Inference of biological networks

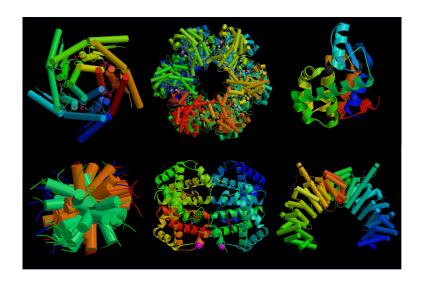
Jean-Philippe Vert

Jean-Philippe. Vert@mines-paristech.fr

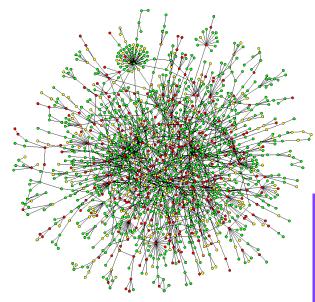
Mines ParisTech, Institut Curie, INSERM U900

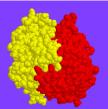
"Advances in the Theory of Control, Signals, and Systems, with Physical Modeling" workshop, Bernoulli Center, EPFL, June 5, 2009.

Proteins

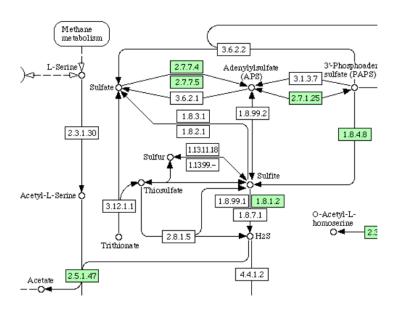


Network 1: protein-protein interaction

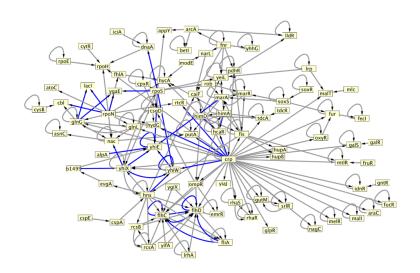




Network 2: metabolic network



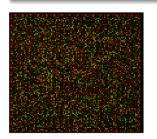
Network 3: gene regulatory network

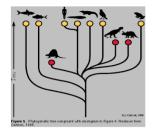


Data available

Biologists have collected a lot of data about proteins. e.g.,

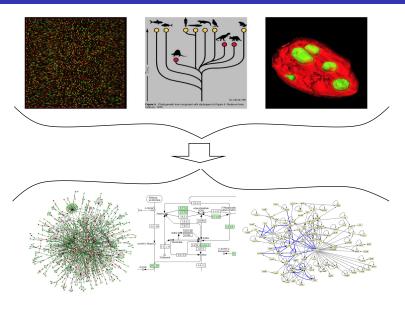
- Gene expression measurements
- Phylogenetic profiles
- Location of proteins/enzymes in the cell





How to use this information "intelligently" to find a good function that predicts edges between nodes.

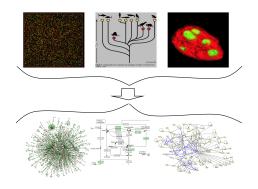
Our goal



More precisely

Formalization

- $V = \{1, ..., N\}$ vertices (e.g., genes, proteins)
- $\mathcal{D} = (x_1, \dots, x_N) \in \mathcal{H}^N$ data about the vertices (\mathcal{H} Hilbert space)
- Goal: predict edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$.



