Global alignment of protein-protein interaction networks by graph matching methods.

Mikhail Zaslavkiy ¹ Francis Bach² Jean-Philippe Vert¹

¹Mines ParisTech / Institut Curie / INSERM

²INRIA / Ecole normale superieure de Paris

Kyushu University, Department of Informatics, July 14, 2009.

1 Identification of functional orthologs

- 2 Algorithm for constrained global network alignment
- 3 Algorithms for balanced global network alignment

4 Experiments

1 Identification of functional orthologs

- 2 Algorithm for constrained global network alignment
- 3 Algorithms for balanced global network alignment
- 4 Experiments
- 5 Conclusion

Species 1	Species 2
f1: MKQALAAADDDDAQ	<i>y</i> ₁ : MDDDDALGLLLLA
f ₂ :MGDXLLMMAALLLL	<i>y</i> ₂ : MHHAAKLLDDAS

Definition

Functional orthologs are pairs of proteins directly inherited from a common ancestor and which play functionally equivalent roles.

Our goal

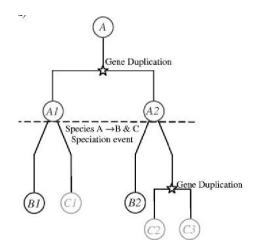
Automatic identification of functional orthologs (useful for annotation transfer)

Identification of functional orthologs by best-best hit

	Species 1	L	Species 2
f1: MKQDLARIEQFLDALF		LDALF	<i>y</i> ₁ : MSRLPVLLLLQLLVRGA
f ₂ : MSK	LKIAVSDS	CPDCF	<i>y</i> ₂ : MELAALCRAGLLLALDA
C=	$C = \begin{bmatrix} y_1 & y_2 \\ f_1 & 10 & 50 \\ f_2 & 27 & 10 \end{bmatrix}$ C_{ij} -BLAST similarity scores		
Ontimal assignment $f_1 \rightarrow V_2$ $f_2 \rightarrow V_1$			

Optimal assignment : $f_1 \rightarrow y_2, f_2 \rightarrow y_1$

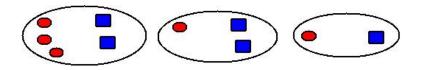
Limitations of sequence comparison-based methods



y may be the best hit for f, but f may not be the best hit for y...
(y₁, f) and (y₂, f) may produce very similar blast scores...

JP Vert (ParisTech)

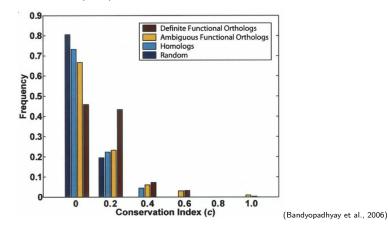
Clusters of orthologs

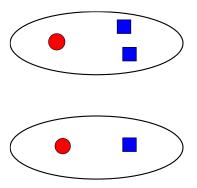


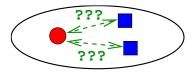
- Many programs produce clusters of orthologous genes from sequence comparison only (COG, KEGG, Inparanoid, ...)
- Several genes of each species may be in the same cluster
- How to find functional orthologs within the clusters?

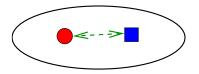
Ideas to solve ambiguous functional orthologs

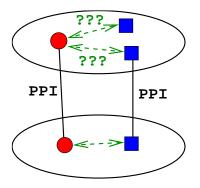
- Increase the similarity of similarity scores / phylogenetic approaches
- Comparison of expression profiles across species
- Functional orthologs tend to have more conserved protein-protein interactions (PPI) across species

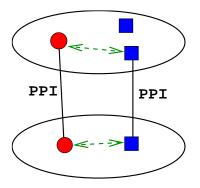




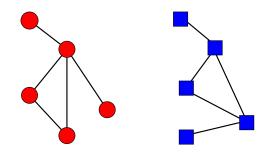




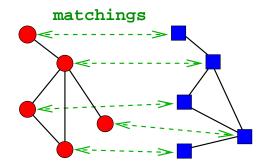




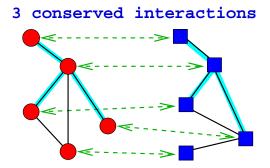
Extension to PPI networks



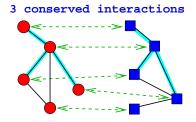
Extension to PPI networks



Extension to PPI networks



Global Network Alignment (GNA)



Given two PPI networks and the all-vs-all sequence similarity matrix, find a global matching that maximizes the number of conserved interactions subject to:

- Constraint GNA: matchings only occur within clusters of orthologs.
- Balanced GNA: the mean sequence similarity between matched pairs is as large as possible.

