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Motivation

Goal
Design a classifier to
automatically assign a
class to future samples
from their expression
profile
Interpret biologically the
differences between the
classes

Jean-Philippe Vert (ParisTech/Curie) Shrinkage classifiers for genomic data Ascona 2009 4 / 43



Pattern recognition, aka supervised classification
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Pattern recognition, aka supervised classification

Challenges
High dimension
Few samples
Structured data
Heterogeneous data
Prior knowledge
Fast and scalable
implementations
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Linear classifiers

The model
Each sample is represented by a vector x = (x1, . . . , xp)

Goal: estimate a linear function:

fβ(x) =

p∑
i=1

βixi + β0 .

Interpretability: the weight βi quantifies the influence of feature i
(but...)
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Linear classifiers

Training the model
Minimize an empirical risk on the training samples:

min
β∈Rp+1

Remp(β) =
1
n

n∑
i=1

l(fβ(xi), yi) ,

... subject to some constraint on β, e.g.:

Ω(β) ≤ C .
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Example : Norm Constraints

The approach
A common method in statistics to learn with few samples in high
dimension is to constrain the Euclidean norm of β

Ωridge(β) = ‖β ‖2
2 =

p∑
i=1

β2
i ,

(ridge regression, support vector machines...)

Pros
Good performance in
classification

Cons
Limited interpretation
(small weights)
No prior biological
knowledge
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Example : Feature Selection

The approach
Constrain most weights to be 0, i.e., select a few genes whose
expression are sufficient for classification.

ΩBest subset selection(β) = ‖β ‖0 =

p∑
i=1

1(βi > 0) .

This is usually a NP-hard problem, many greedy variants have been
proposed (filter methods, wrapper methods)

Pros
Good performance
Biomarker selection
Interpretability

Cons
NP-hard
Gene selection not robust
No use of prior knowledge
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Example : Sparsity inducing convex priors

The approach
Constrain most weights to be 0 through a convex non-differentiable
penalty:

ΩLASSO(β) = ‖β ‖1 =

p∑
i=1

|βi | .

Greedy feature selection (T-tests, ...) Several variants exist, e.g.,
elastic net penalty (‖β ‖1 + ‖β ‖2), ... )

Pros
Good performance
Biomarker selection
Interpretability

Cons
Gene selection not robust
No use of prior knowledge
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Why LASSO leads to sparse solutions
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Incorporating prior knowledge

The idea
If we have a specific prior knowledge about the “correct” weights,
it can be included in Ω in the contraint:

Minimize Remp(β) subject to Ω(β) ≤ C .

If we design a convex function Ω, then the algorithm boils down to
a convex optimization problem (usually easy to solve).
Similar to priors in Bayesian statistics
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Comparative Genomic Hybridization (CGH)

Motivation
Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome
Very useful, in particular in cancer research
Can we classify CGH arrays for diagnosis or prognosis purpose?
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Classification of array CGH

Prior knowledge
Let x be a CGH profile
We focus on linear classifiers, i.e., the sign of :

f (x) = x>β .

We expect β to be
sparse : only a few positions should be discriminative
piecewise constant : within a region, all probes should contribute
equally
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A penalty for CGH array classification

The fused LASSO penalty (Tibshirani et al., 2005)

Ωfusedlasso(β) =
∑

i

|βi |+
∑
i∼j

|βi − βj | .

First term leads to sparse solutions
Second term leads to piecewise constant solutions
Combined with a hinge loss leads to a fused SVM (Rapaport et
al., 2008);
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Application: metastasis prognosis in melanoma
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Tissue classification from microarray data
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Gene networks
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Gene networks and expression data

Motivation
Basic biological functions usually involve the coordinated action of
several proteins:

Formation of protein complexes
Activation of metabolic, signalling or regulatory pathways

Many pathways and protein-protein interactions are already known
Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge
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An idea

1 Use the gene network to extract the “important information” in
gene expression profiles by Fourier analysis on the graph

2 Learn a linear classifier on the smooth components
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Graph Laplacian

Definition
The Laplacian of the graph is the matrix L = D − A.

