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0 Learning with kernels
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Motivations

@ Develop versatile algorithms to process and analyze data

@ No hypothesis made regarding the type of data (vectors, strings,
graphs, images, ...)
@ Instead we study methods based on pairwise comparisons.
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Positive Definite Kernels

Definition

A positive definite (p.d.) kernel on the set X is a function
K: X x X — R symmetric:
V(x,x) € X%, K (x,x)=K(x,x),

and which satisfies, for all N € N, (x4, Xo, ..

L, Xy) € XN et
(ay,a,...,an) € RN:

=

Za,a, (x;,%;) > 0.
1 j=1
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Classical kernels for vectors (X = RP) include:

@ The linear kernel
Kiin (x,X') =x"x".

@ The polynomial kernel
d
Kool (X, X') = <xTx’ + a> .

@ The Gaussian RBF kernel:

x—x |2
KGaussian (x7 X/) = exp <_%) .
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Geometric interpretation : Kernels as Inner Products

Theorem (Aronszajn, 1950)

K is a p.d. kernel on the set X if and only if there exists a Hilbert space
'H and a mapping

¢ X —H,
such that, for any x,x" in X':
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Functional interpretation: Reproducing Kernel Hilbert

Space

@ To each p.d. kernel on X is associated a unique Hilbert space of
function X — R, called the reproducing kernel Hilbert space
(RKHS) H

@ Typical functions are:

n
= Za,-K(x,-./x) ,
i=1

with norm

‘fHH*ZZ@/Oﬁ X,,X/

=1 =1
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Examples: Gaussian RBF kernel

x—x|?
Kaaussian (X, X') = exp C%) ,
( - X, 2 )
E a; exp ’

HfHH—/\ S du
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Examples: Gaussian RBF kernel

x—x|?
KGaussian (X, X') = exp C%) ,
Z ( —x,|| )
o exp :

HfHH—/\ S du

Small norm — slow variations.
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Pattern recognition, aka supervised classification
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Kernel methods

@ Define an empirical risk function R(f)
@ Solve the problem:

i 2
min { R(F) + All 113} -

A controls the trade-off between fitting the data and being a smooth
function.
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Learning with kernels: Summary

@ Feature point of view: A kernel is an inner product with respect to
particular features.

@ Geometric point of view : A kernel defines an implicit geometry on
the space of data, although data do not need to have any prior
geometric/algebric structure

@ Functional point of view : Kernel methods learn functions that tend
to be smooth with respect to this geometry

@ Kernel engineering is the problem of designing specific kernel for
specific data and specific tasks. Good place to put prior
knowledge!
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e Making kernels
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Example: supervised sequence classification
Data (training)

@ Secreted proteins:
MASKATLLLAFTLLFATCIARHQORQQQONQCQLONIEA. . .
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL. . .

@ Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG. . .
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. . .
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP. .

Goal

@ Build a classifier to predict whether new proteins are secreted or
not.

v
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Kernel for biological sequences?

What is a GOOD kernels?
@ Mathematically valid (?)

@ Fast to compute
@ Lead to good performances
@ other?
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Kernel engineering for protein sequences

@ Define a (possibly high-dimensional) feature space of interest
e Physico-chemical kernels
e Spectrum, mismatch, substring kernels
o Pairwise, motif kernels
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Kernel engineering for protein sequences

@ Define a (possibly high-dimensional) feature space of interest
e Physico-chemical kernels
e Spectrum, mismatch, substring kernels
o Pairwise, motif kernels
@ Derive a kernel from a generative model
o Fisher kernel
o Mutual information kernel
e Marginalized kernel
@ Derive a kernel from a similarity measure
@ Local alignment kernel
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Example 1: substring indexation

Index the feature space by fixed-length strings, i.e.,

® (x) = (Pu (X)) yeax

where ¢, (x) can be:
@ the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)
@ the number of occurrences of u in x up to m mismatches (without
gaps) : mismaich kernel (Leslie et al., 2004)

@ the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)
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Example 2: Mutual information kernels

@ Parametric statistical model:
{Ps,0 € © CR™} C M (X)

@ Chose a prior w(d#) on the measurable set ©
@ Form the kernel (Seeger, 2002):

K (x,x') = - Po(x)Py(x")w(d6) .

@ See, e.g., Cuturi and V. (2004) for a fast mutual information kernel
based on variable-length Markov models.
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Sequence alignment

How to compare 2 sequences?

X1 = CGGSLIAMMWEGV
Xo = CLIVMMNRLMWE GV

Find a good alignment:

CGGSLIAMM-——-WEGV

R N P R R
C---LIVMMNRLMWEGV
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Example 3: Local alignment kernel

Smith-Waterman score

@ The widely-used Smith-Waterman local alignment score is defined
by:

SWs g(x,y) := ) erpj%gy) Ss,g().

@ It is symmetric, but not positive definite...
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Example 3: Local alignment kernel

Smith-Waterman score

@ The widely-used Smith-Waterman local alignment score is defined
by:

SWs g(x,y) := ) Grg%}y) Ss,g().

@ It is symmetric, but not positive definite...

v

LA kernel
The local alignment kernel:

K (x,y) = Y exp(Bssg(x,y. 7)),
men(x,y)

is symmetric positive definite (V. et al., 2004).

v
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Example 4 : Kernel on a graph
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Example 4 : Kernel on a graph
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Laplacian-based kernel

Theset H = {f e R™: 31", fi = 0} endowed with the norm:

Q(f) =Y (F(x) — £ (x;))?

i~oj

is a RKHS whose reproducing kernel is the pseudo-inverse of the
graph Laplacian.

v
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The choice of kernel makes a difference

v 1 1 1

1
SVM-LA —+—
SVM-pairwise ---*---
SVM-Mismatch ---
50 SVM-Fisher -

0 ¥

No. of families with given performance

Performance on the SCOP superfamily recognition benchmark.
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e Choosing and combining kernels
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@ We can imagine plenty of kernels for a given application
@ Which one to use?

@ Perhaps we can combine them to make better than each one
individually?
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Example: sum kernels

@ Consider p kernels Ki, ..., K,
@ Form the sum:

@ Equivalently, work in the RKHS H = H1 @ ... ® Hp with

1115 = ZH fill3, -
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Example: multiple kernel learning (MKL)

@ Form the convex combination:

o
K = Z niK; .
i=1

where the weights are chosen to minimize the following convex
function under the constraint tr(K) = 1 (Lanckriet et al., 2003):

A(K) = inf {R()+ Al I}

@ Equivalently, work in the RKHS H = H1 @ ... ® Hp with
non-Hilbertian group Ly norm (Bach et al., 2004):

p
fllg = inf fi |l -
= it > s

v
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Application: gene network reconstruction

ROC curves: Supervised approach
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From Yamanishi et al., 2005.
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Application: image classification

Performance comparison on Corel14

012t _a
e Histogram kernels (H) o1l E

. H -
e Walk kernels (W) 5 0.1}

© 0.09 - -
e Tree-walk kernels (TW) E 0.08l _E_ H
-
e Weighted tree-walks 007 —_ :
(WwTW) 0.06f e 1

00sf . . . _L

e MKL (M) - w KeTr\r/]vels WTW M

From Bach et al., 2007.
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e Conclusion
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Questions

@ Kernel design: which principles? Which objective? Which criteria?

@ Kernel selection / combination: same question + which
algorithms?

@ Kernel learning : where to go beyond linear combinations of
pre-defined kernels?
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