Some contributions of machine learning to bioinformatics

Jean-Philippe Vert Jean-Philippe.Vert@ensmp.fr

Mines ParisTech / Institut Curie / Inserm

Ecole Polytechnique, Palaiseau, France, Feb 10, 2008.

Where I come from

- A joint lab about "Cancer computational genomics, bioinformatics, biostatistics and epidemiology"
- Located in th Institut Curie, a major hospital and cancer research institute in Europe

"Statistical machine learning for cancer informatics" team

Main topics

- Towards better diagnosis, prognosis, and personalized medicine
 - Supervised classification of genomic, transcriptomic, proteomic data; heterogeneous data integration

Towards new drug targets

- Systems biology, reconstruction of gene networks, pathway enrichment analysis, multidimensional phenotyping of cell populations.
- Towards new drugs
 - Ligand-based virtual screening, in silico chemogenomics.

2 Virtual screening

2 Virtual screening

Motivation

C-myb (U22376) Proteasome iota (X59417) MB-1 (U05259) Cyclin D3 (M92287) Myosin light chain (M31211) RhAp48 (X74262) SNF2 (D26156) HkrT-1 (\$50223) E2A (M31523) Inducible protein (L47738) Dynein light chain (U32944) Topoisomerase II B (Z15115) IRF2 (X15949) TFIIEB (X63469) Acyl-Coenzyme A dehydrogenase (M91432) SNF2 (U29175) (Ca2+)-ATPase (Z69881) SRP9 (U20998) MCM3 (D38073) Deoxyhypusine synthase (U26266) Op 18 (M31303) Rabaptin-5 (Y08612) Heterochromatin protein p25 (U35451) IL-7 receptor (M29696) Adenosine deaminase (M13792)

Fumarylacetoacetate (M55150) Zyxin (X95735) LTC4 synthase (U50136) LYN (M16038) Hox A9 (1182759) CD33 (M23197) Adipsin (M84526) Leptin receptor (Y12670 Cystatin C (M27891) Proteoglycan 1 (X17042) IL-8 precursor (Y00787) Azurocidin (M96326) p62 (U46751) C+P3 (M80254) MCL1 (L08246) ATPase (M62762) IL-8 (M28130) Cathensin D (M63138) Lectin (M57710) MAD-3 (M69043) CD11c (M81695) Ebp72 (X85116) Lysozyme (M19045 Propentin (M83652) atalase (X04085)

Goal

- Design a classifier to automatically assign a class to future samples from their expression profile
- Interpret biologically the differences between the classes

Difficulty

- Large dimension
- Few samples

The model

- Each sample is represented by a vector $x = (x_1, \ldots, x_p)$
- Goal: estimate a linear function:

$$f_{\beta}(x) = \sum_{i=1}^{p} \beta_i x_i + \beta_0 \; .$$

 Interpretability: the weight β_i quantifies the influence of feature i (but...)

Training the model

$$f_{\beta}(x) = \sum_{i=1}^{p} \beta_i x_i + \beta_0$$
.

• Minimize an empirical risk on the training samples:

$$\min_{\beta \in \mathbb{R}^{p+1}} R_{emp}(\beta) = \frac{1}{n} \sum_{i=1}^{n} l(f_{\beta}(x_i), y_i),$$

• ... subject to some constraint on β , e.g.:

 $\Omega(\beta) \leq C$.

Example : Norm Constraints

The approach

A common method in statistics to learn with few samples in high dimension is to constrain the Euclidean norm of β

$$\Omega_{\textit{ridge}}(\beta) = \|\beta\|_2^2 = \sum_{i=1}^p \beta_i^2 \,,$$

(ridge regression, support vector machines...)

Pros

 Good performance in classification

Cons

- Limited interpretation (small weights)
- No prior biological knowledge

The approach

Constrain most weights to be 0, i.e., select a few genes (< 100) whose expression are sufficient for classification.

• Greedy feature selection (T-tests, ...)

• Contrain the norm of β : LASSO penalty ($\|\beta\|_1 = \sum_{i=1}^{p} |\beta_i|$), elastic net penalty ($\|\beta\|_1 + \|\beta\|_2$), ...)

Pros

- Good performance in classification
- Biomarker selection
- Interpretability

Cons

- The gene selection process is usually not robust
- No use of prior biological knowledge

Why LASSO leads to sparse solutions

The idea

 If we have a specific prior knowledge about the "correct" weights, it can be included in Ω in the contraint:

Minimize $R_{emp}(\beta)$ subject to $\Omega(\beta) \leq C$.