Typical reverse-engineering strategies

- Fit a dynamical system to time series (e.g., PDE, boolean networks, state-space models).
- Detect statistical conditional independence or dependency (Bayesian netwok, mutual information networks, co-expression)

Pros

- Excellent approach if the model is correct and enough data are available
- Interpretability of the model
- Inclusion of prior knowledge

Cons

- Specific to particular data and networks
- Needs a correct model!
- Difficult integration of heterogeneous data
- Often needs a lot of data and long computation time

Typical reverse-engineering strategies

- Fit a dynamical system to time series (e.g., PDE, boolean networks, state-space models).
- Detect statistical conditional independence or dependency (Bayesian netwok, mutual information networks, co-expression)

Pros

- Excellent approach if the model is correct and enough data are available
- Interpretability of the model
- Inclusion of prior knowledge

Cons

- Specific to particular data and networks
- Needs a correct model!
- Difficult integration of heterogeneous data
- Often needs a lot of data and long computation time

Typical reverse-engineering strategies

- Fit a dynamical system to time series (e.g., PDE, boolean networks, state-space models).
- Detect statistical conditional independence or dependency (Bayesian netwok, mutual information networks, co-expression)

Pros

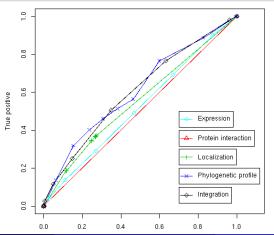
- Excellent approach if the model is correct and enough data are available
- Interpretability of the model
- Inclusion of prior knowledge

Cons

- Specific to particular data and networks
- Needs a correct model!
- Difficult integration of heterogeneous data
- Often needs a lot of data and long computation time

Does it work? Metabolic network...

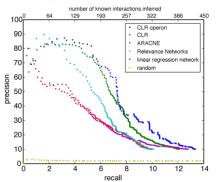
- The known metabolic network of the yeast involves 769 proteins.
- Predict edges from distances between a variety of genomic data (expression, localization, phylogenetic profiles, interactions).



PLOS BIOLOGY

Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles

Jeremiah J. Faith¹, Boris Hayete¹, Joshua T. Thaden^{2,3}, Ilaria Mogno^{2,4}, Jamey Wierzbowski^{2,5}, Guillaume Cottarel^{2,5}, Simon Kasif^{1,2}, James J. Collins^{1,2}, Timothy S. Gardner^{1,2*}

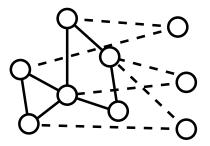


Supervised methods

Motivation

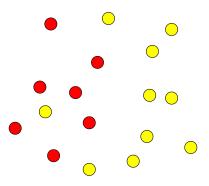
In actual applications,

- we know in advance parts of the network to be inferred
- the problem is to add/remove nodes and edges using genomic data as side information

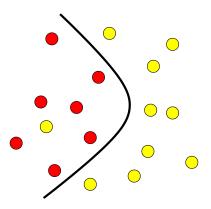


Supervised method

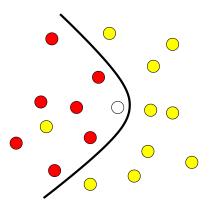
- Given genomic data and the currently known network...
- Infer missing edges between current nodes and additional nodes.



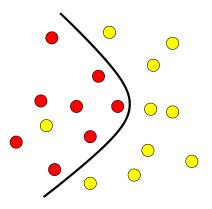
- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)



- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)



- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)



- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

Pattern recognition and graph inference

Pattern recognition

Associate a binary label Y to each data X

Graph inference

Associate a binary label Y to each pair of data (X_1, X_2)

Two solutions

- Consider each pair (X_1, X_2) as a single data -> learning over pairs
- Reformulate the graph inference problem as a pattern recognition problem at the level of individual vertices -> local models

Pattern recognition and graph inference

Pattern recognition

Associate a binary label Y to each data X

Graph inference

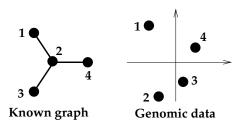
Associate a binary label Y to each pair of data (X_1, X_2)

Two solutions

- Consider each pair (X_1, X_2) as a single data -> learning over pairs
- Reformulate the graph inference problem as a pattern recognition problem at the level of individual vertices -> local models

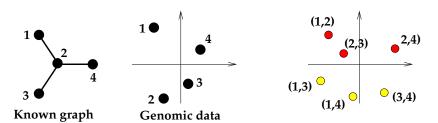
Formulation and basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!