• Both problems are NP-hard for general graphs and similarity matrix.

- Therefore we must use algorithms that approximately optimize the criteria, e.g:
 - MRF method (Bandyopadhyay et al., MSB 2006) for constrained GNA
 - IsoRank (Singh et al., PNAS 2008) for balanced GNA
- We investigate other algorithms for these problems, borrowing ideas from state-of-the-art graph matching algorithms.

- Both problems are NP-hard for general graphs and similarity matrix.
- Therefore we must use algorithms that approximately optimize the criteria, e.g:
 - MRF method (Bandyopadhyay et al., MSB 2006) for constrained GNA
 - IsoRank (Singh et al., PNAS 2008) for balanced GNA
- We investigate other algorithms for these problems, borrowing ideas from state-of-the-art graph matching algorithms.

- Both problems are NP-hard for general graphs and similarity matrix.
- Therefore we must use algorithms that approximately optimize the criteria, e.g:
 - MRF method (Bandyopadhyay et al., MSB 2006) for constrained GNA
 - IsoRank (Singh et al., PNAS 2008) for balanced GNA
- We investigate other algorithms for these problems, borrowing ideas from state-of-the-art graph matching algorithms.

Identification of functional orthologs

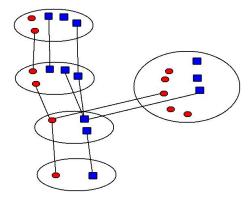
2 Algorithm for constrained global network alignment

3 Algorithms for balanced global network alignment

4 Experiments

5 Conclusion

Constrained GNA



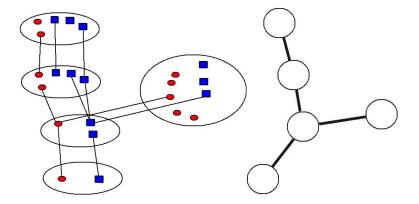
Problem

Find matchings within the clusters that maximise the number of conserved interactions $% \left({{{\left[{{{\rm{cl}}_{\rm{cl}}} \right]}_{\rm{cl}}}} \right)$

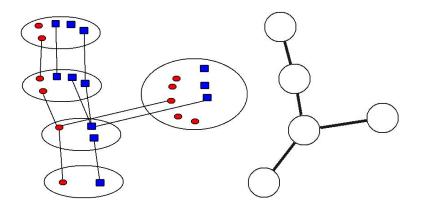
JP Vert (ParisTech)

Global alignment of PPI networks

Graph of clusters induced by PPI



Global optimum

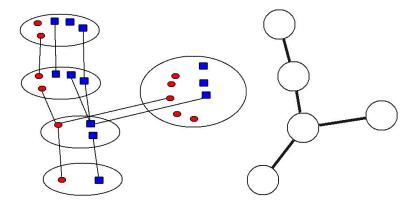


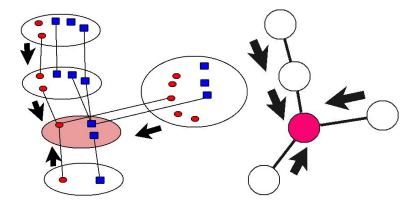
Proposition

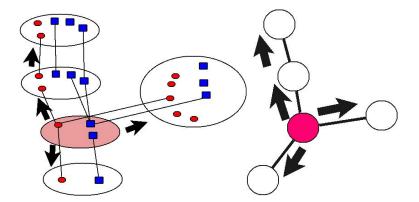
If the graph of clusters generated by the PPI has no cycle, then we can find the optimal matching efficiently with a message passing algorithm.

