

Machine learning for cancer informatics

Jean-Philippe Vert Inserm U900 - Mines ParisTech - Institut Curie Team « Statistical machine learning and modelling of biological systems »

Team's goal

Develop new mathematical/computational models and tools to contribute to:

- 1. Diagnosis, prognosis and predictive models
- 2. Identification of important pathways and new drug targets
- 3. Identification of new drugs

Motivation: Diagnosis / Prognosis from genome / transcriptome

Golub et al., Science, 1999

Motivation: Virtual screening

From http://cactus.nci.nih.gov

Pattern recognition (aka supervised classification)

Pattern recognition (aka supervised classification)

Challenges

- -High dimension
- -Few samples
- -Structured data
- -Inclusion of prior knowledge
- -Fast and scalable algorithms

Application: Discriminant signatures from expression data that highlight dysregulated pathways

Application: Discriminant CGH signature with automated detection of discriminant regions

Rapaport et al., Bioinformatics, 2008.

Application: Identification of new regulations from expression data

Mordelet and Vert, Bioinformatics, 2008.

Application: Prediction of peptide-MHC I binding for alleles with few known peptides

+ Mttp://cbio.ensmp.fr/kiss/	^ (Q ₇
KISS: Kernel-basec pred	l Inter-allele peptide binding iction SyStem
KISS predicts whether or not a 9-mer will bind a The first number next to each allele name is the training. The second number is the mean success rate obs the classifier made no mistake, at 0.5 the classifier Enter your data: Select the allele(s): [01(1)246.0.949] [7] Enter	n MHC-I molecule for various alleles. te number of epitopes that were available for the allele during the erved on the 5-folded data that was used to build the classifier. At 1, rr made random-like predictions. the 9-mers:
A02 (7853, 0.824) A03 (2270, 0.863) A11 (2056, 0.873) A23 (108, 0.720) A24 (575, 0.848) A25 (36, 0.866) A26 (808, 0.914) A28 (4, 0.500) A29 (199, 0.832) A30 (793, 0.898) A31 (1893, 0.873) A32 (6, 0.700) A33 (1155, 0.871) A66 (22, 0.840) Um Cn+4te/Folick for multiple	And/or provide a file containing the 9-mers: (Choisir le fichier) aucun fichiélectionné

Get prediction

Jacob and Vert, Bioinformatics, 2008

Application: Chemogenomics and virtual screening of GPCR

Jacob et al., BMC Bioinformatics, 2008.

Conclusion

-Many problems require new methods in statistics / machine learning

-General trend: include prior knowledge in a computational efficient framework

-We seek collaborations!

Jean-Philippe.Vert@curie.fr

Team members:

Kevin Bleakley, Brice Hoffmann, Martial Hue, Laurent Jacob, Christian Lajaunie, Fantine Mordelet, Philippe Rouillier, Isabelle Schmitt, Véronique Stoven, Jean-Philippe Vert, Yoshihiro Yamanishi, Misha Zaslavskiy.

+ many joint work with U900