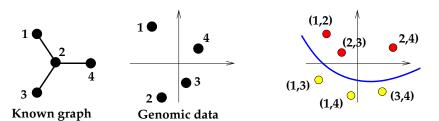
Formulation and basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!



Formulation and basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!



Representing a pair as a vector

- Each individual protein is represented by a vector $v \in \mathbb{R}^p$
- We must represent a pair of proteins (u, v) by a vector $\psi(u, v) \in \mathbb{R}^q$ in order to estimate a linear classifier
- Question: how build $\psi(u, v)$ from u and v?

Direct sum

• A simple idea is to concatenate the vectors u and v to obtain a 2p-dimensional vector of (u, v):

$$\psi(u,v)=u\oplus v=\left(\begin{array}{c}u\\v\end{array}\right).$$

Problem: a linear function then becomes additive...

$$f(u,v) = w^{\top}\psi(u,v) = w_1^{\top}u + w^{\top}v.$$

Direct sum

• A simple idea is to concatenate the vectors u and v to obtain a 2p-dimensional vector of (u, v):

$$\psi(u,v)=u\oplus v=\left(\begin{array}{c}u\\v\end{array}\right).$$

Problem: a linear function then becomes additive...

$$f(u, v) = \mathbf{w}^{\top} \psi(u, v) = \mathbf{w}_1^{\top} u + \mathbf{w}^{\top} v.$$

Direct product

 Alternatively, make the direct product, i.e., the p²-dimensional vector whose entries are all products of entries of u by entries of v:

$$\psi(u,v)=u\otimes v$$

- Problem: can get really large-dimensional...
- Good news: inner product factorizes:

$$(u_1 \otimes v_1)^{\top} (u_2 \otimes v_2) = (u_1^{\top} u_2) \times (v_1^{\top} v_2)$$
,

which is good for algorithms that use only inner products (SVM...)

Direct product

 Alternatively, make the direct product, i.e., the p²-dimensional vector whose entries are all products of entries of u by entries of v:

$$\psi(u,v)=u\otimes v$$

- Problem: can get really large-dimensional...
- Good news: inner product factorizes:

$$(u_1 \otimes v_1)^\top (u_2 \otimes v_2) = \left(u_1^\top u_2\right) \times \left(v_1^\top v_2\right)$$

which is good for algorithms that use only inner products (SVM...)

Direct product

 Alternatively, make the direct product, i.e., the p²-dimensional vector whose entries are all products of entries of u by entries of v:

$$\psi(\mathsf{u},\mathsf{v})=\mathsf{u}\otimes\mathsf{v}$$

- Problem: can get really large-dimensional...
- Good news: inner product factorizes:

$$(u_1 \otimes v_1)^{\top} (u_2 \otimes v_2) = (u_1^{\top} u_2) \times (v_1^{\top} v_2)$$
,

which is good for algorithms that use only inner products (SVM...)

Other representations for pairs

Symmetric tensor product (Ben-Hur and Noble, 2006)

$$\psi(u,v)=(u\otimes v)+(v\otimes u).$$

Intuition: a pair (A, B) is similar to a pair (C, D) if:

- A is similar to C and B is similar to D, or...
- A is similar to D and B is similar to C

Metric learning (V. et al, 2007)

$$\psi(u,v)=(u-v)^{\otimes 2}.$$

Intuition: a pair (A, B) is similar to a pair (C, D) if:

- A B is similar to C D, or...
- A B is similar to D C.

Other representations for pairs

Symmetric tensor product (Ben-Hur and Noble, 2006)

$$\psi(u,v)=(u\otimes v)+(v\otimes u).$$

Intuition: a pair (A, B) is similar to a pair (C, D) if:

- A is similar to C and B is similar to D, or...
- A is similar to D and B is similar to C

Metric learning (V. et al, 2007)

$$\psi(u,v)=(u-v)^{\otimes 2}.$$

Intuition: a pair (A, B) is similar to a pair (C, D) if:

- A B is similar to C D, or...
- A B is similar to D C.