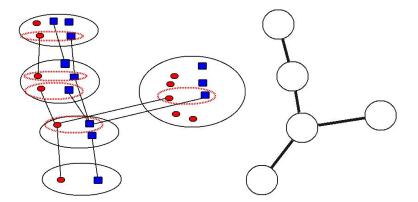
JP Vert (ParisTech)

Global alignment of PPI networks







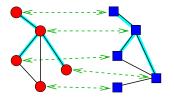


- The message passing method can not be used...
- Instead we reformulate the constrained GNA problem as a balanced GNA by setting similarity between proteins in different clusters to $-\infty$, and use algorithms for balanced GNA.

- Identification of functional orthologs
- 2 Algorithm for constrained global network alignment

3 Algorithms for balanced global network alignment

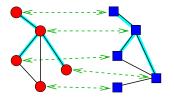
- 4 Experiments
- 5 Conclusion



- Given two graphs and a matrix of all-vs-all similarities, find a matching $P \in \mathcal{P}$ that jointly maximizes:
 - the number of conserved interaction CI(P),
 - the mean similarity of matched pairs S(P).
- The trade-off can be found by maximizing over \mathcal{P} :

 $\min_{P\in\mathcal{P}}F(P)=(1-\alpha)CI(P)+\alpha S(P),$

where $lpha \in [0,1]$ determines the balance between both objectives



- Given two graphs and a matrix of all-vs-all similarities, find a matching P ∈ P that jointly maximizes:
 - the number of conserved interaction CI(P),
 - the mean similarity of matched pairs S(P).
- The trade-off can be found by maximizing over \mathcal{P} :

$$\min_{P\in\mathcal{P}}F(P)=(1-\alpha)CI(P)+\alpha S(P),$$

where $\alpha \in [0,1]$ determines the balance between both objectives.

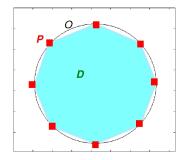
$$\min_{P\in\mathcal{P}}F(P)=(1-\alpha)CI(P)+\alpha S(P),$$

- When $\alpha = 1$ this is an optimal assignment problem efficiently solved by the Hungarian algorithm (Kuhn, 1955).
- When $\alpha < 1$ this is a general graph matching problem, usually computationally intractable. Existing algorithms include:
 - Exact solution by incomplete enumeration (only for small graphs)
 - Spectral methods (Umeyama, 1986; Singh et al., 2008)
 - Relaxations of the problem into a continuous optimization problem (Almohamad and Duffuaa, 1993; Gold and Rangarajan, 1996).

$$\min_{P\in\mathcal{P}}F(P)=(1-\alpha)CI(P)+\alpha S(P),$$

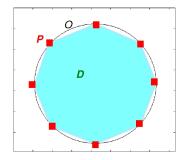
- When $\alpha = 1$ this is an optimal assignment problem efficiently solved by the Hungarian algorithm (Kuhn, 1955).
- When $\alpha < 1$ this is a general graph matching problem, usually computationally intractable. Existing algorithms include:
 - Exact solution by incomplete enumeration (only for small graphs)
 - Spectral methods (Umeyama, 1986; Singh et al., 2008)
 - Relaxations of the problem into a continuous optimization problem (Almohamad and Duffuaa, 1993; Gold and Rangarajan, 1996).

 $\min_{P\in\mathcal{P}}F(P)$



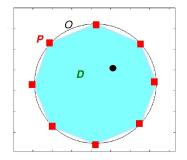
- Embed the discrete set ${\mathcal P}$ into a continuous space ${\mathcal D}$
- Extend the function F(P) to \mathcal{D}
- Minimize F(P) over \mathcal{D}
- $\bullet\,$ Map back the solution to ${\cal P}$

 $\min_{P\in\mathcal{P}}F(P)$



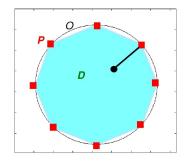
- Embed the discrete set ${\mathcal P}$ into a continuous space ${\mathcal D}$
- Extend the function F(P) to \mathcal{D}
- Minimize F(P) over \mathcal{D}
- $\bullet\,$ Map back the solution to ${\cal P}$

