## Inference of missing edges in biological networks

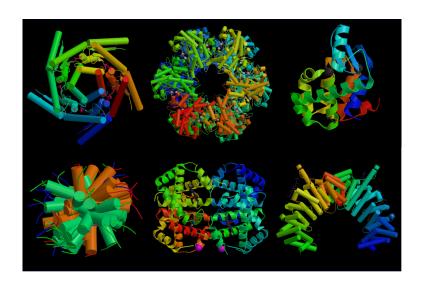
#### Jean-Philippe Vert

Jean-Philippe. Vert@mines-paristech.fr

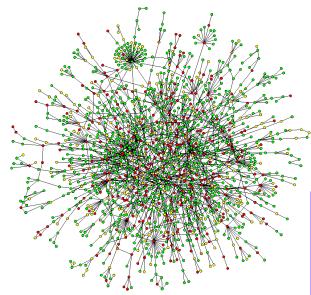
Mines ParisTech, Institut Curie, INSERM U900

University Paris Descartes, MAP5 colloquium, Paris, March 30, 2009.

### **Proteins**

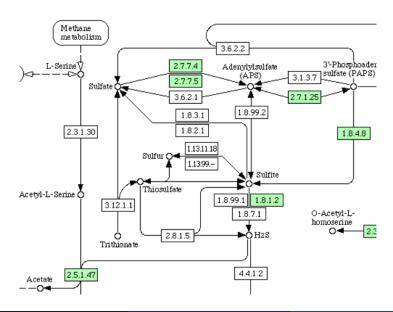


# Network 1: protein-protein interaction

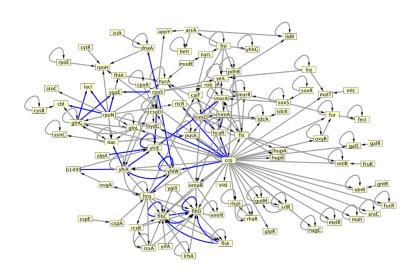




### Network 2: metabolic network



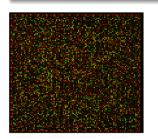
## Network 3: gene regulatory network

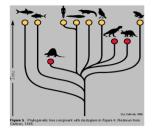


#### Data available

Biologists have collected a lot of data about proteins. e.g.,

- Gene expression measurements
- Phylogenetic profiles
- Location of proteins/enzymes in the cell

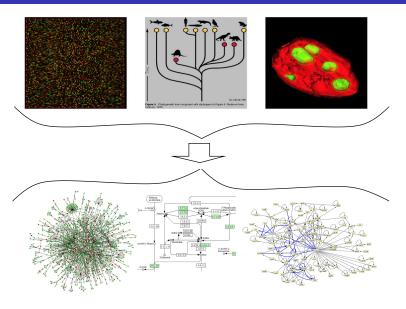






How to use this information "intelligently" to find a good function that predicts edges between nodes.

# Our goal



## More precisely

### Formalization

- $V = \{1, ..., N\}$  vertices (e.g., genes, proteins)
- $\mathcal{D} = (x_1, \dots, x_N) \in \mathcal{H}^N$  data about the vertices ( $\mathcal{H}$  Hilbert space)
- Goal: predict edges  $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$ .

#### "De novo" inference

- $\bullet$  Given data about individual genes and proteins  $\mathcal{D},\,...$
- ullet ... Infer the edges between genes and proteins  ${\mathcal E}$

#### "Supervised" inference

- $\bullet$  Given data about individual genes and proteins  $\mathcal{D},\,...$
- ... and given some known interactions  $\mathcal{E}_{train} \subset \mathcal{E}$ , ...
- ... infer unknown interactions  $\mathcal{E}_{test} = \mathcal{E} \setminus \mathcal{E}_{train}$

## More precisely

#### Formalization

- $V = \{1, ..., N\}$  vertices (e.g., genes, proteins)
- $\mathcal{D} = (x_1, \dots, x_N) \in \mathcal{H}^N$  data about the vertices ( $\mathcal{H}$  Hilbert space)
- Goal: predict edges  $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$ .

