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Functional orthologs

Species 1 Species 2
fi: MKQALAAADDDDAQ... | y1.: MDDDDALGLLLLA...
f:-MGDXLLMMAALLLL... y2: MHHAAKLLDDAS...

Functional orthologs are pairs of proteins directly inherited from a common
ancestor and which play functionally equivalent roles.

Our goal
Automatic identification of functional orthologs (useful for annotation
transfer)
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|dentification of functional orthologs by best-best hit

Species 1 Species 2
fi: MKQDLARIEQFLDALF... | y;: MSRLPVLLLLQLLVRGA. ..
f>: MSKLKIAVSDSCPDCF... | y»: MELAALCRAGLLLALDA...

y1_y2
10 50
27 10

Cij-BLAST similarity scores

Optimal assignment : 1 — y», b — 1
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Limitations of sequence comparison-based methods

Gene Duplication

Species A 2B & C
Speciation event

Aliene Duplication

@ y may be the best hit for f, but f may not be the best hit for y...
@ (y1,f) and (y», f) may produce very similar blast scores...
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Clusters of orthologs

@ Many programs produce clusters of orthologous genes from sequence
comparison only (COG, KEGG, Inparanoid, ...)

@ Several genes of each species may be in the same cluster

@ How to find functional orthologs within the clusters?
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Ideas to solve ambiguous functional orthologs

@ Increase the similarity of similarity scores / phylogenetic approaches

@ Comparison of expression profiles across species

@ Functional orthologs tend to have more conserved protein-protein
interactions (PPI) across species

09
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[ Homologs
0.7 Bl Random
> 0.6[
]
3 0.5
g
i 0.4}
0.3
0.2
0.1
n | i
0.2 0.4 i 0.8 1.0
Conservation Index (c) (Bandyopadhyay et al., 2006)
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Disambiguation by PPI conservation

Idea: If we know that y* and f* are functional orthologs, and there exist

interactions f* — f and y* — y». Then the assignment y» — f is more likely
because it conserves one interaction.

e
<>
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Disambiguation by PPI conservation

Idea: If we know that y* and f* are functional orthologs, and there exist

interactions f* — f and y* — y». Then the assignment y» — f is more likely
because it conserves one interaction.

PPI PPI
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Extension to PPl networks
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Extension to PPl networks

mat chi ngs

JP Vert (ParisTech) Global alignment of PPl networks 10 / 47



Extension to PPl networks

3 conserved i nteractions
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Global Network Alignment (GNA)

3 conserved interactions

Given two PPI networks and the all-vs-all sequence similarity matrix, find a
global matching that maximizes the number of conserved interactions
subject to:

@ Constraint GNA: matchings only occur within clusters of orthologs.

@ Balanced GNA: the mean sequence similarity between matched pairs
is as large as possible.
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Complexity of the problems (bad news)

@ Both problems are NP-hard for general graphs and similarity matrix.
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Complexity of the problems (bad news)

@ Both problems are NP-hard for general graphs and similarity matrix.

@ Therefore we must use algorithms that approximately optimize the
criteria, e.g:
o MRF method (Bandyopadhyay et al., MSB 2006) for constrained GNA
o IsoRank (Singh et al., PNAS 2008) for balanced GNA
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Complexity of the problems (bad news)

@ Both problems are NP-hard for general graphs and similarity matrix.
@ Therefore we must use algorithms that approximately optimize the
criteria, e.g:
o MRF method (Bandyopadhyay et al., MSB 2006) for constrained GNA
o IsoRank (Singh et al., PNAS 2008) for balanced GNA
o We investigate other algorithms for these problems, borrowing ideas
from state-of-the-art graph matching algorithms.
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© Algorithm for constrained global network alignment
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Constrained GNA

Problem

Find matchings within the clusters that maximise the number of conserved
interactions
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Graph of clusters induced by PPI
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Global optimum

Proposition

If the graph of clusters generated by the PPI has no cycle, then we can
find the optimal matching efficiently with a message passing algorithm.

JP Vert (ParisTech) Global alignment of PPl networks 16 / 47



Global optimum by message passing

(Similar to Viterbi's algorithm for HMM)
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Global optimum by message passing

(Similar to Viterbi's algorithm for HMM)
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What if the graph of clusters has cycle?

@ The message passing method can not be used...

@ Instead we reformulate the constrained GNA problem as a balanced
GNA by setting similarity between proteins in different clusters to
—0o0, and use algorithms for balanced GNA.
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Outline

© Algorithms for balanced global network alignment
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Balanced GNA

@ Given two graphs and a matrix of all-vs-all similarities, find a
matching P € P that jointly maximizes:

o the number of conserved interaction C/(P),
o the mean similarity of matched pairs S(P).
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Balanced GNA

@ Given two graphs and a matrix of all-vs-all similarities, find a
matching P € P that jointly maximizes:

o the number of conserved interaction C/(P),
o the mean similarity of matched pairs S(P).