 $\min_{P\in\mathcal{P}}F(P)$



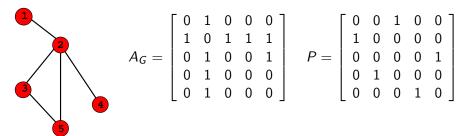
- Embed the discrete set ${\mathcal P}$ into a continuous space ${\mathcal D}$
- Extend the function F(P) to \mathcal{D}
- Minimize F(P) over \mathcal{D}
- ullet Map back the solution to ${\cal P}$

 $\min_{P\in\mathcal{P}}F(P)$



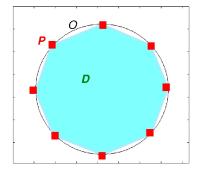
- Embed the discrete set ${\mathcal P}$ into a continuous space ${\mathcal D}$
- Extend the function F(P) to \mathcal{D}
- Minimize F(P) over \mathcal{D}
- $\bullet\,$ Map back the solution to ${\cal P}\,$

Mathematical formulation

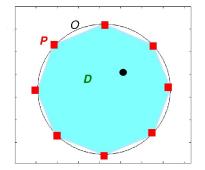


- $\mathcal{P} = \text{permutation matrices} (P_{ij} = 1 \text{ if } i \text{ is matched to } j)$
- \mathcal{D} = doubly stochastic matrices ($P \ge 0$, $P1_N = 1_N$, $1_N^\top P = 1_N$)
- Classical relaxation:

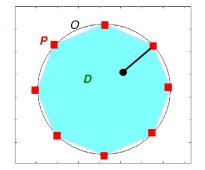
$$CI(P) = ||A_G - A_{P(H)}|| = ||A_G - PA_H P^T||$$



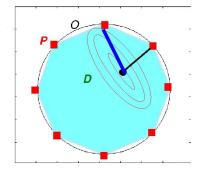
- Minimize $F_0(P) = ||A_G P PA_H||_F^2 = \operatorname{vec}(P)^T Q \operatorname{vec}(P)$ over \mathcal{D} (convex QP)
- Project the solution D^* to \mathcal{P} (Hungarian algorithm)
- Not very good if D^* is far from \mathcal{P} ...



- Minimize $F_0(P) = ||A_GP PA_H||_F^2 = \operatorname{vec}(P)^T Q\operatorname{vec}(P)$ over \mathcal{D} (convex QP)
- Project the solution D^* to \mathcal{P} (Hungarian algorithm)
- Not very good if D^* is far from \mathcal{P} ...



- Minimize $F_0(P) = ||A_GP PA_H||_F^2 = \operatorname{vec}(P)^T Q \operatorname{vec}(P)$ over \mathcal{D} (convex QP)
- Project the solution D^* to \mathcal{P} (Hungarian algorithm)
- Not very good if D^* is far from \mathcal{P} ...



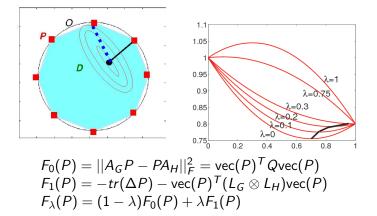
- Minimize $F_0(P) = ||A_GP PA_H||_F^2 = \operatorname{vec}(P)^T Q \operatorname{vec}(P)$ over \mathcal{D} (convex QP)
- Project the solution D^* to \mathcal{P} (Hungarian algorithm)
- Not very good if D^* is far from \mathcal{P} ...

• On \mathcal{P} we also have:

$$CI(P) = F_1(P) = -tr(\Delta P) - \operatorname{vec}(P)^T(L_G \otimes L_H)\operatorname{vec}(P)$$

- This is a concave function, therefore its global minimum over \mathcal{D} is on \mathcal{P} (extreme points)
- Idea: starting from a "good solution" on \mathcal{D} , we can project to \mathcal{P} by gradient ascent (GA) to maximize $-F_1(P)$

The PATH algorithm



(Zaslavskyi et al., IEEE PAMI, 2009.)

Identification of functional orthologs

- 2 Algorithm for constrained global network alignment
- 3 Algorithms for balanced global network alignment
- 4 Experiments

5 Conclusion

Random graphs:N=8

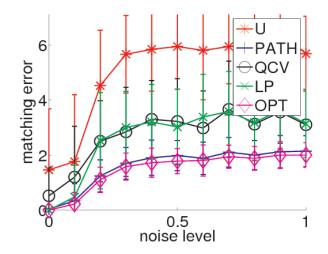


Figure: Precision as a noise function, U — Umeyama algorithm results, LP — linear programming algorithm, QCV — convex function approach (F_0), PATH — path minimization algorithm, OPT — an exhaustive search (the global minimum).

