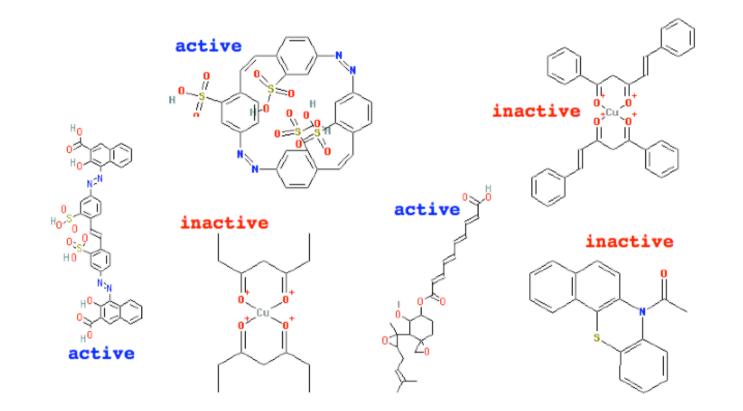
In silico chemogenomics with Support Vector Machines

Jean-Philippe Vert

Institut Curie - U900 INSERM - Mines ParisTech

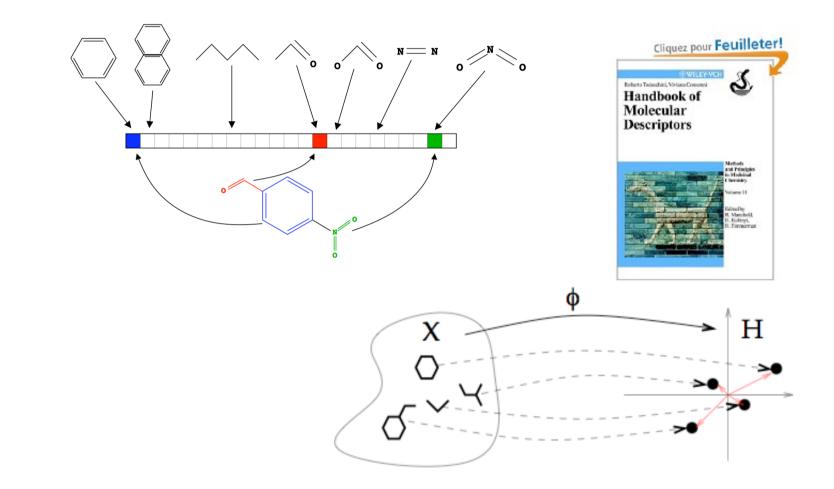
MedChem conference, Feb 22-25, 2009, Berlin, Germany.

Ligand-based virtual screening / QSAR

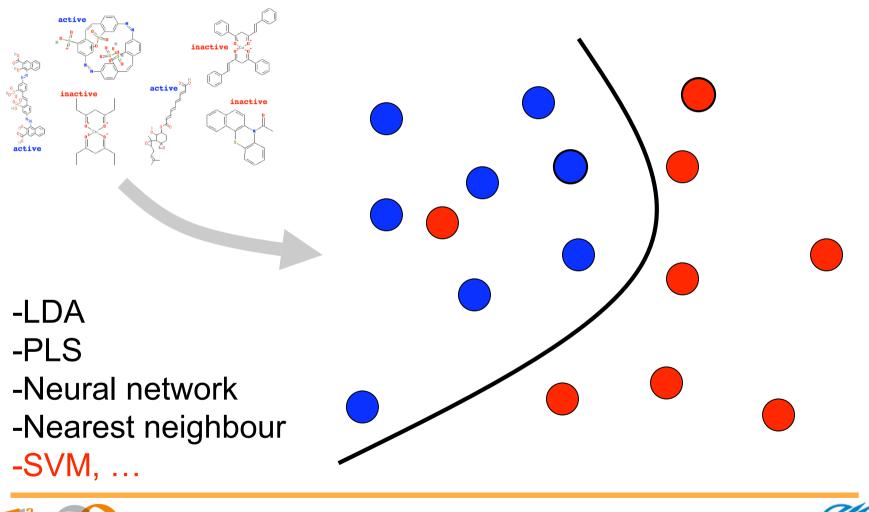


From http://cactus.nci.nih.gov

Represent each molecule as a vector...