#### "De novo" inference

- $\bullet$  Given data about individual genes and proteins  $\mathcal{D},\,...$
- ullet ... Infer the edges between genes and proteins  ${\mathcal E}$

#### "Supervised" inference

- ullet Given data about individual genes and proteins  $\mathcal{D}$ , ...
- ... and given some known interactions  $\mathcal{E}_{train} \subset \mathcal{E}$ , ...
- ... infer unknown interactions  $\mathcal{E}_{test} = \mathcal{E} \setminus \mathcal{E}_{train}$

## More precisely

#### Formalization

- $V = \{1, ..., N\}$  vertices (e.g., genes, proteins)
- $\mathcal{D} = (x_1, \dots, x_N) \in \mathcal{H}^N$  data about the vertices ( $\mathcal{H}$  Hilbert space)
- Goal: predict edges  $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$ .

#### "De novo" inference

- ullet Given data about individual genes and proteins  $\mathcal{D}$ , ...
- ullet ... Infer the edges between genes and proteins  ${\mathcal E}$

#### "Supervised" inference

- ullet Given data about individual genes and proteins  $\mathcal{D}$ , ...
- ... and given some known interactions  $\mathcal{E}_{train} \subset \mathcal{E}$ , ...
- ... infer unknown interactions  $\mathcal{E}_{test} = \mathcal{E} \setminus \mathcal{E}_{train}$

### Outline

De novo methods

Supervised methods

3 Conclusion

### De novo methods

### Typical strategies

- Fit a dynamical system to time series (e.g., PDE, boolean networks, state-space models)
- Detect statistical conditional independence or dependency (Bayesian netwok, mutual information networks, co-expression)

#### Pros

- Excellent approach if the model is correct and enough data are available
- Interpretability of the model
- Inclusion of prior knowledge

#### Cons

- Specific to particular data and networks
- Needs a correct model!
- Difficult integration of heterogeneous data
- Often needs a lot of data and long computation time

### De novo methods

### Typical strategies

- Fit a dynamical system to time series (e.g., PDE, boolean networks, state-space models)
- Detect statistical conditional independence or dependency (Bayesian netwok, mutual information networks, co-expression)

#### **Pros**

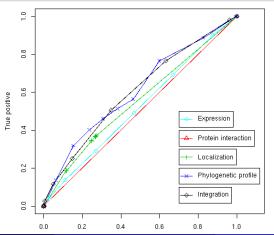
- Excellent approach if the model is correct and enough data are available
- Interpretability of the model
- Inclusion of prior knowledge

#### Cons

- Specific to particular data and networks
- Needs a correct model!
- Difficult integration of heterogeneous data
- Often needs a lot of data and long computation time

### Evaluation on metabolic network reconstruction

- The known metabolic network of the yeast involves 769 proteins.
- Predict edges from distances between a variety of genomic data (expression, localization, phylogenetic profiles, interactions).



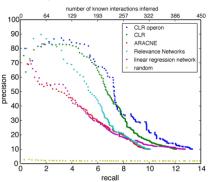
### Evaluation on regulatory network reconstruction

OPEN @ ACCESS Freely available online

PLOS BIOLOGY

## Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles

Jeremiah J. Faith<sup>1©</sup>, Boris Hayete<sup>1©</sup>, Joshua T. Thaden<sup>2,3</sup>, Ilaria Mogno<sup>2,4</sup>, Jamey Wierzbowski<sup>2,5</sup>, Guillaume Cottarel<sup>2,5</sup>, Simon Kasif<sup>1,2</sup>, James J. Collins<sup>1,2</sup>, Timothy S. Gardner<sup>1,2\*</sup>



### Outline

De novo methods

Supervised methods

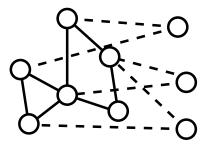
3 Conclusion

## Supervised methods

#### Motivation

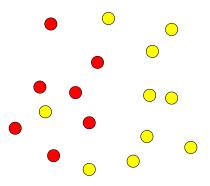
In actual applications,

- we know in advance parts of the network to be inferred
- the problem is to add/remove nodes and edges using genomic data as side information

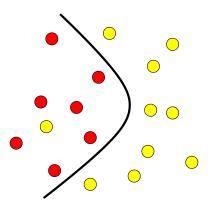


### Supervised method

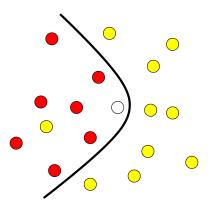
- Given genomic data and the currently known network...
- Infer missing edges between current nodes and additional nodes.