Random graphs:N=20

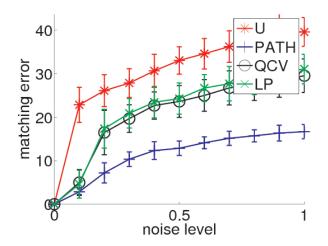


Figure: Precision as a noise function, U — Umeyama algorithm results, LP — linear programming algorithm, QCV — convex function approach (F_0), PATH — path minimization algorithm.

Random graphs:N=100

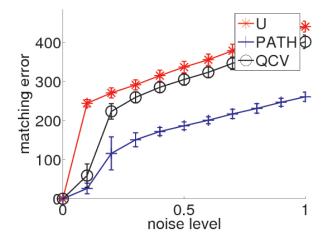


Figure: Precision as a noise function, U — Umeyama algorithm results, QCV — convex function approach (F_0), PATH — path minimization algorithm.

Algorithm complexity

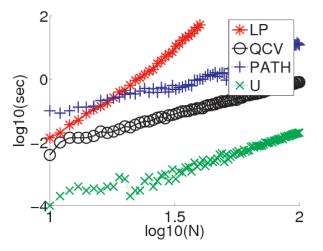
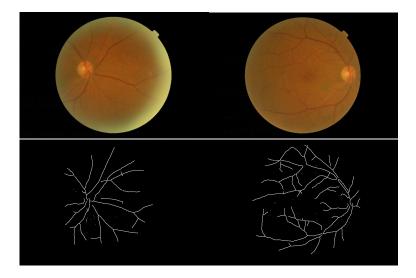


Figure: Timing of U, LP, QCV and PATH algorithms as a function of graph size. Noise level is 0.3. Slope: $tan_{LP} = 6.67$, $tan_U = tan_{QCV} = tan_{PATH} = 3.3$

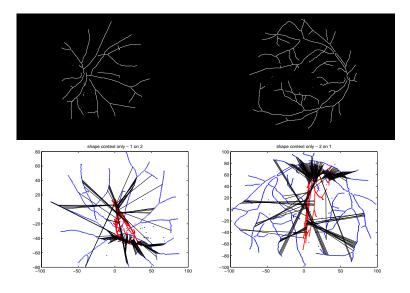
Experiment results for QAPLIB benchmark

QAP	MIN	PATH	QPB GRAD		U
chr12c	11156	18048	20306	19014	40370
chr15a	9896	19086 26132		30370	60986
chr15c	9504	16206	29862	23686	76318
chr20b	2298	5560	6674	6290	10022
chr22b	6194	8500	9942	9658	13118
esc16b	292	300	296	298	306
rou12	235528	256320	278834	273438	295752
rou15	354210	391270	381016	457908	480352
rou20	725522	778284	804676	840120	905246
tai10a	135028	152534	165364	168096	189852
tai15a	388214	419224	455778	451164	483596
tai17a	491812	530978	550852	589814	620964
tai20a	703482	753712	799790	871480	915144
tai30a	1818146	1903872	1996442	2077958	2213846
tai35a	2422002	2555110	2720986	2803456	2925390

Eye vessels image processing

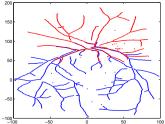


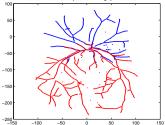
Eye vessels image processing: Shape context



Combination of shape context and structural information

Linear combination of shape context and graph structure - 2 on 1





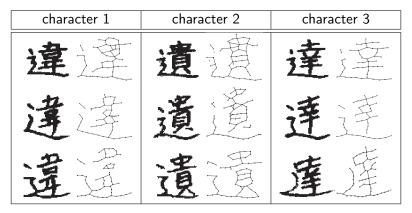


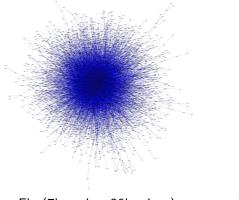
Figure: Chinese characters from the ETL9B dataset.