- If we design a convex function Ω, then the algorithm boils down to a convex optimization problem (usually easy to solve).
- Similar to priors in Bayesian statistics

Example: CGH array classification

Motivation

- Comparative genomic hybridization (CGH) data measure the DNA copy number along the genome
- Very useful, in particular in cancer research
- Can we classify CGH arrays for diagnosis or prognosis purpose?

Example: CGH array classification

Prior knowledge

- Let x be a CGH profile
- We focus on linear classifiers, i.e., the sign of :

$$f(\mathbf{x}) = \mathbf{x}^\top \beta$$
.

- We expect β to be
 - sparse : only a few positions should be discriminative
 - piecewise constant : within a region, all probes should contribute equally

Example: CGH array classification

A solution (Rapaport et al., 2008)

$$\Omega_{\text{fusedlasso}}(\beta) = \sum_{i} |\beta_i| + \sum_{i \sim j} |\beta_i - \beta_j|.$$

- Good performance on diagnosis for bladder cancer, and prognosis for melanoma.
- More interpretable classifiers

Jean-Philippe Vert (ParisTech-Curie)

Machine learning in bioinformatics

The problem

- Classification of gene expression: too many genes
- A gene network is given (PPI, metabolic, regulatory, signaling, co-expression...)
- We expect that "clusters of genes" (modules) in the network contribute similarly to the classification

Prior hypothesis

Genes near each other on the graph should have similar weigths.

Two solutions (Rapaport et al., 2007, 2008)

$$\Omega_{spectral}(eta) = \sum_{i \sim j} (eta_i - eta_j)^2 ,$$

 $\Omega_{graph fusion}(eta) = \sum_{i \sim j} |eta_i - eta_j| + \sum_i |eta_i| .$

Prior hypothesis

Genes near each other on the graph should have similar weigths.

Two solutions (Rapaport et al., 2007, 2008)

$$\begin{split} \Omega_{\text{spectral}}(\beta) &= \sum_{i \sim j} (\beta_i - \beta_j)^2 \,, \\ \Omega_{\text{graphfusion}}(\beta) &= \sum_{i \sim j} |\beta_i - \beta_j| + \sum_i |\beta_i| \,. \end{split}$$

Prior hypothesis

Genes near each other on the graph should have non-zero weigths (i.e., the support of β should be made of a few connected components).

Two solutions?

$$egin{aligned} \Omega_{\textit{intersection}}(eta) &= \sum_{i \sim j} \sqrt{eta_i^2 + eta_j^2} \,, \ \Omega_{\textit{union}}(eta) &= \sup_{lpha \in \mathbb{R}^p: orall i \sim j, \|lpha_i^2 + lpha_i^2\| \leq 1} lpha^ op eta \end{aligned}$$

Prior hypothesis

Genes near each other on the graph should have non-zero weigths (i.e., the support of β should be made of a few connected components).

Two solutions?

$$egin{aligned} \Omega_{\mathit{intersection}}(eta) &= \sum_{i \sim j} \sqrt{eta_i^2 + eta_j^2} \,, \ \Omega_{\mathit{union}}(eta) &= \sup_{lpha \in \mathbb{R}^p: orall i \sim j, \|lpha_i^2 + lpha_i^2\| \leq 1} lpha^ op eta \,. \end{aligned}$$

Groups (1, 2) and (2, 3). Left: $\Omega_{intersection}(\beta)$. Right: $\Omega_{union}(\beta)$. Vertical axis is β_2 .

Ligand-Based Virtual Screening

Objective

Build models to predict biochemical properties of small molecules from their structures.

Structures $C_{15}H_{14}CIN_3O_3$

Properties

- binding to a therapeutic target,
- pharmacokinetics (ADME),
- toxicity...

Ligand-Based Virtual Screening and QSAR

NCI AIDS screen results (from http://cactus.nci.nih.gov).

Jean-Philippe Vert (ParisTech-Curie)

The problem

- Given a set of training instances (x₁, y₁),..., (x_n, y_n), where x_i's are graphs and y_i's are continuous or discrete variables of interest,
- Estimate a function

$$y = f(x)$$

where *x* is any graph to be labeled.

 This is a classical regression or pattern recognition problem over the set of graphs.