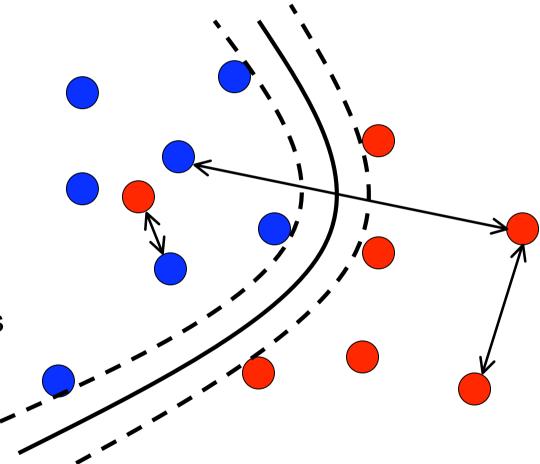
...and discriminate with machine learning



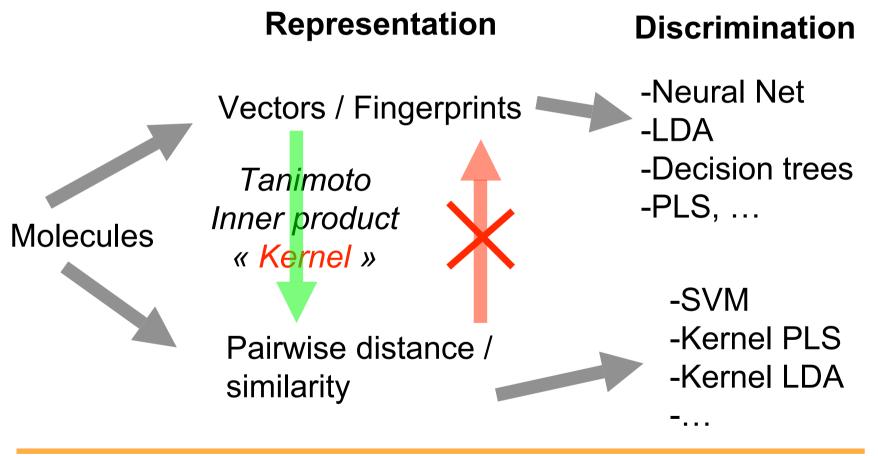
Inserm

Support Vector Machine (SVM)

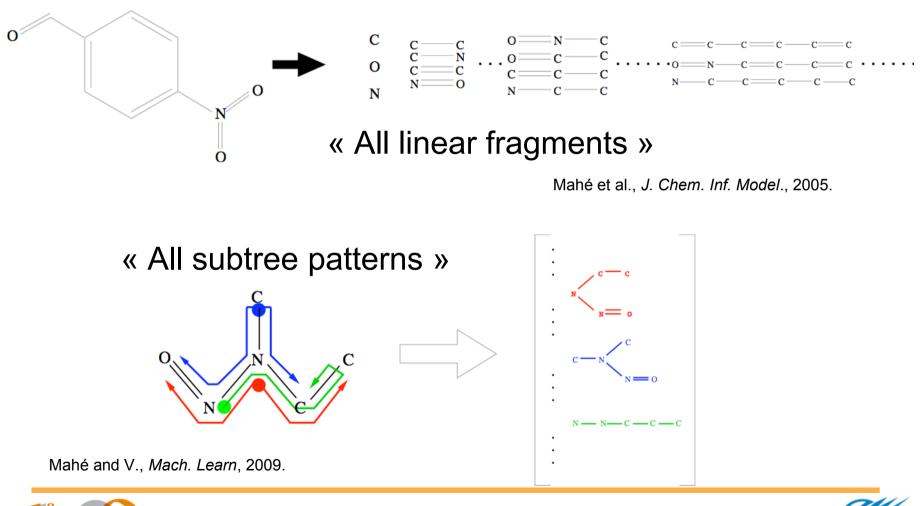
- Large margin
- Nonlinear
- Need pairwise
 distance / similarity
 as input instead of
 vectors / fingerprints



