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Functional orthologs

Species 1 Species 2

f1: MKQALAAADDDDAQ... y1: MDDDDALGLLLLA...

f2:MGDXLLMMAALLLL... y2: MHHAAKLLDDAS...

... ...

Definition

Functional orthologs are pairs of proteins directly inherited from a common
ancestor and which play functionally equivalent roles.

Our goal

Automatic identification of functional orthologs (useful for annotation
transfer)
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Identification of functional orthologs by best-best hit

Species 1 Species 2

f1: MKQDLARIEQFLDALF... y1: MSRLPVLLLLQLLVRGA. . .

f2: MSKLKIAVSDSCPDCF... y2: MELAALCRAGLLLALDA. . .

... ...

C=

 y1 y2

f1 10 50
f2 27 10

 Cij -BLAST similarity scores

Optimal assignment : f1 → y2, f2 → y1
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Limitations of sequence comparison-based methods

y may be the best hit for f, but f may not be the best hit for y...

(y1, f ) and (y2, f ) may produce very similar blast scores...
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Clusters of orthologs

Many programs produce clusters of orthologous genes from sequence
comparison only (COG, KEGG, Inparanoid, ...)

Several genes of each species may be in the same cluster

How to find functional orthologs within the clusters?
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Ideas to solve ambiguous functional orthologs

Increase the similarity of similarity scores / phylogenetic approaches
Comparison of expression profiles across species
Functional orthologs tend to have more conserved protein-protein
interactions (PPI) across species

(Bandyopadhyay et al., 2006)
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Disambiguation by PPI conservation

Idea: If we know that y∗ and f ∗ are functional orthologs, and there exist
interactions f ∗ − f and y∗ − y2. Then the assignment y2 − f is more likely
because it conserves one interaction.
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Disambiguation by PPI conservation

Idea: If we know that y∗ and f ∗ are functional orthologs, and there exist
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Extension to PPI networks
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Extension to PPI networks

matchings
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Extension to PPI networks

3 conserved interactions
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Global Network Alignment (GNA)

3 conserved interactions

Given two PPI networks and the all-vs-all sequence similarity matrix, find a
global matching that maximizes the number of conserved interactions
subject to:

Constraint GNA: matchings only occur within clusters of orthologs.

Balanced GNA: the mean sequence similarity between matched pairs
is as large as possible.
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Complexity of the problems (bad news)

Both problems are NP-hard for general graphs and similarity matrix.

Therefore we must use algorithms that approximately optimize the
criteria, e.g:

MRF method (Bandyopadhyay et al., MSB 2006) for constrained GNA
IsoRank (Singh et al., PNAS 2008) for balanced GNA

We investigate other algorithms for these problems, borrowing ideas
from state-of-the-art graph matching algorithms.
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Constrained GNA

Problem

Find matchings within the clusters that maximise the number of conserved
interactions
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Graph of clusters induced by PPI
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Global optimum

Proposition

If the graph of clusters generated by the PPI has no cycle, then we can
find the optimal matching efficiently with a message passing algorithm.
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Global optimum by message passing

(Similar to Viterbi’s algorithm for HMM)
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What if the graph of clusters has cycle?

The message passing method can not be used...

Instead we reformulate the constrained GNA problem as a balanced
GNA by setting similarity between proteins in different clusters to
−∞, and use algorithms for balanced GNA.

JP Vert (ParisTech) Global alignment of PPI networks 18 / 47



Outline

1 Identification of functional orthologs

2 Algorithm for constrained global network alignment

3 Algorithms for balanced global network alignment

4 Experiments

5 Conclusion

JP Vert (ParisTech) Global alignment of PPI networks 19 / 47



Balanced GNA

Given two graphs and a matrix of all-vs-all similarities, find a
matching P ∈ P that jointly maximizes:

the number of conserved interaction CI (P),
the mean similarity of matched pairs S(P).