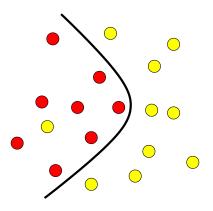
- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)



- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)



- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)



- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

## Pattern recognition and graph inference

### Pattern recognition

Associate a binary label Y to each data X

### Graph inference

Associate a binary label Y to each pair of data  $(X_1, X_2)$ 

#### Two solutions

- Consider each pair  $(X_1, X_2)$  as a single data -> learning over pairs
- Reformulate the graph inference problem as a pattern recognition problem at the level of individual vertices -> local models

## Pattern recognition and graph inference

### Pattern recognition

Associate a binary label Y to each data X

#### Graph inference

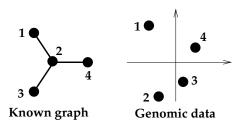
Associate a binary label Y to each pair of data  $(X_1, X_2)$ 

#### Two solutions

- Consider each pair  $(X_1, X_2)$  as a single data -> learning over pairs
- Reformulate the graph inference problem as a pattern recognition problem at the level of individual vertices -> local models

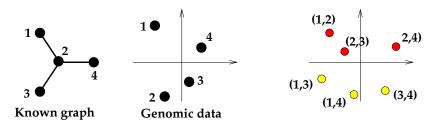
#### Formulation and basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!



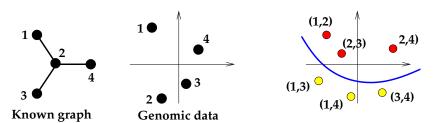
#### Formulation and basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!



#### Formulation and basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!



### Representing a pair as a vector

- Each individual protein is represented by a vector  $v \in \mathbb{R}^p$
- We must represent a pair of proteins (u, v) by a vector  $\psi(u, v) \in \mathbb{R}^q$  in order to estimate a linear classifier
- Question: how build  $\psi(u, v)$  from u and v?

#### Direct sum

• A simple idea is to concatenate the vectors u and v to obtain a 2p-dimensional vector of (u, v):

$$\psi(u,v)=u\oplus v=\left(\begin{array}{c}u\\v\end{array}\right).$$

Problem: a linear function then becomes additive...

$$f(u,v) = w^{\top}\psi(u,v) = w_1^{\top}u + w^{\top}v.$$

#### Direct sum

• A simple idea is to concatenate the vectors u and v to obtain a 2p-dimensional vector of (u, v):

$$\psi(u,v)=u\oplus v=\left(\begin{array}{c}u\\v\end{array}\right).$$

Problem: a linear function then becomes additive...

$$f(u, v) = \mathbf{w}^{\top} \psi(u, v) = \mathbf{w}_1^{\top} u + \mathbf{w}^{\top} v.$$

### Direct product

 Alternatively, make the direct product, i.e., the p<sup>2</sup>-dimensional vector whose entries are all products of entries of u by entries of v:

$$\psi(\mathsf{u},\mathsf{v})=\mathsf{u}\otimes\mathsf{v}$$

- Problem: can get really large-dimensional...
- Good news: inner product factorizes:

$$(u_1 \otimes v_1)^{\top} (u_2 \otimes v_2) = (u_1^{\top} u_2) \times (v_1^{\top} v_2)$$
,

which is good for algorithms that use only inner products (SVM...)