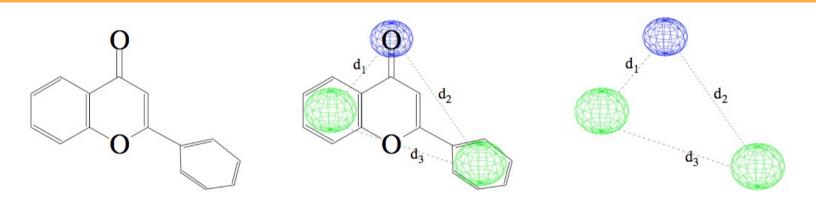
From fingerprints to similarities



Example : 2D fragment kernel



Example: 3D pharmacophore kernel



 $K(x,y) = \sum_{p_x \in \mathcal{P}(x)} \sum_{p_y \in \mathcal{P}(y)} \exp\left(-\gamma d\left(p_x, p_y\right)\right) \;.$

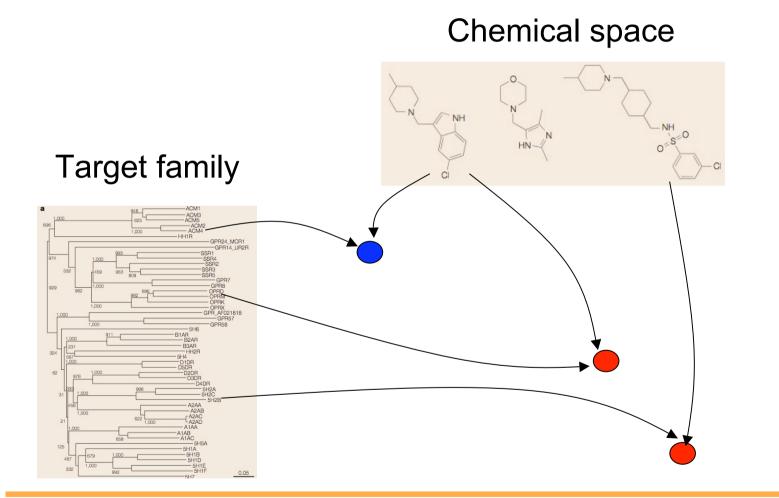
Kernel	BZR	COX	DHFR	ER
2D (Tanimoto)	71.2	63.0	76.9	77.1
3D fingerprint	75.4	67.0	76.9	78.6
3D not discretized	76.4	69.8	81.9	79.8

Mahé et al., J. Chem. Inf. Model., 2006.

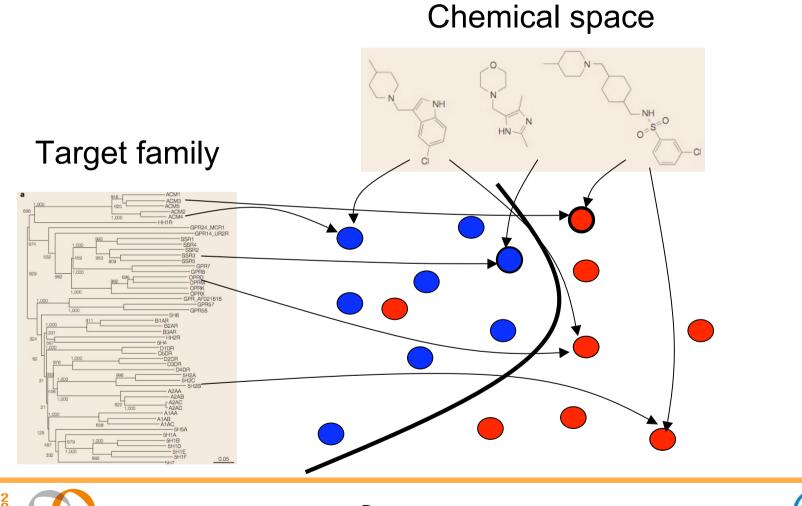
Summary so far...

