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Motivations

Develop versatile algorithms to process and analyze data
No hypothesis made regarding the type of data (vectors, strings,
graphs, images, ...)
Instead we study methods based on pairwise comparisons.
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Positive Definite Kernels

Definition
A positive definite (p.d.) kernel on the set X is a function
K : X × X → R symmetric:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
= K

(
x′, x

)
,

and which satisfies, for all N ∈ N, (x1, x2, . . . , xN) ∈ XN et
(a1, a2, . . . , aN) ∈ RN :

N∑
i=1

N∑
j=1

aiajK
(
xi , xj

)
≥ 0.
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Examples

Classical kernels for vectors (X = Rp) include:
The linear kernel

Klin
(
x, x′

)
= x>x′ .

The polynomial kernel

Kpoly
(
x, x′

)
=

(
x>x′ + a

)d
.

The Gaussian RBF kernel:

KGaussian
(
x, x′

)
= exp

(
−‖x− x′ ‖2

2σ2

)
.
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Geometric interpretation : Kernels as Inner Products

Theorem (Aronszajn, 1950)
K is a p.d. kernel on the set X if and only if there exists a Hilbert space
H and a mapping

Φ : X 7→ H ,

such that, for any x, x′ in X :

K
(
x, x′

)
=

〈
Φ (x) ,Φ

(
x′

)〉
H .

φ
X F
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Functional interpretation: Reproducing Kernel Hilbert
Space

To each p.d. kernel on X is associated a unique Hilbert space of
function X → R, called the reproducing kernel Hilbert space
(RKHS) H.
Typical functions are:

f (x) =
n∑

i=1

αiK (xi , x) ,

with norm

‖ f ‖2
H =

n∑
i=1

n∑
j=1

αiαjK
(
xi , xj

)
.
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Examples: Gaussian RBF kernel

KGaussian
(
x, x′

)
= exp

(
−‖x− x′ ‖2

2σ2

)
,

f (x) =
n∑

i=1

αi exp
(
−‖x− xi ‖2

2σ2

)
,

‖ f ‖2
H =

∫ ∣∣∣ f̂ (ω)
∣∣∣2 e

σ2ω2
2 dω .

Small norm =⇒ slow variations.
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Pattern recognition, aka supervised classification
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Kernel methods

1 Define an empirical risk function R(f )
2 Solve the problem:

min
f∈H

{
R(f ) + λ‖ f ‖2

H

}
.

λ controls the trade-off between fitting the data and being a smooth
function.
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Learning with kernels: Summary

Feature point of view: A kernel is an inner product with respect to
particular features.
Geometric point of view : A kernel defines an implicit geometry on
the space of data, although data do not need to have any prior
geometric/algebric structure
Functional point of view : Kernel methods learn functions that tend
to be smooth with respect to this geometry
Kernel engineering is the problem of designing specific kernel for
specific data and specific tasks. Good place to put prior
knowledge!
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Example: supervised sequence classification

Data (training)
Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA...
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW...
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...
...

Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG...
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG...
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP..
...

Goal
Build a classifier to predict whether new proteins are secreted or
not.
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Kernel for biological sequences?

mahtlg...

φ
X F

maskat...
msises

marssl...

malhtv...
mappsv...

What is a GOOD kernels?
Mathematically valid (?)
Fast to compute
Lead to good performances
other?
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Kernel engineering for protein sequences

Define a (possibly high-dimensional) feature space of interest
Physico-chemical kernels
Spectrum, mismatch, substring kernels
Pairwise, motif kernels

Derive a kernel from a generative model
Fisher kernel
Mutual information kernel
Marginalized kernel

Derive a kernel from a similarity measure
Local alignment kernel
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Example 1: substring indexation

Index the feature space by fixed-length strings, i.e.,

Φ (x) = (Φu (x))u∈Ak

where Φu (x) can be:
the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)
the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)
the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)
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Example 2: Mutual information kernels

Parametric statistical model:

{Pθ, θ ∈ Θ ⊂ Rm} ⊂ M+
1 (X )

Chose a prior w(dθ) on the measurable set Θ

Form the kernel (Seeger, 2002):

K
(
x, x′

)
=

∫
θ∈Θ

Pθ(x)Pθ(x′)w(dθ) .

See, e.g., Cuturi and V. (2004) for a fast mutual information kernel
based on variable-length Markov models.
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Sequence alignment

Motivation
How to compare 2 sequences?

x1 = CGGSLIAMMWFGV
x2 = CLIVMMNRLMWFGV

Find a good alignment:

CGGSLIAMM----WFGV
|...|||||....||||
C---LIVMMNRLMWFGV
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Example 3: Local alignment kernel

Smith-Waterman score
The widely-used Smith-Waterman local alignment score is defined
by:

SWS,g(x, y) := max
π∈Π(x,y)

sS,g(π).

It is symmetric, but not positive definite...

LA kernel
The local alignment kernel:

K (β)
LA (x, y) =

∑
π∈Π(x,y)

exp
(
βsS,g (x, y, π)

)
,

is symmetric positive definite (V. et al., 2004).
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Example 4 : Kernel on a graph

φ

Laplacian-based kernel
The set H =

{
f ∈ Rm :

∑m
i=1 fi = 0

}
endowed with the norm:

Ω (f ) =
∑
i∼j

(
f (xi)− f

(
xj

))2

is a RKHS whose reproducing kernel is the pseudo-inverse of the
graph Laplacian.
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The choice of kernel makes a difference
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Motivation

We can imagine plenty of kernels for a given application
Which one to use?
Perhaps we can combine them to make better than each one
individually?
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Example: sum kernels

Consider p kernels K1, . . . , Kp

Form the sum:

K =

p∑
i=1

Ki .

Equivalently, work in the RKHS H = H1 ⊕ . . .⊕Hp with

‖ f ‖2
H = inf

f=f1+...+fp

p∑
i=1

‖ fi ‖2
Hi

.
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Example: multiple kernel learning (MKL)

Form the convex combination:

K =

p∑
i=1

ηiKi .

where the weights are chosen to minimize the following convex
function under the constraint tr(K ) = 1 (Lanckriet et al., 2003):

h(K ) = inf
f∈HK

{R(f ) + λ‖ f ‖HK }

Equivalently, work in the RKHS H = H1 ⊕ . . .⊕Hp with
non-Hilbertian group L1 norm (Bach et al., 2004):

‖ f ‖H = inf
f=f1+...+fp

p∑
i=1

‖ fi ‖Hi .
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Application: gene network reconstruction

From Yamanishi et al., 2005.
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Application: image classification

From Bach et al., 2007.
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Questions

Kernel design: which principles? Which objective? Which criteria?
Kernel selection / combination: same question + which
algorithms?
Kernel learning : where to go beyond linear combinations of
pre-defined kernels?
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