### Direct product

 Alternatively, make the direct product, i.e., the p<sup>2</sup>-dimensional vector whose entries are all products of entries of u by entries of v:

$$\psi(u,v)=u\otimes v$$

- Problem: can get really large-dimensional...
- Good news: inner product factorizes:

$$(u_1 \otimes v_1)^\top (u_2 \otimes v_2) = \left(u_1^\top u_2\right) \times \left(v_1^\top v_2\right)$$

which is good for algorithms that use only inner products (SVM...)

#### Direct product

 Alternatively, make the direct product, i.e., the p<sup>2</sup>-dimensional vector whose entries are all products of entries of u by entries of v:

$$\psi(u,v)=u\otimes v$$

- Problem: can get really large-dimensional...
- Good news: inner product factorizes:

$$(u_1 \otimes v_1)^{\top} (u_2 \otimes v_2) = (u_1^{\top} u_2) \times (v_1^{\top} v_2)$$
,

which is good for algorithms that use only inner products (SVM...)

## Other representations for pairs

### Symmetric tensor product (Ben-Hur and Noble, 2006)

$$\psi(u,v)=(u\otimes v)+(v\otimes u).$$

Intuition: a pair (A, B) is similar to a pair (C, D) if:

- A is similar to C and B is similar to D, or...
- A is similar to D and B is similar to C

### Metric learning (V. et al, 2007)

$$\psi(u,v)=(u-v)^{\otimes 2}.$$

Intuition: a pair (A, B) is similar to a pair (C, D) if:

- A B is similar to C D, or...
- A B is similar to D C.

## Other representations for pairs

### Symmetric tensor product (Ben-Hur and Noble, 2006)

$$\psi(u,v)=(u\otimes v)+(v\otimes u).$$

Intuition: a pair (A, B) is similar to a pair (C, D) if:

- A is similar to C and B is similar to D, or...
- A is similar to D and B is similar to C

### Metric learning (V. et al, 2007)

$$\psi(u,v)=(u-v)^{\otimes 2}.$$

Intuition: a pair (A, B) is similar to a pair (C, D) if:

- A B is similar to C D, or...
- A B is similar to D C.

## Link with metric learning

### Metric learning

For two vectors  $u, v \in \mathcal{H}$  let the metric:

$$d_M(u, v) = (u - v)^{\top} M(u - v)$$
.

Consider the problem:

$$\min_{M\geq 0} \sum_{i} I(u_i, v_i, y_i) + \lambda ||M||_{Frobenius}^2,$$

where I is a hinge loss to enforce:

$$d_M(u_i, v_i) \begin{cases} \leq 1 - \gamma & \text{if}(u_i, v_i) \text{is connected} \\ \geq 1 + \gamma & \text{otherwise.} \end{cases}$$

## Link with metric learning

### Metric learning

For two vectors  $u, v \in \mathcal{H}$  let the metric:

$$d_{M}(u,v) = (u-v)^{\top} M(u-v).$$

Consider the problem:

$$\min_{M\geq 0} \sum_{i} I(u_i, v_i, y_i) + \lambda ||M||_{Frobenius}^2,$$

where *I* is a *hinge loss* to enforce:

$$d_M(u_i, v_i) \begin{cases} \leq 1 - \gamma & \text{if}(u_i, v_i) \text{is connected}, \\ \geq 1 + \gamma & \text{otherwise.} \end{cases}$$

## Link with metric learning

#### Theorem (V. et al., 2007)

A SVM with the representation

$$\psi(u,v)=(u-v)^{\otimes 2}$$

solves this metric learning problem without the constraint  $M \ge 0$ .

 Equivalently, train the SVM over pairs with the metric learning pairwise kernel:

$$K_{MLPK}((u_1, v_1), (u_2, v_2)) = \psi(u_1, v_1)^{\top} \psi(u_2, v_2)$$
  
=  $[K(u_1, u_2) - K(u_1, v_2) - K(v_1, u_2) + K(u_2, v_2)]^2$ .

## Supervised inference with local models

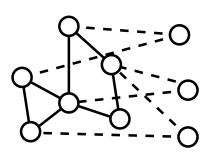
#### The idea (Bleakley et al., 2007)

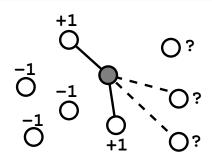
- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.