Classical approaches

Two steps

- Map each molecule to a vector of fixed dimension using molecular descriptors
 - Global properties of the molecules (mass, logP...)
 - 2D and 3D descriptors (substructures, fragments,)
- Apply an algorithm for regression or pattern recognition.
 PLS, ANN, ...

Example: 2D structural keys

Which descriptors?

Difficulties

- Many descriptors are needed to characterize various features (in particular for 2D and 3D descriptors)
- But too many descriptors are harmful for memory storage, computation speed, statistical estimation

Kernels

Definition

- Let Φ(x) = (Φ₁(x),...,Φ_p(x)) be a vector representation of the molecule x
- The kernel between two molecules is defined by:

$$K(x,x') = \Phi(x)^{\top} \Phi(x') = \sum_{i=1}^{p} \Phi_i(x) \Phi_i(x').$$

The kernel trick

$$K(x,x') = \Phi(x)^{\top} \Phi(x')$$

The trick

- Many linear algorithms for regression or pattern recognition can be expressed only in terms of inner products between vectors
- Computing the kernel is often more efficient than computing $\Phi(x)$, especially in high or infinite dimensions!

Definition: Complete graph kernels

A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

 $\forall G_1, G_2 \in \mathcal{X}, \quad d_K(G_1, G_2) = 0 \implies G_1 \simeq G_2.$

Equivalently, $\Phi(G_1) \neq \Phi(G_1)$ if G_1 and G_2 are not isomorphic.

Proposition (Gärtner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph isomorphism problem.

Definition: Complete graph kernels

A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

 $\forall G_1, G_2 \in \mathcal{X}, \quad d_K(G_1, G_2) = 0 \implies G_1 \simeq G_2.$

Equivalently, $\Phi(G_1) \neq \Phi(G_1)$ if G_1 and G_2 are not isomorphic.

Proposition (Gärtner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph isomorphism problem.

Definition

- Let \mathcal{X} be a set of graphs, and $(\lambda_G)_{G \in \mathcal{X}}$ a set or nonnegative real-valued weights
- For any graph G, let

 $\forall H \in \mathcal{X}, \quad \Phi_H(G) = \left| \left\{ G' \text{ is a subgraph of } G : G' \simeq H \right\} \right|.$

• The subgraph kernel between any two graphs *G*₁ and *G*₂ is defined by:

$$K_{subgraph}(G_1, G_2) = \sum_{H \in \mathcal{X}} \lambda_H \Phi_H(G_1) \Phi_H(G_2).$$

Proposition (Gärtner et al., 2003)

Computing the subgraph kernel is NP-hard when:

- X is the set of all graphs (all subgraph kernel)
- X is the set of all linear graphs (path kernel)

Proof (sketch)

Computing these kernels allows to decide whether a graph has a Hamiltonian path, which a NP-complete.

Walks

Definition

- A walk of a graph (V, E) is sequence of $v_1, \ldots, v_n \in V$ such that $(v_i, v_{i+1}) \in E$ for $i = 1, \ldots, n-1$.
- We note W_n(G) the set of walks with n vertices of the graph G, and W(G) the set of all walks.

Paths and walks

Walk kernel

Definition

- Let S_n denote the set of all possible label sequences of walks of length n (including vertices and edges labels), and S = ∪_{n≥1}S_n.
- For any graph X let a weight λ_G(w) be associated to each walk w ∈ W(G).
- Let the feature vector Φ(G) = (Φ_s(G))_{s∈S} be defined by:

$$\Phi_{s}(G) = \sum_{w \in \mathcal{W}(G)} \lambda_{G}(w)$$
1 (*s* is the label sequence of *w*).

• A walk kernel is a graph kernel defined by:

$$K_{walk}(G_1,G_2) = \sum_{s\in\mathcal{S}} \Phi_s(G_1) \Phi_s(G_2).$$

Walk kernel

Definition

- Let S_n denote the set of all possible label sequences of walks of length n (including vertices and edges labels), and S = ∪_{n≥1}S_n.
- For any graph X let a weight λ_G(w) be associated to each walk w ∈ W(G).
- Let the feature vector Φ(G) = (Φ_s(G))_{s∈S} be defined by:

$$\Phi_s(G) = \sum_{w \in \mathcal{W}(G)} \lambda_G(w) \mathbf{1}$$
 (*s* is the label sequence of *w*).