The trade-off can be found by maximizing over P:

min
P∈P

F (P) = (1− α)CI (P) + αS(P) ,

where α ∈ [0, 1] determines the balance between both objectives.
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Existing methods for balanced GNA

min
P∈P

F (P) = (1− α)CI (P) + αS(P) ,

When α = 1 this is an optimal assignment problem efficiently solved
by the Hungarian algorithm (Kuhn, 1955).

When α < 1 this is a general graph matching problem, usually
computationally intractable. Existing algorithms include:

Exact solution by incomplete enumeration (only for small graphs)
Spectral methods (Umeyama, 1986; Singh et al., 2008)
Relaxations of the problem into a continuous optimization problem
(Almohamad and Duffuaa, 1993; Gold and Rangarajan, 1996).

JP Vert (ParisTech) Global alignment of PPI networks 21 / 47



Existing methods for balanced GNA

min
P∈P

F (P) = (1− α)CI (P) + αS(P) ,

When α = 1 this is an optimal assignment problem efficiently solved
by the Hungarian algorithm (Kuhn, 1955).

When α < 1 this is a general graph matching problem, usually
computationally intractable. Existing algorithms include:

Exact solution by incomplete enumeration (only for small graphs)
Spectral methods (Umeyama, 1986; Singh et al., 2008)
Relaxations of the problem into a continuous optimization problem
(Almohamad and Duffuaa, 1993; Gold and Rangarajan, 1996).

JP Vert (ParisTech) Global alignment of PPI networks 21 / 47



Relaxation algorithms

min
P∈P

F (P)

Embed the discrete set P into a
continuous space D
Extend the function F (P) to D
Minimize F (P) over D
Map back the solution to P
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Mathematical formulation

1

3

5

2

4

AG =


0 1 0 0 0
1 0 1 1 1
0 1 0 0 1
0 1 0 0 0
0 1 0 0 0

 P =


0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0



P = permutation matrices (Pij = 1 if i is matched to j)

D = doubly stochastic matrices (P ≥ 0, P1N = 1N , 1>NP = 1N)

Classical relaxation:

CI (P) = ||AG − AP(H)|| = ||AG − PAHPT ||
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Quadratic convex relaxation (QCV)

Minimize F0(P) = ||AGP − PAH ||2F = vec(P)TQvec(P) over D
(convex QP)

Project the solution D∗ to P (Hungarian algorithm)

Not very good if D∗ is far from P...
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A new concave relaxation

On P we also have:

CI (P) = F1(P) = −tr(∆P)− vec(P)T (LG ⊗ LH)vec(P)

This is a concave function, therefore its global minimum over D is on
P (extreme points)

Idea: starting from a ”good solution” on D, we can project to P by
gradient ascent (GA) to maximize −F1(P)
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The PATH algorithm

F0(P) = ||AGP − PAH ||2F = vec(P)TQvec(P)
F1(P) = −tr(∆P)− vec(P)T (LG ⊗ LH)vec(P)
Fλ(P) = (1− λ)F0(P) + λF1(P)

(Zaslavskyi et al., IEEE PAMI, 2009.)

JP Vert (ParisTech) Global alignment of PPI networks 26 / 47



Outline

1 Identification of functional orthologs

2 Algorithm for constrained global network alignment

3 Algorithms for balanced global network alignment

4 Experiments

5 Conclusion

JP Vert (ParisTech) Global alignment of PPI networks 27 / 47



Random graphs:N=8

Figure: Precision as a noise function, U — Umeyama algorithm results, LP — linear
programming algorithm, QCV — convex function approach (F0), PATH — path minimization
algorithm, OPT — an exhaustive search (the global minimum).
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Random graphs:N=20

Figure: Precision as a noise function, U — Umeyama algorithm results, LP — linear
programming algorithm, QCV — convex function approach (F0), PATH — path minimization
algorithm.
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Random graphs:N=100

Figure: Precision as a noise function, U — Umeyama algorithm results, QCV — convex
function approach (F0), PATH — path minimization algorithm.
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Algorithm complexity

Figure: Timing of U, LP, QCV and PATH algorithms as a function of graph size. Noise level is
0.3. Slope: tanLP = 6.67,tanU = tanQCV = tanPATH = 3.3
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Experiment results for QAPLIB benchmark