@ The trade-off can be found by maximizing over P:

g\elg F(P)=(1—«a)CI(P)+ aS(P),

where a € [0, 1] determines the balance between both objectives.
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Existing methods for balanced GNA

’r.peig F(P)=(1-«)CI(P)+ aS(P),

@ When « =1 this is an optimal assignment problem efficiently solved
by the Hungarian algorithm (Kuhn, 1955).
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Existing methods for balanced GNA

’r.peig F(P)=(1-«)CI(P)+ aS(P),

@ When « =1 this is an optimal assignment problem efficiently solved
by the Hungarian algorithm (Kuhn, 1955).

@ When a < 1 this is a general graph matching problem, usually
computationally intractable. Existing algorithms include:

e Exact solution by incomplete enumeration (only for small graphs)

e Spectral methods (Umeyama, 1986; Singh et al., 2008)

o Relaxations of the problem into a continuous optimization problem
(Almohamad and Duffuaa, 1993; Gold and Rangarajan, 1996).
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Relaxation algorithms

in F(P
PR e

@ Embed the discrete set P into a
/ b continuous space D
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Relaxation algorithms

PR e
0o
P @ Embed the discrete set P into a
/ , ® continuous space D
@ Extend the function F(P) to D
\ @ Minimize F(P) over D
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Relaxation algorithms

in F(P
PR e

Embed the discrete set P into a

/ - continuous space D
Extend the function F(P) to D

Minimize F(P) over D
Map back the solution to P

/
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Mathematical formulation

01000 00100
10111 1 0000
Ac=101 0 0 1 P=|1000 01
01000 01000
01000 00010

e P = permutation matrices (P; = 1 if i is matched to j)
@ D = doubly stochastic matrices (P >0, Ply = 1y, 17,\—,P =1p)

@ Classical relaxation:

CI(P) = ||Ac — Apml| = ||Ac — PALPT|
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Quadratic convex relaxation (QCV)
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Quadratic convex relaxation (QCV)

e Minimize Fo(P) = ||AgP — PAu||% = vec(P)T Qvec(P) over D
(convex QP)
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Quadratic convex relaxation (QCV)

e Minimize Fo(P) = ||AgP — PAu||% = vec(P)T Qvec(P) over D
(convex QP)
@ Project the solution D* to P (Hungarian algorithm)
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Quadratic convex relaxation (QCV)

e Minimize Fo(P) = ||AgP — PAy||% = vec(P) T Qvec(P) over D
(convex QP)

@ Project the solution D* to P (Hungarian algorithm)

o Not very good if D* is far from P...
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A new concave relaxation

@ On P we also have:
CI(P) = Fi(P) = —tr(AP) — vec(P) " (L¢ ® Ly)vec(P)

@ This is a concave function, therefore its global minimum over D is on
P (extreme points)

o Idea: starting from a "good solution” on D, we can project to P by
gradient ascent (GA) to maximize —F;(P)
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The PATH algorithm
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Fo(P) = ||AgP — PAHH%_- = vec(P) T Qvec(P)
F1(P) = —tr(AP) — vec(P)T (Lg ® Lyy)vec(P)
FA(P) = (1 — \)Fo(P) + M\F1(P)

(Zaslavskyi et al., IEEE PAMI, 2009.)
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Outline

@ Experiments
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Random graphs:N

matching error

0.5 1
noise level

Figure: Precision as a noise function, U — Umeyama algorithm results, LP — linear
programming algorithm, QCV — convex function approach (Fp), PATH — path minimization
algorithm, OPT — an exhaustive search (the global minimum).

JP Vert (ParisTech) Global alignment of PPl networks 28 / 47



Random graphs:N=20

N
Q

W
=

e

N
=

matching error

05
noise level

Figure: Precision as a noise function, U — Umeyama algorithm results, LP — linear
programming algorithm, QCV — convex function approach (Fp), PATH — path minimization
algorithm.
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Random graphs:N=100

400;

matching error
w
o
=

0 0.5 1
noise level

Figure: Precision as a noise function, U — Umeyama algorithm results, QCV — convex

function approach (Fp), PATH — path minimization algorithm.
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Algorithm complexity

1.5
log10(N)

Figure: Timing of U, LP, QCV and PATH algorithms as a function of graph size. Noise level is
0.3. Slope: tan p = 6.67,tany = tangcy = tanpaty = 3.3
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Experiment results for QAPLIB benchmark