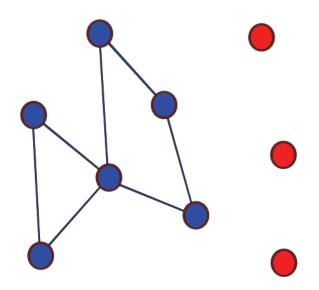
## Supervised inference with local models

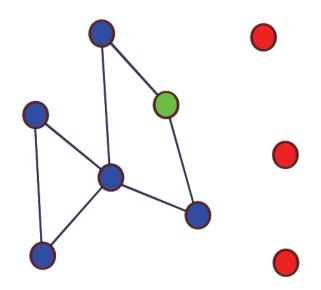
#### The idea (Bleakley et al., 2007)

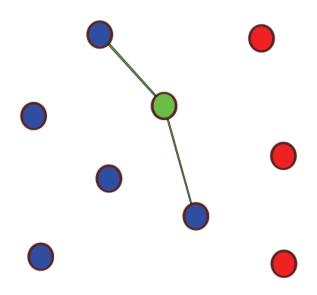
- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.

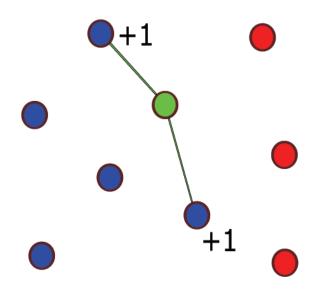


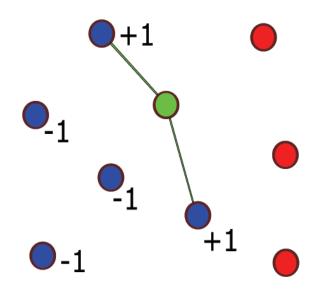


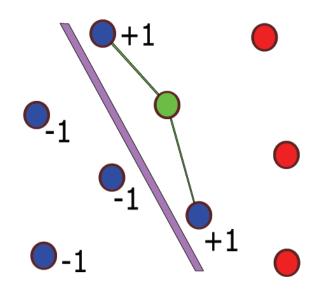


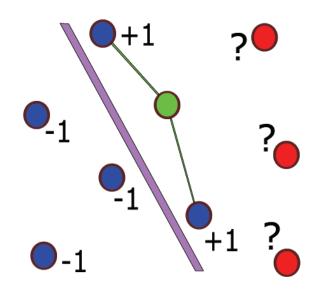


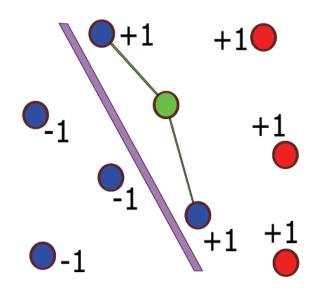


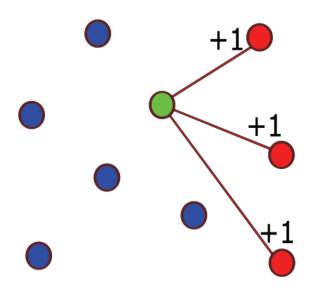


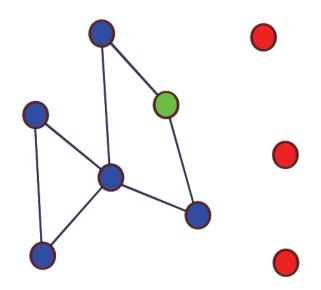


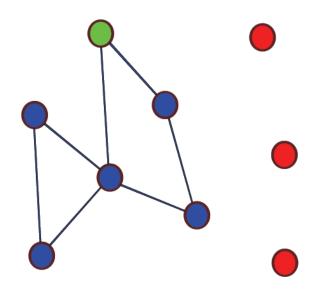


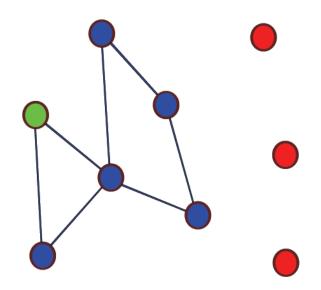


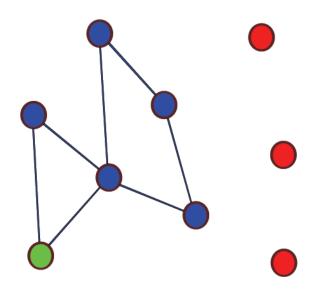


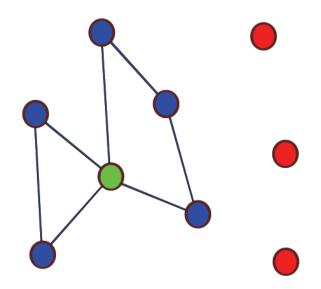


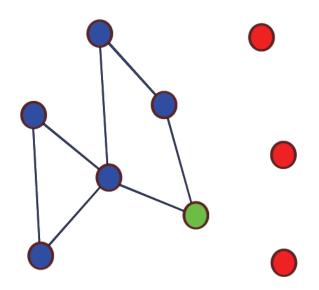












#### A few remarks

- Weak hypothesis:
  - if A is connected to B,
  - if C is similar to B,
  - then A is likely to be connected to C.
- Computationally: much faster to train N local models with N training points each, than to train 1 model with N<sup>2</sup> training points.
- Caveats:
  - each local model may have very few training points
  - no sharing of information between different local models

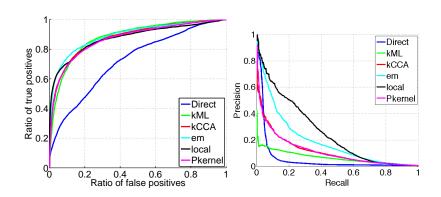
#### A few remarks

- Weak hypothesis:
  - if A is connected to B,
  - if C is similar to B,
  - then A is likely to be connected to C.