1

2

3

4

5

L = D − A =


1 0 −1 0 0
0 1 −1 0 0
−1 −1 3 −1 0
0 0 −1 2 −1
0 0 0 1 1
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Fourier basis

L is positive semidefinite
The eigenvectors e1, . . . , en of L with eigenvalues
0 = λ1 ≤ . . . ≤ λn form a basis called Fourier basis
For any f : V → R, the Fourier transform of f is the vector f̂ ∈ Rn

defined by:
f̂i = f>ei , i = 1, . . . , n.

The inverse Fourier formula holds:

f =
n∑

i=1

f̂iei .
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Fourier basis

λ= 4.2

λ=0 λ= 0.5 λ= 1

λ= 2.3
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Fourier basis
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Smoothing operator

Definition
Let φ : R+ → R+ be non-increasing.
A smoothing operator Sφ transform a function f : V → R into a
smoothed version:

Sφ(f ) =
n∑

i=1

f̂iφ(λi)ei .

Jean-Philippe Vert (ParisTech/Curie) Shrinkage classifiers for genomic data Ascona 2009 28 / 43



Smoothing operators

Examples
Identity operator (Sφ(f ) = f ):

φ(λ) = 1 , ∀λ

Low-pass filter:

φ(λ) =

{
1 if λ ≤ λ∗ ,

0 otherwise.

Attenuation of high frequencies:

φ(λ) = exp(−βλ) .
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Supervised classification and regression

Working with smoothed profiles
Classical methods for linear classification and regression with a
ridge penalty solve:

min
β∈Rp

1
n

n∑
i=1

l
(
β>fi , yi

)
+ λβ>β .

Applying these algorithms on the smooth profiles means solving:

min
β∈Rp

1
n

n∑
i=1

l
(
β>Sφ(fi), yi

)
+ λβ>β .
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Link with shrinkage estimator

Lemma
This is equivalent to:

min
v∈Rp

1
n

n∑
i=1

l
(

v>fi , yi

)
+ λ

p∑
i=1

v̂2
i

φ(λi)
,

hence the linear classifier v is smooth.

Proof

Let v =
∑n

i=1 φ(λi)eie>i β, then

β>Sφ(fi) = β>
n∑

i=1

f̂iφ(λi)ei = f>v .

Then v̂i = φ(λi)β̂i and β>β =
∑n

i=1
v̂2

i
φ(λi )2 .
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Kernel methods

Smoothing kernel
Kernel methods (SVM, kernel ridge regression..) only need the inner
product between smooth profiles:

K (f , g) = Sφ(f )>Sφ(g)

=
n∑

i=1

f̂i ĝiφ(λi)
2

= f>
(

n∑
i=1

φ(λi)
2eie>i

)
g

= f>Kφg ,

(1)

with

Kφ =
n∑

i=1

φ(λi)
2eie>i .
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Examples

For φ(λ) = exp(−tλ), we recover the diffusion kernel:

Kφ = expM(−2tL) .

For φ(λ) = 1/
√

1 + λ, we obtain

Kφ = (L + I)−1 ,

and the penalization is:

n∑
i=1

v̂2
i

φ(λi)
= v> (L + I) v = ‖ v ‖2

2 +
∑
i∼j

(vi − vj)
2 .
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Data

Expression
Study the effect of low irradiation doses on the yeast
12 non irradiated vs 6 irradiated
Which pathways are involved in the response at the transcriptomic
level?

Graph
KEGG database of metabolic pathways
Two genes are connected is they code for enzymes that catalyze
successive reactions in a pathway (metabolic gene network).
737 genes, 4694 vertices.

Jean-Philippe Vert (ParisTech/Curie) Shrinkage classifiers for genomic data Ascona 2009 34 / 43



Classification performance

Spectral analysis of gene expression profiles using gene networks

a)
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Fig. 2. PCA plots of the initial expression profiles (a) and the transformed profiles using network topology (80% of the eigenvalues removed)

(b). The green squares are non-irradiated samples and the red rhombuses are irradiated samples. Individual sample labels are shown together

with GO and KEGG annotations associated with each principal component.
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Fig. 3. Performance of the supervised classification when changing the metric with the function φexp(λ) = exp(−βλ) for different values
of β (left picture), or the function φthres(λ) = 1(λ < λ0) for different values of λ0 (i.e., keeping only a fraction of the smallest eigenvalues,

right picture). The performance is estimated from the number of misclassifications in a leave-one-out error.

shift). The reconstruction of this from our data with no prior

input of this knowledge strongly confirms the relevance of our

analysis method. It also shows that analysing expression in

terms of the global up- or down-regulation of entire pathways

as defined, for example, by KEGG, could mislead as there are

many antagonist processes that take place inside pathways.