- SVM is an algorithm for supervised classification
- SVM can be used with any « classical » vector or fingerprint description (often giving state-of-the-art performance)
- SVM can also be used with more general measures of similarity (like many related kernel methods)
- Much effort recently to define such kernels in bio- and chemo-informatics

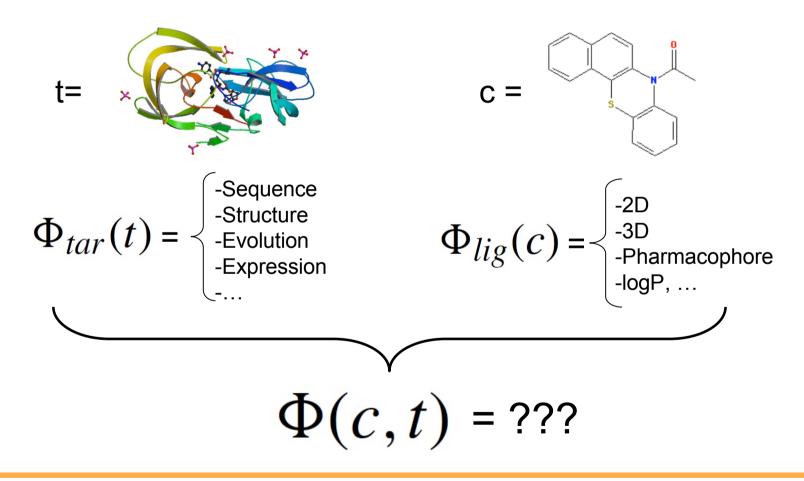
Chemogenomics



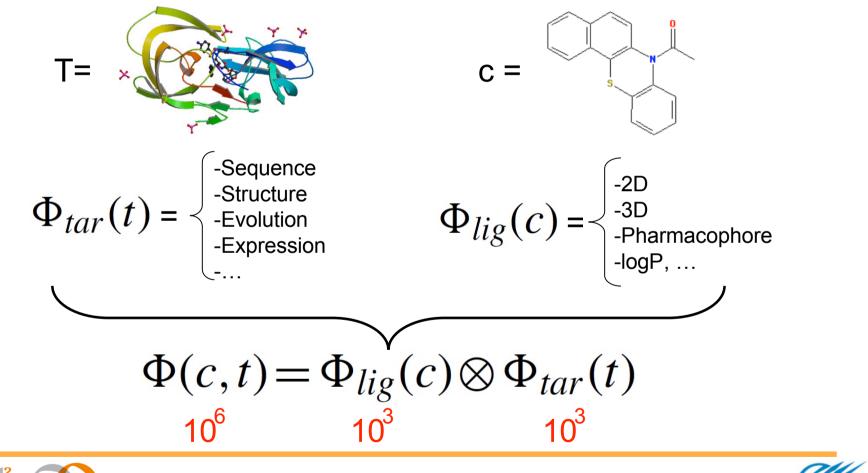
In silico Chemogenomics



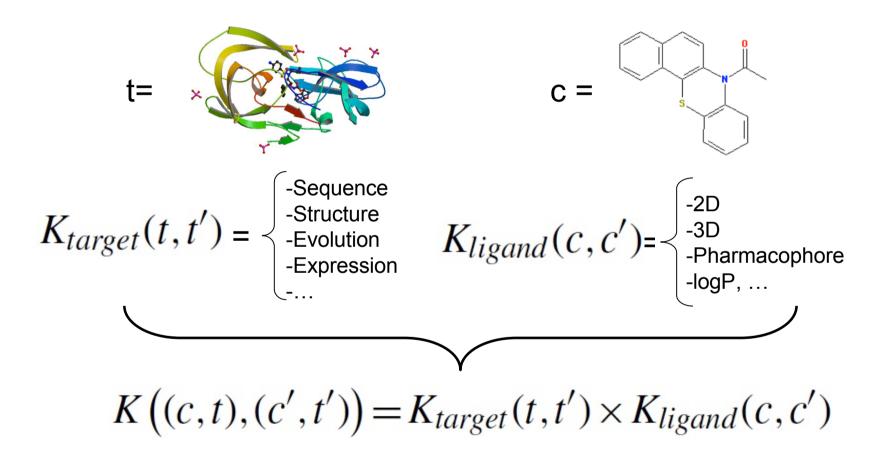
Fingerprint for a (target, molecule) pair?



Fingerprint for a (target, molecule) pair?