Supervised inference with local models

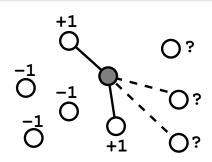
The idea (Bleakley et al., 2007)

- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.

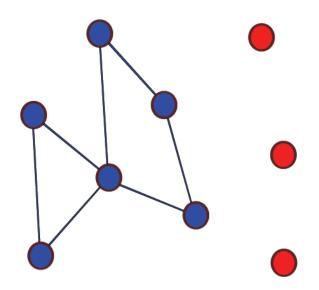
Supervised inference with local models

The idea (Bleakley et al., 2007)

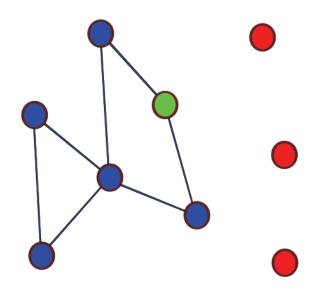
- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.



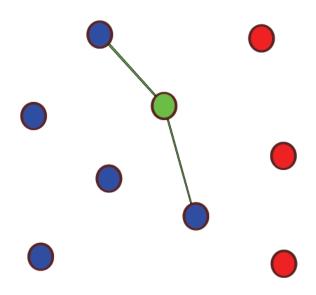
The LOCAL model

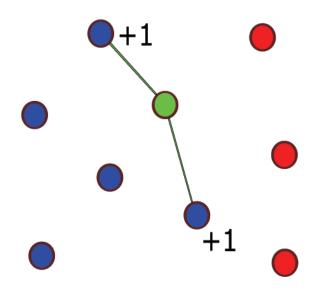


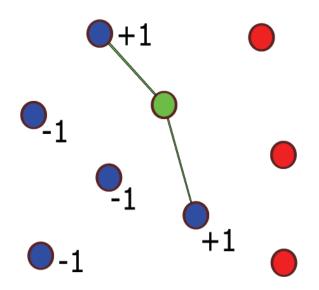
The LOCAL model

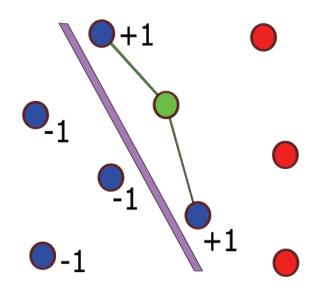


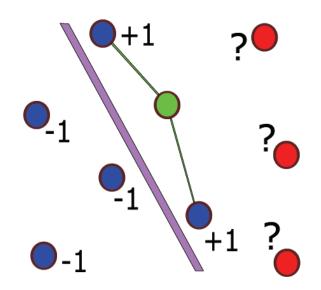
The LOCAL model

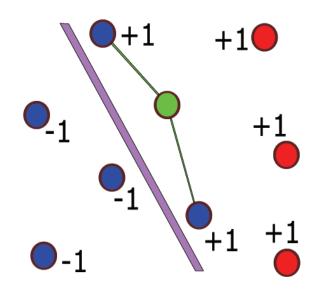


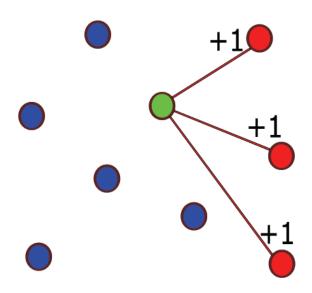


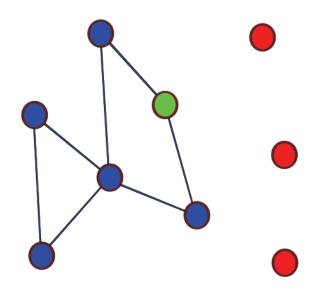


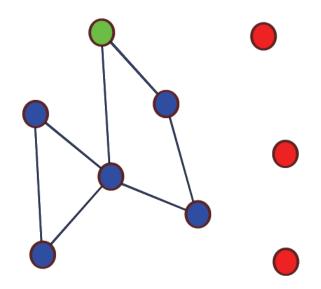


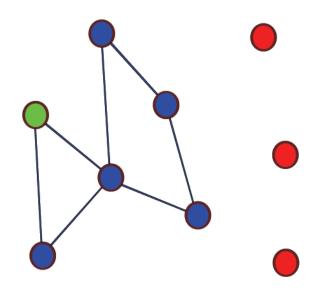


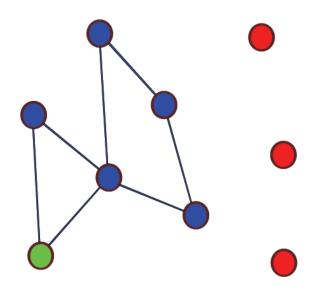


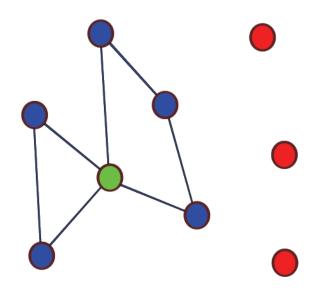


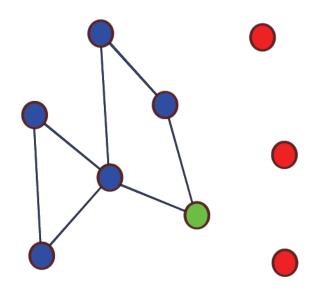












Properties of the local model

- Weak hypothesis:
 - if A is connected to B,
 - if C is similar to B,
 - then A is likely to be connected to C.
- Computationally: much faster to train N local models with N training points each, than to train 1 model with N² training points.
- Caveats
 - each local model may have very few training points