• A walk kernel is a graph kernel defined by:

$$K_{walk}(G_1, G_2) = \sum_{s \in S} \Phi_s(G_1) \Phi_s(G_2).$$

Examples

- The *n*th-order walk kernel is the walk kernel with $\lambda_G(w) = 1$ if the length of *w* is *n*, 0 otherwise. It compares two graphs through their common walks of length *n*.
- The random walk kernel is obtained with $\lambda_G(w) = P_G(w)$, where P_G is a Markov random walk on G. In that case we have:

 $K(G_1, G_2) = P(label(W_1) = label(W_2)),$

where W_1 and W_2 are two independent random walks on G_1 and G_2 , respectively (Kashima et al., 2003).

 The geometric walk kernel is obtained (when it converges) with λ_G(w) = β^{length(w)}, for β > 0. In that case the feature space is of infinite dimension (Gärtner et al., 2003).

Examples

- The *n*th-order walk kernel is the walk kernel with $\lambda_G(w) = 1$ if the length of *w* is *n*, 0 otherwise. It compares two graphs through their common walks of length *n*.
- The random walk kernel is obtained with $\lambda_G(w) = P_G(w)$, where P_G is a Markov random walk on G. In that case we have:

 $K(G_1, G_2) = P(label(W_1) = label(W_2)),$

where W_1 and W_2 are two independent random walks on G_1 and G_2 , respectively (Kashima et al., 2003).

 The geometric walk kernel is obtained (when it converges) with λ_G(w) = β^{length(w)}, for β > 0. In that case the feature space is of infinite dimension (Gärtner et al., 2003).

Examples

- The *n*th-order walk kernel is the walk kernel with $\lambda_G(w) = 1$ if the length of *w* is *n*, 0 otherwise. It compares two graphs through their common walks of length *n*.
- The random walk kernel is obtained with $\lambda_G(w) = P_G(w)$, where P_G is a Markov random walk on G. In that case we have:

 $K(G_1, G_2) = P(label(W_1) = label(W_2)),$

where W_1 and W_2 are two independent random walks on G_1 and G_2 , respectively (Kashima et al., 2003).

• The geometric walk kernel is obtained (when it converges) with $\lambda_{G}(w) = \beta^{length(w)}$, for $\beta > 0$. In that case the feature space is of infinite dimension (Gärtner et al., 2003).

Proposition

These three kernels (*n*th-order, random and geometric walk kernels) can be computed efficiently in polynomial time.

Product graph

Definition

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs with labeled vertices. The product graph $G = G_1 \times G_2$ is the graph G = (V, E) with:

•
$$V = \{(v_1, v_2) \in V_1 \times V_2 : v_1 \text{ and } v_2 \text{ have the same label}\},\$$

• $E = \{((v_1, v_2), (v'_1, v'_2)) \in V \times V : (v_1, v'_1) \in E_1 \text{ and } (v_2, v'_2) \in E_2\}.$

Walk kernel and product graph

Lemma

There is a bijection between:

• The pairs of walks $w_1 \in W_n(G_1)$ and $w_2 \in W_n(G_2)$ with the same label sequences,

2 The walks on the product graph $w \in W_n(G_1 \times G_2)$.

Corollary

$$\begin{aligned} \mathcal{K}_{walk}(G_1, G_2) &= \sum_{s \in \mathcal{S}} \Phi_s(G_1) \Phi_s(G_2) \\ &= \sum_{(w_1, w_2) \in \mathcal{W}(G_1) \times \mathcal{W}(G_1)} \lambda_{G_1}(w_1) \lambda_{G_2}(w_2) \mathbf{1}(l(w_1) = l(w_2)) \\ &= \sum_{w \in \mathcal{W}(G_1 \times G_2)} \lambda_{G_1 \times G_2}(w) \,. \end{aligned}$$

Walk kernel and product graph

Lemma

There is a bijection between:

• The pairs of walks $w_1 \in W_n(G_1)$ and $w_2 \in W_n(G_2)$ with the same label sequences,

2 The walks on the product graph $w \in W_n(G_1 \times G_2)$.

Corollary

$$\begin{aligned} \mathcal{K}_{walk}(G_1, G_2) &= \sum_{s \in \mathcal{S}} \Phi_s(G_1) \Phi_s(G_2) \\ &= \sum_{(w_1, w_2) \in \mathcal{W}(G_1) \times \mathcal{W}(G_1)} \lambda_{G_1}(w_1) \lambda_{G_2}(w_2) \mathbf{1}(l(w_1) = l(w_2)) \\ &= \sum_{w \in \mathcal{W}(G_1 \times G_2)} \lambda_{G_1 \times G_2}(w) \,. \end{aligned}$$