Table: Classification of chinese characters. (*CV*, *STD*)—mean and standard deviation of test error over cross-validation runs (five folds, 50 repetitions)

Method	CV	STD
Linear SVM	0.377	\pm 0.090
SVM with gaussian kernel	0.359	± 0.076
KNN (PATH) (α =1): shape context	0.399	\pm 0.081
KNN (PATH) (α=0.4)	0.248	± 0.075
KNN (PATH) (α =0): pure graph matching	0.607	± 0.072
KNN (U) (α =0.9): α best choice	0.382	± 0.077
KNN (QCV) (α =0.3): α best choice	0.295	\pm 0.061

Alignment of PPI networks: Fly vs. Yeast

- PPI networks and all-vs-all BLAST / Inparanoid clusters for D. melanogaster (fly) vs. S. cerevisiae (yeast)
- Data provided by Bandyopadhyay et al. (MSB 2006)



Fly (7k nodes, 20k edges)

Yeast (4k nodes,15k edges)

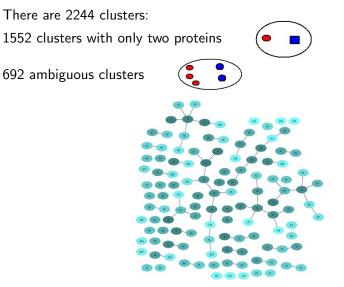
Experiments: Constrained Alignment

There are Inparanoid 2244 clusters:

1552 clusters with only two proteins

692 ambiguous clusters

Experiments: Constrained Alignment

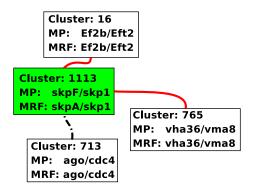


There is no cycles in the graph of clusters!

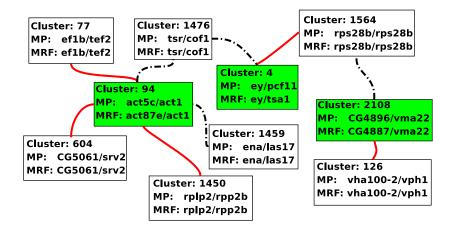
Experiments: Constrained Alignment

- InParanoid clusters: 2244 clusters (1552 clusters with only two proteins + 692 ambiguous clusters)
- Message Passing Algorithm (MP) provides the optimal solution
- MRF (Bandyopadhyay et al., 2006), IsoRank (Singh et al., 2008), PATH and GA methods may be used as well
- Measure the number of conserved interactions
- Validation: count the number of Homologene pairs (gold standard for functional orthologs?)

Algorithm	MP	GA	PATH	MRF	IsoRank
#cons. interactions	238	238	238	233	228
#HomoloG pairs	41	41	41	36	39
Timing(sec)	1-2	1-2	80	10	1-2

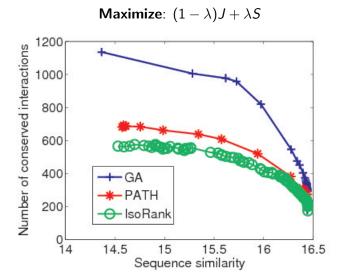


Solid red: interaction conserved by MP; Dotted black: interactions conserved by MRF.



Solid red: interaction conserved by MP; Dotted black: interactions conserved by MRF.

Experiments: Balanced Alignment



Number of conserved interaction J versus sequence similarity S.

Identification of functional orthologs

- 2 Algorithm for constrained global network alignment
- 3 Algorithms for balanced global network alignment

4 Experiments

Conclusion

What we did

- Formulation of biological network alignment as a graph matching problem
- Message passing algorithm: exact solution for the constrained alignment problem
- Graph matching algorithms: good performance in the case of balanced alignment.

Future work

- Interactions of a higher order (see paper)
- Synchronized alignment of several networks
- Many-to-Many graph matching

Acknowledgements

Misha Zaslavskiy

Francis Bach

This presentation is supported by a JSPS Invitation Fellowship Program for Research in Japan, hosted by Tatsuya Akutsu (Kyoto University)