Representing KEGG as a large network helps keep the bio-

chemical relationships between genes without the constraints

of pathway limits.

7
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ClassifierRapaport et al
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Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-

8
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Classifier
Spectral analysis of gene expression profiles using gene networks

 a)  b)
Fig. 5. Theglycolysis/gluconeogenesis pathways ofKEGGwithmapped coefficients of the decision function obtained by applying a customary

linear SVM (a) and using high-frequency eigenvalue attenuation (b). The pathways are mutually exclusive in a cell, as clearly highlighted by

our algorithm.

or under-expression of individual genes, which is the cost to

pay to obtain instead an interpretation in terms of more glo-

bal pathways. Constraining the classifier to rely on just a few

genes would have a similar effect of reducing the complexity

of the problem,butwould lead to amoredifficult interpretation

in terms of pathways.

An advantage of our approach over other pathway-based

clustering methods is that we consider the network modules

that naturally appear from spectral analysis rather than a histo-

rically defined separation of the network into pathways. Thus,

pathways cross-talking is taken into account, which is diffi-

cult to do using other approaches. It can however be noticed

that the implicit decomposition into pathways that we obtain

is biased by the very incomplete knowledge of the network

and that certain regions of the network are better understood,

leading to a higher connection concentration.

Like most approaches aiming at comparing expression data

with gene networks such as KEGG, the scope of this work

is limited by two important constraints. First the gene net-

work we use is only a convenient but rough approximation to

describe complex biochemical processes; second, the trans-

criptional analysis of a sample can not give any information

regarding post-transcriptional regulation and modifications.

Nevertheless, we believe that our basic assumptions remain

valid, in that we assume that the expression of the genes

belonging to the same metabolic pathways module are coor-

dinately regulated. Our interpretation of the results supports

this assumption.

Another important caveat is that we simplify the network

description as an undirected graph of interactions. Although

this would seem to be relevant for simplifying the descrip-

tion of metabolic networks, real gene regulation networks are

influenced by the direction, sign and importance of the interac-

tion. Although the incorporationof weights into the Laplacian

(equation 1) is straightforward and allows the extension of the

approach to weighted undirected graphs, the incorporation

of directions and signs to represent signalling or regulatory

pathways requires more work but could lead to important

advances for the interpretation of microarray data in cancer

studies, for example.
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Other penalties

Prior hypothesis
Genes near each other on the graph should have similar weigths.

Two solutions (Rapaport et al., 2007, 2008)

Ωspectral(β) =
∑
i∼j

(βi − βj)
2 ,

Ωgraphfusion(β) =
∑
i∼j

|βi − βj |+
∑

i

|βi | .
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Other penalties

Prior hypothesis
Genes near each other on the graph should have non-zero weigths
(i.e., the support of β should be made of a few connected
components).

Graph Lasso (Jacob et al., 2009)

Ωintersection(β) =
∑
i∼j

√
β2

i + β2
j ,

Ωunion(β) = sup
α∈Rp:∀i∼j,‖α2

i +α2
j ‖≤1

α>β .
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Example: finding discriminant modules in gene
networks

Groups (1, 2) and (2, 3). Left: Ωintersection(β). Right: Ωunion(β). Vertical
axis is β2.
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Outline

1 Supervised classification of genomic data
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Conclusion

Modern machine learning methods for regression / classification
lend themselves well to the integration of prior knowledge in the
penalization / regularization function.
Several computationally efficient approaches (structured LASSO,
kernels...)
Natural extension to data integration

Jean-Philippe Vert (ParisTech/Curie) Shrinkage classifiers for genomic data Ascona 2009 42 / 43



People I need to thank

Franck Rapaport, Emmanuel Barillot, Andrei Zynoviev, Laurent
Jacob (Institut Curie / Mines ParisTech)
Guillaume Obozinski (UC Berkeley / INRIA)

Jean-Philippe Vert (ParisTech/Curie) Shrinkage classifiers for genomic data Ascona 2009 43 / 43


	Supervised classification of genomic data
	Classification of array CGH data
	Classification of expression data using gene networks
	Conclusion