[QAP [MIN  [PATH [QPB__ [ GRAD |U |
chri2c | 11156 | 18048 | 20306 | 19014 | 40370
chriSa | 9896 | 19086 | 26132 | 30370 | 60986
chriSc | 9504 | 16206 | 29862 | 23686 | 76318

chr20b | 2298 5560 6674 6290 10022
chr22b | 6194 8500 9942 9658 13118
escléb | 292 300 296 298 306

roul2 | 235528 | 256320 | 278834 | 273438 | 295752
rould | 354210 | 391270 381016 | 457908 | 480352
rou20 | 725522 | 778284 | 804676 | 840120 | 905246
tail0a | 135028 | 152534 | 165364 | 168096 | 189852
tailba | 388214 | 419224 | 455778 | 451164 | 483596
tail7a | 491812 | 530978 | 550852 | 589814 | 620964
tai20a | 703482 | 753712 | 799790 | 871480 | 915144
tai30a | 1818146 | 1903872 | 1996442 | 2077958 | 2213846
tai3ba | 2422002 | 2555110 | 2720986 | 2803456 | 2925390
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Eye vessels image processing
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Eye vessels image processing: Shape context
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Combination of shape context and structural information

Linear combination of shape context and graph structure - 1 0on 2

100
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Recognition of chinese characters

character 1 ‘ character 2 ‘ character 3 ‘

(e
A

\% \%
3

Figure: Chinese characters from the ETL9B dataset.

i
ot (e g
Fidh
i
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Recognition of chinese characters

Table: Classification of chinese characters. (CV, STD)—mean and standard
deviation of test error over cross-validation runs (five folds, 50 repetitions)

| Method | ¢V | STD |
Linear SVM 0.377 | +£0.090
SVM with gaussian kernel 0.359 | £ 0.076
KNN (PATH) (a=1): shape context 0.399 | + 0.081
KNN (PATH) (2=0.4) 0.248 | + 0.075
KNN (PATH) (a=0): pure graph matching | 0.607 | + 0.072
KNN (U) (=0.9): « best choice 0.382 | £0.077
KNN (QCV) (a=0.3): « best choice 0.295 | £ 0.061

JP Vert (ParisTech) Global alignment of PPl networks 37 /47



Alignment of PPl networks: Fly vs. Yeast

@ PPI networks and all-vs-all BLAST / Inparanoid clusters for D.
melanogaster (fly) vs. S. cerevisiae (yeast)
e Data provided by Bandyopadhyay et al. (MSB 2006)

Fly (7k nodes, 20k edges) Yeast (4k nodes,15k edges)
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Experiments: Constrained Alignment

There are Inparanoid 2244 clusters:

1552 clusters with only two proteins @
692 ambiguous clusters
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Experiments: Constrained Alignment

There are 2244 clusters:

1552 clusters with only two proteins @
692 ambiguous clusters

There is no cycles in the graph of clusters!
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Experiments: Constrained Alignment

@ InParanoid clusters: 2244 clusters (1552 clusters with only two
proteins + 692 ambiguous clusters)

@ Message Passing Algorithm (MP) provides the optimal solution

e MRF (Bandyopadhyay et al., 2006), IsoRank (Singh et al., 2008),
PATH and GA methods may be used as well

@ Measure the number of conserved interactions

e Validation: count the number of Homologene pairs (gold standard for
functional orthologs?)

Algorithm MP GA PATH || MRF | IsoRank
F£cons. interactions || 238 238 238 233 228
#HomoloG pairs 41 41 41 36 39
Timing(sec) 1-2 1-2 80 10 1-2
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nces MP vs MRF: example

MP:

Cluster: 16

MRF: Ef2b/Eft2

.\-
1

Cluster: 765
vha36/vma8
MRF: vha36/vma8

Cluster: 713
MP: ago/cdc4
MRF: ago/cdc4

JP Vert (ParisTech)

Solid red: interaction conserved by MP; Dotted black: interactions
conserved by MRF.
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nces MP vs MRF: example

Cluster: 1564
MP: rps28b/rps28b
MRF: rps28b/rps28b

Cluster: 77 Cluster: 1476
MP: eflb/tef2 MP: tsr/coflF'~,
MRF: eflb/tef2 MREF: tsr/cofl

-
-
h"

N

\

Cluster: 1459
MP: ena/lasl?7

= -

Cluster: 604
MP: CG5061/srv2

MRF: ena/lasl17
MRF: CG5061/srv2 Cluster: 126
Cluster: 1450 MP: vhal00-2/vphl
MP: rplp2/rpp2b MRF: vhal00-2/vphl

MRF: rplp2/rpp2b

Solid red: interaction conserved by MP; Dotted black: interactions
conserved by MRF.
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Experiments: Balanced Alignment

Maximize: (1 —\)J+ \S

1200

1000

800

800}

400

—¥—PATH
8- IsoRank

200f

Number of conserved interactions

0
14 14.5 15 15.5 16 16.5

Seguence similarity

Number of conserved interaction J versus sequence similarity S.
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Outline

© Conclusion
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Conclusion

What we did

@ Formulation of biological network alignment as a graph matching
problem

@ Message passing algorithm: exact solution for the constrained
alignment problem

@ Graph matching algorithms: good performance in the case of
balanced alignment.

v

Future work

@ Interactions of a higher order (see paper)

@ Synchronized alignment of several networks

@ Many-to-Many graph matching
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