Similarity for (target, molecule) pairs



Summary: SVM for chemogenomics

- 1. Choose a kernel (similarity) for targets
- 2. Choose a kernel (similarity) for ligands
- 3. Train a SVM model with the product kernel for (target/ligand) pairs

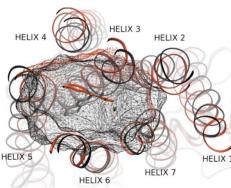
Application: virtual screening of GPCR

Data: GLIDA database filtered for drug-like compounds

- 2446 ligands
- 80 GPCR
- 4051 interactions
- 4051 negative interactions generated randomly

Ligand similarity

-2D Tanimoto-3D pharmacophore



Target similarities

- -0/1 Dirac (no similarity)
- -Multitask (uniform similarity)
- -GLIDA's hierarchy similarity
- -Binding pocket similarity (31 AA)

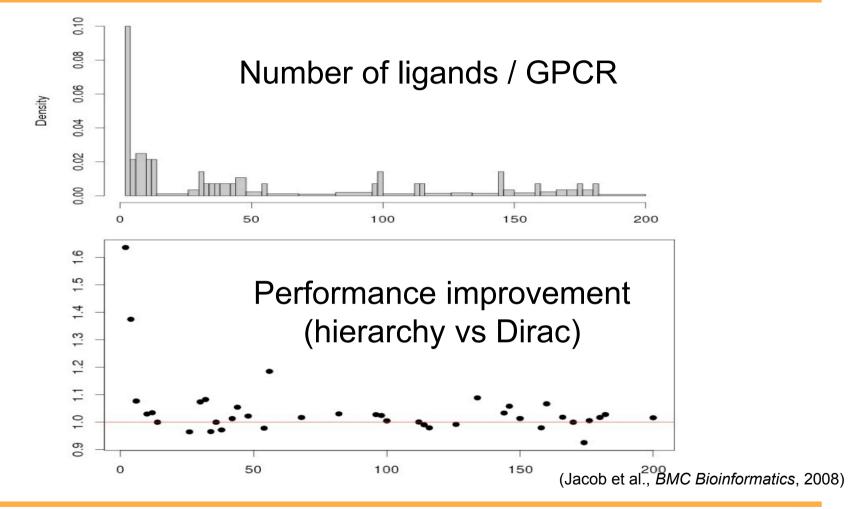
(Jacob et al., BMC Bioinformatics, 2008)

Results (mean accuracy over GPCRs)

	K _{tar} \K _{lig}	2D Tanimoto	3D pharmacophore
5-fold cross-validation	Dirac	86.2 ± 1.9	84.4 ± 2.0
	multitask	88.8 ± 1.9	85.0 ± 2.3
	hierarchy	93.1 ± 1.3	88.5 ± 2.0
	binding pocket	90.3 ± 1.9	87.1 ± 2.3
	K _{tor} \K _{lig}	2D Tanimoto	3D pharmacophore
Ornhan CDCDa aatun	Dirac	50.0 ± 0.0	50.0 ± 0.0
Orphan GPCRs setup	multitask	56.8 ± 2.5	58.2 ± 2.2
	hierarchy	77.4 ± 2.4	76.2 ± 2.2
	binding pocket	78.1 ± 2.3	76.6 ± 2.2

(Jacob et al., BMC Bioinformatics, 2008)

Influence of the number of known ligands



Screening of enzymes, GPCRs, ion channels

Data: KEGG BRITE database, redundancy removed

Enzymes

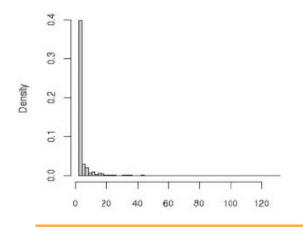
-675 targets -524 molecules -1218 interactions -1218 negatives

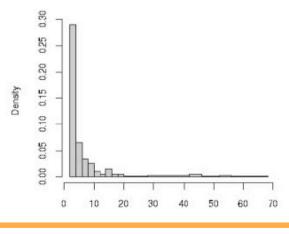
GPCRs

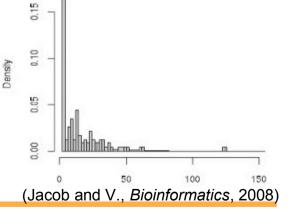
- -100 targets
- -219 molecules
- -399 interactions
- -399 negatives