 - no sharing of information between different local models

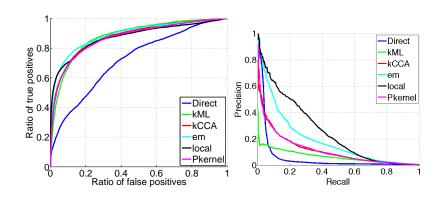
Properties of the local model

- Weak hypothesis:
 - if A is connected to B,
 - if C is similar to B,
 - then A is likely to be connected to C.
- Computationally: much faster to train N local models with N training points each, than to train 1 model with N² training points.
- Caveats:
 - each local model may have very few training points
 - no sharing of information between different local models

Properties of the local model

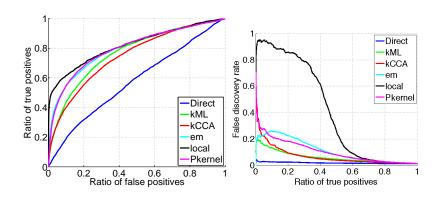
- Weak hypothesis:
 - if A is connected to B.
 - if C is similar to B,
 - then A is likely to be connected to C.
- Computationally: much faster to train N local models with N training points each, than to train 1 model with N² training points.
- Caveats:
 - each local model may have very few training points
 - no sharing of information between different local models

Results: protein-protein interaction (yeast)



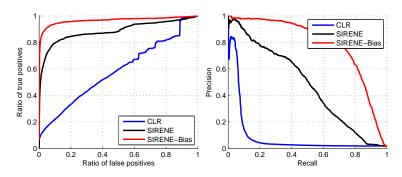
(from Bleakley et al., 2007)

Results: metabolic gene network (yeast)



(from Bleakley et al., 2007)

Results: regulatory network (E. coli)



Method	Recall at 60%	Recall at 80%
SIRENE	44.5%	17.6%
CLR	7.5%	5.5%
Relevance networks	4.7%	3.3%
ARACNe	1%	0%
Bayesian network	1%	0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)