- Computationally: much faster to train N local models with N training points each, than to train 1 model with N<sup>2</sup> training points.
- Caveats
  - each local model may have very few training points
  - no sharing of information between different local models

#### A few remarks

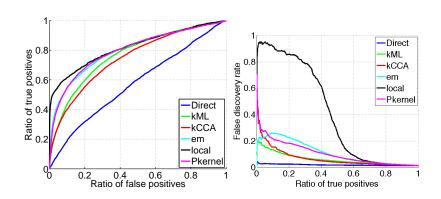
- Weak hypothesis:
  - if A is connected to B,
  - if C is similar to B,
  - then A is likely to be connected to C.
- Computationally: much faster to train N local models with N training points each, than to train 1 model with N<sup>2</sup> training points.
- Caveats:
  - each local model may have very few training points
  - no sharing of information between different local models

## Results: protein-protein interaction (yeast)



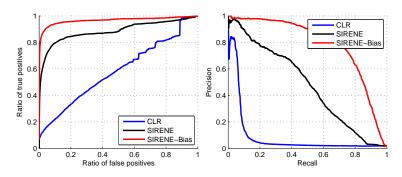
(from Bleakley et al., 2007)

## Results: metabolic gene network (yeast)



(from Bleakley et al., 2007)

## Results: regulatory network (E. coli)



| Method             | Recall at 60% | Recall at 80% |
|--------------------|---------------|---------------|
| SIRENE             | 44.5%         | 17.6%         |
| CLR                | 7.5%          | 5.5%          |
| Relevance networks | 4.7%          | 3.3%          |
| ARACNe             | 1%            | 0%            |
| Bayesian network   | 1%            | 0%            |

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)