Ion channels

- -114 targets
- -462 molecules
- -1165 interactions
- -1165 negatives





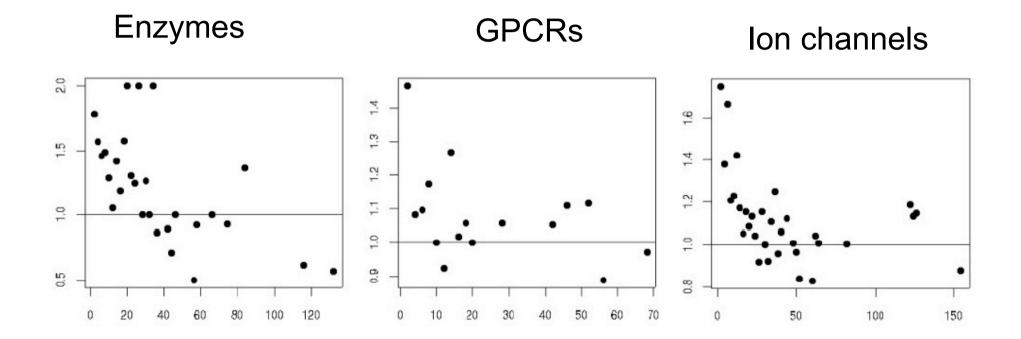


Results (mean AUC)

10-fold CV	$K_{tar} \setminus \text{Target}$	Enzymes	GPCR	Channels
	Dirac	0.646 ± 0.009	0.750 ± 0.023	0.770 ± 0.020
	Multitask	0.931 ± 0.006	0.749 ± 0.022	0.873 ± 0.015
	Hierarchy	0.955 ± 0.005	0.926 ± 0.015	0.925 ± 0.012
	Mismatch	0.725 ± 0.009	0.805 ± 0.023	0.875 ± 0.015
	Local alignment	0.676 ± 0.009	0.824 ± 0.021	0.901 ± 0.013
Orphan setting	$K_{tar} \setminus \text{Target}$	Enzymes	GPCR	Channels
	Dirac	0.500 ± 0.000	0.500 ± 0.000	0.500 ± 0.000
	Multitask	0.902 ± 0.008	0.576 ± 0.026	0.704 ± 0.026
	Hierarchy	0.938 ± 0.006	0.875 ± 0.020	0.853 ± 0.019
	Mismatch	0.602 ± 0.008	0.703 ± 0.027	0.729 ± 0.024
	Local alignment	0.535 ± 0.005	0.751 ± 0.025	0.772 ± 0.023

(Jacob and V., Bioinformatics, 2008)

Influence of the number of known ligands



Relative improvement : hierarchy vs Dirac

(Jacob and V., Bioinformatics, 2008)

Conclusion

- SVM offer state-of-the-art performance in chemo- and bio-informatics
- Much work recently to define « kernels » for small molecules and proteins
- Combining them provides a theoretically sound and computationnally efficient framework for *in silico* chemogenomics
- Promising results on several benchmarks for important target families

References : http://cbio.ensmp.fr/~jvert/

- L. Jacob and J.-P. Vert, "Protein-ligand interaction prediction: an improved chemogenomics approach", *Bioinformatics*, 24(19):2149-2156, 2008
- L. Jacob, B. Hoffmann, V. Stoven and J.-P. Vert, "Virtual screening of GPCRs: an *in silico* chemogenomics approach", *BMC Bioinformatics*, 9:363, 2008.
- J.-P. Vert and L. Jacob, "Machine learning for *in silico* virtual screening and chemical genomics: new strategies", *Combinatorial Chemistry & High Throughput Screening*, 11(8):677-685, 2008.
- P. Mahé and J.-P. Vert, "Graph kernels based on tree patterns for molecules", to appear in *Machine Learning*, 2009.
- P. Mahé, L. Ralaivola, V. Stoven and J.-P. Vert, "The pharmacophore kernel for virtual screening with support vector machines", *Journal of Chemical Information and Modeling*, vol. 46, n.5, p.2003-2014, 2006.
- P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret and J.-P. Vert, "Graph kernels for molecular structure-activity relationship analysis with support vector machines", *Journal of Chemical Information and Modeling*, vol. 45, n. 4, 939 -951, 2005.

