima³, Koichiro Tonomura^{1**} and Minoru Kanehisa¹

¹ Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan

² Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan

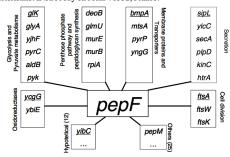
³ Human Genome Center, Institute of Medical Science, University of Tokyo, Meguro, Japan

Applications: function annotation

Determination of the role of the bacterial peptidase PepF by statistical inference and further experimental validation

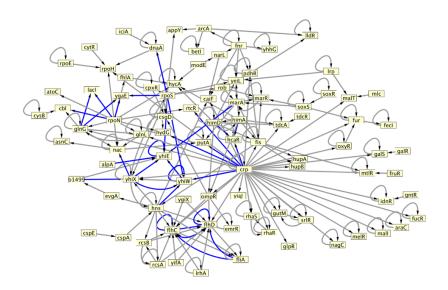
Liliana LOPEZ KLEINE^{1,2}, Alain TRUBUIL¹, Véronique MONNET²

²Unité de Biochimie Bactérienne. INRA Jouy en Josas 78352, France.



¹Unité de Mathématiques et Informatiques Appliquées, INRA Jouv en Josas 78352, France.

Application: predicted regulatory network (E. coli)



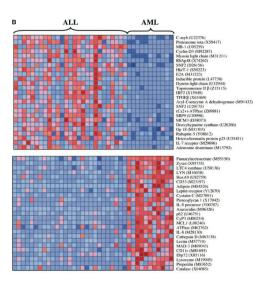
Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).

Outline

- How to infer relationships between genes from biological data?
- 2 How to use biological networks to help in the analysis of genomic data?

Conclusion

Tissue classification from microarray data



Goal

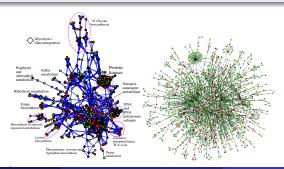
- Design a classifier to automatically assign a class to future samples from their expression profile
- Interpret biologically the differences between the classes

Issue

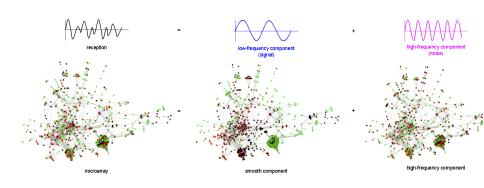
20K+ genes but only <100 tumours

Protein networks can help us

- Basic biological functions usually involve the coordinated action of several proteins:
 - Formation of protein complexes
 - Activation of metabolic, signalling or regulatory pathways
- Many pathways and protein-protein interactions are already known
- Hypothesis: the weights of the classifier should be "coherent" with respect to this prior knowledge



The idea



- Use the gene network to extract the "important information" in gene expression profiles by Fourier analysis on the graph
- Learn a linear classifier on the smooth components

Data

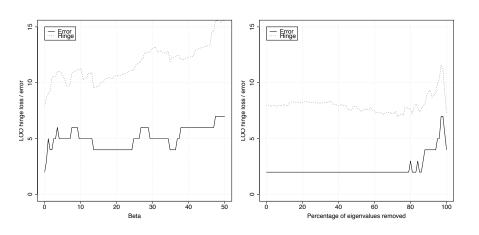
Expression

- Study the effect of low irradiation doses on the yeast
- 12 non irradiated vs 6 irradiated
- Which pathways are involved in the response at the transcriptomic level?

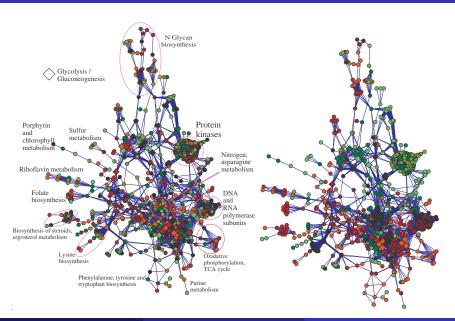
Graph

- KEGG database of metabolic pathways
- Two genes are connected is they code for enzymes that catalyze successive reactions in a pathway (metabolic gene network).
- 737 genes, 4694 vertices.

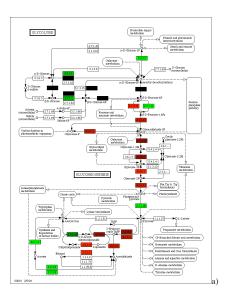
Classification performance

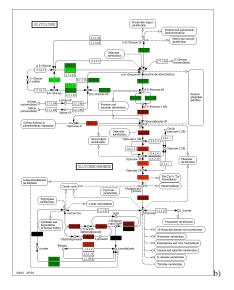


Classifier



Classifier





Outline

- How to infer relationships between genes from biological data?
- 2 How to use biological networks to help in the analysis of genomic data?

3 Conclusion

Conclusion

- A supervised machine learning formulation leads to promising results on the problem of inferring unknown relationships between genes and proteins.
- Conversely, biological networks can help fighting the curse of dimensionality
- All this is progression very quickly these days!

People I need to thank

- Graph inference: Yoshihiro Yamanishi, Minoru Kanehisa (Univ. Kyoto), Jian Qian, Bill Noble (Univ. Washington), Kevin Bleakley, Gerard Biau (Univ. Montpellier), Fantine Mordelet (ParisTech/Curie)
- Using graphs: Franck Rapaport, Emmanuel Barillot, Andrei Zinovyev (Institut Curie)