QAP MIN PATH QPB GRAD U

chr12c 11156 18048 20306 19014 40370

chr15a 9896 19086 26132 30370 60986

chr15c 9504 16206 29862 23686 76318

chr20b 2298 5560 6674 6290 10022

chr22b 6194 8500 9942 9658 13118

esc16b 292 300 296 298 306

rou12 235528 256320 278834 273438 295752

rou15 354210 391270 381016 457908 480352

rou20 725522 778284 804676 840120 905246

tai10a 135028 152534 165364 168096 189852

tai15a 388214 419224 455778 451164 483596

tai17a 491812 530978 550852 589814 620964

tai20a 703482 753712 799790 871480 915144

tai30a 1818146 1903872 1996442 2077958 2213846

tai35a 2422002 2555110 2720986 2803456 2925390
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Eye vessels image processing
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Eye vessels image processing: Shape context
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Combination of shape context and structural information

−150 −100 −50 0 50 100 150
−250

−200

−150

−100

−50

0

50

100
Linear combination of shape context and graph structure  − 1 on 2

−100 −50 0 50 100
−100

−50

0

50

100

150

200
Linear combination of shape context and graph structure − 2 on 1

JP Vert (ParisTech) Global alignment of PPI networks 35 / 47



Recognition of chinese characters

character 1 character 2 character 3

Figure: Chinese characters from the ETL9B dataset.
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Recognition of chinese characters

Table: Classification of chinese characters. (CV , STD)—mean and standard
deviation of test error over cross-validation runs (five folds, 50 repetitions)

Method CV STD

Linear SVM 0.377 ± 0.090
SVM with gaussian kernel 0.359 ± 0.076
KNN (PATH) (α=1): shape context 0.399 ± 0.081
KNN (PATH) (α=0.4) 0.248 ± 0.075
KNN (PATH) (α=0): pure graph matching 0.607 ± 0.072
KNN (U) (α=0.9): α best choice 0.382 ± 0.077
KNN (QCV) (α=0.3): α best choice 0.295 ± 0.061
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Alignment of PPI networks: Fly vs. Yeast

PPI networks and all-vs-all BLAST / Inparanoid clusters for D.
melanogaster (fly) vs. S. cerevisiae (yeast)

Data provided by Bandyopadhyay et al. (MSB 2006)

Fly (7k nodes, 20k edges) Yeast (4k nodes,15k edges)
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Experiments: Constrained Alignment

There are Inparanoid 2244 clusters:

1552 clusters with only two proteins

692 ambiguous clusters
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Experiments: Constrained Alignment

There are 2244 clusters:

1552 clusters with only two proteins

692 ambiguous clusters

There is no cycles in the graph of clusters!
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Experiments: Constrained Alignment

InParanoid clusters: 2244 clusters (1552 clusters with only two
proteins + 692 ambiguous clusters)

Message Passing Algorithm (MP) provides the optimal solution

MRF (Bandyopadhyay et al., 2006), IsoRank (Singh et al., 2008),
PATH and GA methods may be used as well

Measure the number of conserved interactions

Validation: count the number of Homologene pairs (gold standard for
functional orthologs?)

Algorithm MP GA PATH MRF IsoRank

#cons. interactions 238 238 238 233 228

#HomoloG pairs 41 41 41 36 39

Timing(sec) 1-2 1-2 80 10 1-2
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Differences MP vs MRF: example

Solid red: interaction conserved by MP; Dotted black: interactions
conserved by MRF.
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Differences MP vs MRF: example

Solid red: interaction conserved by MP; Dotted black: interactions
conserved by MRF.
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Experiments: Balanced Alignment

Maximize: (1− λ)J + λS

Number of conserved interaction J versus sequence similarity S .
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Conclusion

What we did

Formulation of biological network alignment as a graph matching
problem

Message passing algorithm: exact solution for the constrained
alignment problem

Graph matching algorithms: good performance in the case of
balanced alignment.

Future work

Interactions of a higher order (see paper)

Synchronized alignment of several networks

Many-to-Many graph matching
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