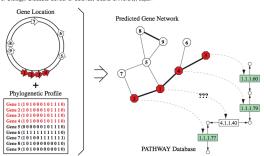
Applications: missing enzyme prediction

Prediction of missing enzyme genes in a bacterial metabolic network

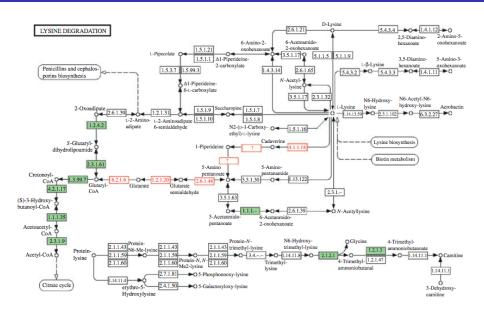
Reconstruction of the lysine-degradation pathway of *Pseudomonas* aeruginosa

Yoshihiro Yamanishi¹, Hisaaki Mihara², Motoharu Osaki², Hisashi Muramatsu³, Nobuyoshi Esaki², Tetsuya Sato¹, Yoshiyuki Hizukuri¹, Susumu Goto¹ and Minoru Kanehisa¹

- 1 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan
- 2 Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Japan
- 3 Department of Biology, Graduate School of Science, Osaka University, Japan



Applications: missing enzyme prediction



Applications: missing enzyme prediction

900

DOI 10.1002/pmic.200600862

Proteomics 2007, 7, 900-909

RESEARCH ARTICLE

Prediction of nitrogen metabolism-related genes in Anabaena by kernel-based network analysis

Shinobu Okamoto^{1*}, Yoshihiro Yamanishi¹, Shigeki Ehira², Shuichi Kawashima³, Koichiro Tonomura^{1**} and Minoru Kanehisa¹

¹ Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan

² Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan

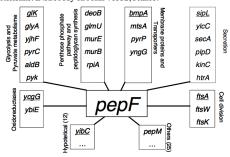
³ Human Genome Center, Institute of Medical Science, University of Tokyo, Meguro, Japan

Applications: function annotation

Determination of the role of the bacterial peptidase PepF by statistical inference and further experimental validation

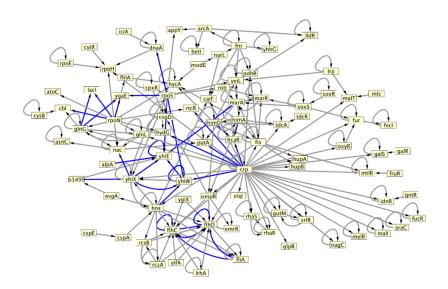
Liliana LOPEZ KLEINE^{1,2}, Alain TRUBUIL¹, Véronique MONNET²

²Unité de Biochimie Bactérienne. INRA Jouy en Josas 78352, France.



¹Unité de Mathématiques et Informatiques Appliquées, INRA Jouv en Josas 78352, France.

Application: predicted regulatory network (E. coli)

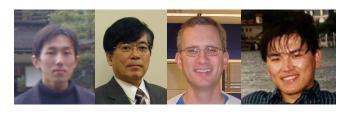


Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).

Conclusion

- When the network is known in part, supervised methods can be more adapted than unsupervised ones.
- A variety of methods have been investigated recently (metric learning, matrix completion, pattern recognition).
 - work for any network
 - work with any data
 - can integrate heterogeneous data, which strongly improves performance
- Current research: infer edges simultaneously with global constraints on the graph?

People I need to thank



- Yoshihiro Yamanishi, Minoru Kanehisa (Univ. Kyoto): kCCA, kML
- Jian Qian, Bill Noble (Univ. Washington): pairwise SVM
- Kevin Bleakley, Gerard Biau (Univ. Montpellier), Fantine Mordelet (ParisTech/Curie): local SVM