## Applications: missing enzyme prediction

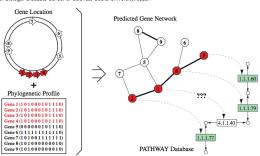


## Prediction of missing enzyme genes in a bacterial metabolic network

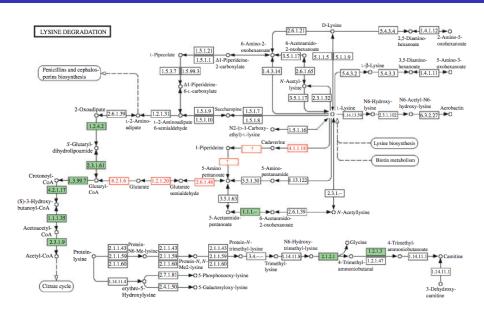
## Reconstruction of the lysine-degradation pathway of *Pseudomonas* aeruginosa

Yoshihiro Yamanishi<sup>1</sup>, Hisaaki Mihara<sup>2</sup>, Motoharu Osaki<sup>2</sup>, Hisashi Muramatsu<sup>3</sup>, Nobuyoshi Esaki<sup>2</sup>, Tetsuya Sato<sup>1</sup>, Yoshiyuki Hizukuri<sup>1</sup>, Susumu Goto<sup>1</sup> and Minoru Kanehisa<sup>1</sup>

- 1 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan
- 2 Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Japan
- 3 Department of Biology, Graduate School of Science, Osaka University, Japan



## Applications: missing enzyme prediction



## Applications: missing enzyme prediction

900 Research Article DOI 10.1002/pmic.200600862

Proteomics 2007, 7, 900-909

# Prediction of nitrogen metabolism-related genes in *Anabaena* by kernel-based network analysis

Shinobu Okamoto<sup>1\*</sup>, Yoshihiro Yamanishi<sup>1</sup>, Shigeki Ehira<sup>2</sup>, Shuichi Kawashima<sup>3</sup>, Koichiro Tonomura<sup>1\*\*</sup> and Minoru Kanehisa<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan

<sup>&</sup>lt;sup>2</sup> Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan

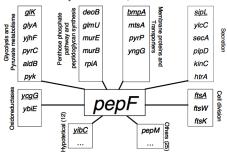
<sup>&</sup>lt;sup>3</sup> Human Genome Center, Institute of Medical Science, University of Tokyo, Meguro, Japan

## Applications: function annotation

## Determination of the role of the bacterial peptidase PepF by statistical inference and further experimental validation

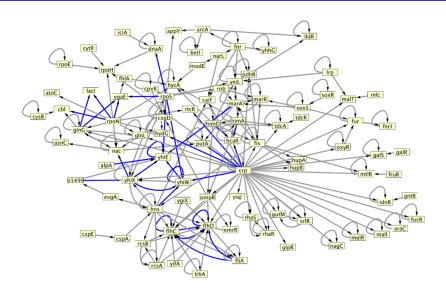
Liliana LOPEZ KLEINE<sup>1,2</sup>, Alain TRUBUIL<sup>1</sup>, Véronique MONNET<sup>2</sup>

<sup>&</sup>lt;sup>2</sup>Unité de Biochimie Bactérienne. INRA Jouy en Josas 78352, France.



<sup>&</sup>lt;sup>1</sup>Unité de Mathématiques et Informatiques Appliquées, INRA Jouv en Josas 78352, France.

## Application: predicted regulatory network (E. coli)



Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).

#### Outline

De novo methods

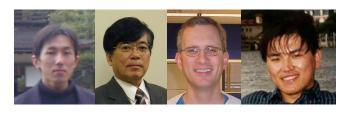
Supervised methods

3 Conclusion

## Take-home messages

- When the network is known in part, supervised methods can be more adapted than unsupervised ones.
- A variety of methods have been investigated recently (metric learning, matrix completion, pattern recognition).
  - work for any network
  - work with any data
  - can integrate heterogeneous data, which strongly improves performance
- Current research: infer edges simultaneously with global constraints on the graph?

## People I need to thank



- Yoshihiro Yamanishi, Minoru Kanehisa (Univ. Kyoto): kCCA, kML
- Jian Qian, Bill Noble (Univ. Washington): pairwise SVM
- Kevin Bleakley, Gerard Biau (Univ. Montpellier), Fantine Mordelet (ParisTech/Curie): local SVM