Computation of the *n*th-order walk kernel

- For the *n*th-order walk kernel we have λ_{G1×G2}(w) = 1 if the length of w is n, 0 otherwise.
- Therefore:

$$K_{nth-order}\left(G_{1},G_{2}
ight)=\sum_{w\in\mathcal{W}_{n}\left(G_{1} imes G_{2}
ight)}1$$

• Let A be the adjacency matrix of $G_1 \times G_2$. Then we get:

$$K_{nth-order}\left(G_{1},G_{2}\right)=\sum_{i,j}\left[A^{n}\right]_{i,j}=\mathbf{1}^{\top}A^{n}\mathbf{1}$$

Computation in O(n|G₁||G₂|d₁d₂), where d_i is the maximum degree of G_i.

Computation of random and geometric walk kernels

In both cases λ_G(w) for a walk w = v₁...v_n can be decomposed as:

$$\lambda_G(\mathbf{v}_1\ldots\mathbf{v}_n)=\lambda^i(\mathbf{v}_1)\prod_{i=2}^n\lambda^t(\mathbf{v}_{i-1},\mathbf{v}_i).$$

• Let Λ_i be the vector of $\lambda^i(v)$ and Λ_t be the matrix of $\lambda^t(v, v')$:

$$K_{walk}(G_1, G_2) = \sum_{n=1}^{\infty} \sum_{w \in \mathcal{W}_n(G_1 \times G_2)} \lambda^i(v_1) \prod_{i=2}^n \lambda^t(v_{i-1}, v_i)$$
$$= \sum_{n=0}^{\infty} \Lambda_i \Lambda_t^n \mathbf{1}$$
$$= \Lambda_i (I - \Lambda_t)^{-1} \mathbf{1}$$

• Computation in $O(|G_1|^3|G_2|^3)$

- Compromise between fingerprints and structural keys features.
- Other relabeling schemes are possible (graph coloring).
- Faster computation with more labels (less matches implies a smaller product graph).

Extension 2: Non-tottering walk kernel

- Tottering walks seem irrelevant for many applications
- Focusing on non-tottering walks is a way to get closer to the path kernel (e.g., equivalent on trees).

Computation of the non-tottering walk kernel (Mahé et al., 2005)

- Second-order Markov random walk to prevent tottering walks
- Written as a first-order Markov random walk on an augmented graph
- Normal walk kernel on the augmented graph (which is always a directed graph).

Extension 2: Subtree kernels

Example: Tree-like fragments of molecules

- Like the walk kernel, amounts to compute the (weighted) number of subtrees in the product graph.
- Recursion: if T(v, n) denotes the weighted number of subtrees of depth n rooted at the vertex v, then:

$$\mathcal{T}(\mathbf{v},\mathbf{n}+1) = \sum_{\mathbf{R}\subset\mathcal{N}(\mathbf{v})}\prod_{\mathbf{v}'\in\mathbf{R}}\lambda_t(\mathbf{v},\mathbf{v}')\mathcal{T}(\mathbf{v}',\mathbf{n}),$$

where $\mathcal{N}(v)$ is the set of neighbors of v.

• Can be combined with the non-tottering graph transformation as preprocessing to obtain the non-tottering subtree kernel.

Application (Mahé et al., 2004)

MUTAG dataset

- aromatic/hetero-aromatic compounds
- high mutagenic activity /no mutagenic activity, assayed in *Salmonella typhimurium*.
- 188 compounds: 125 + / 63 -

Results

10-fold cross-validation accuracy

Method	Accuracy
Progol1	81.4%
2D kernel	91.2%

2D Subtree vs fragment kernels (Mahé and V, 2007)

Screening of inhibitors for 60 cancer cell lines (from Mahé and V., 2008)

Jean-Philippe Vert (ParisTech-Curie)

2 Virtual screening

- Modern machine learning methods for regression / classification lend themselves well to the integration of prior knowledge in the penalization / regularization function.
- Kernel methods (eg SVM) allow to manipulate complex objects (eg molecules, biological sequences) as soon as kernels can be defined and computed.

Including prior knowledge in penalization

Franck Rapaport, Emmanuel Barillot, Andrei Zynoviev, Laurent Jacob, Kevin Bleakley...

Virtual screening, kernels etc..

Pierre Mahé, Laurent Jacob, Liva Ralaivola, Véronique Stoven