Inferring and using biological networks

Jean-Philippe Vert

Jean-Philippe.Vert@mines-paristech.fr

Mines ParisTech / Institut Curie / INSERM U900

Human Genome Center, Institute of Medical Science, University of Tokyo, August 4, 2009.

We have many genes and proteins..

Network 1: protein-protein interaction

Network 2: metabolic network

Network 3: gene transcriptional regulatory network

Biologists have collected a lot of data about proteins. e.g.,

- Gene expression measurements
- Phylogenetic profiles
- Location of proteins/enzymes in the cell

Problem 1 : how to infer relationships between genes from biological data?

Problem 2 : how to use biological networks to help in the analysis of genomic data?

How to infer relationships between genes from biological data?

2 How to use biological networks to help in the analysis of genomic data?

How to infer relationships between genes from biological data?

2 How to use biological networks to help in the analysis of genomic data?

Typical reverse engineering strategies

- Fit a dynamical system to time series (e.g., PDE, boolean networks, state-space models)
- Detect statistical conditional independence or dependency (Bayesian netwok, mutual information networks, co-expression networks, ...)

Jean-Philippe Vert (ParisTech)

Does it work? Case of metabolic network

- The known metabolic network of the yeast involves 769 proteins.
- Predict edges from distances between a variety of genomic data (expression, localization, phylogenetic profiles, interactions).

Does it work? Case of regulatory network

OPEN CACCESS Freely available online

Large-Scale Mapping and Validation of *Escherichia coli* Transcriptional Regulation from a Compendium of Expression Profiles

Jeremiah J. Faith¹⁰, Boris Hayete¹⁰, Joshua T. Thaden^{2,3}, Ilaria Mogno^{2,4}, Jamey Wierzbowski^{2,5}, Guillaume Cottarel^{2,5}, Simon Kasif^{1,2}, James J. Collins^{1,2}, Timothy S. Gardner^{1,2*}

Change of paradigm

Motivation

In actual applications,

- we know in advance parts of the network to be inferred
- the problem is to add/remove nodes and edges using genomic data as side information

Supervised method

- Given genomic data and the currently known network...
- Infer missing edges between current nodes and additional nodes.

- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

Pattern recognition

Associate a binary label Y to each data X

Graph inference

Associate a binary label Y to each pair of data (X_1, X_2)

Two solutions

- Consider each pair (X_1, X_2) as a single data -> learning over pairs
- Reformulate the graph inference problem as a pattern recognition problem at the level of individual vertices -> local models

Pattern recognition

Associate a binary label Y to each data X

Graph inference

Associate a binary label Y to each pair of data (X_1, X_2)

Two solutions

- Consider each pair (X_1, X_2) as a single data -> learning over pairs
- Reformulate the graph inference problem as a pattern recognition problem at the level of individual vertices -> local models

Pattern recognition for pairs

Formulation and basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!

Pattern recognition for pairs

Formulation and basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!

Pattern recognition for pairs

Formulation and basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!

Concatenation?

• A simple idea is to concatenate the vectors *u* and *v* to obtain a 2*p*-dimensional vector of (*u*, *v*):

$$\psi(\boldsymbol{u},\boldsymbol{v})=\boldsymbol{u}\oplus\boldsymbol{v}=\left(\begin{array}{c}\boldsymbol{u}\\\boldsymbol{v}\end{array}\right)\,.$$

• Problem: a linear function then becomes additive...

 $f(u,v) = w^{\top}\psi(u,v) = w_1^{\top}u + w^{\top}v.$

Concatenation?

• A simple idea is to concatenate the vectors *u* and *v* to obtain a 2*p*-dimensional vector of (*u*, *v*):

$$\psi(u,v) = u \oplus v = \left(egin{array}{c} u \\ v \end{array}
ight) \, .$$

• Problem: a linear function then becomes additive...

$$f(u, v) = w^{\top} \psi(u, v) = w_1^{\top} u + w^{\top} v.$$

Symmetric tensor product (Ben-Hur and Noble, 2006)

 $\psi(\boldsymbol{u},\boldsymbol{v})=(\boldsymbol{u}\otimes\boldsymbol{v})+(\boldsymbol{v}\otimes\boldsymbol{u})\;.$

Intuition: a pair (A, B) is similar to a pair (C, D) if:

- A is similar to C and B is similar to D, or...
- A is similar to D and B is similar to C

Metric learning (V. et al, 2007)

 $\psi(u,v)=(u-v)^{\otimes 2}$.

Intuition: a pair (A, B) is similar to a pair (C, D) if:

- A B is similar to C D, or...
- A B is similar to D C.

Symmetric tensor product (Ben-Hur and Noble, 2006)

 $\psi(\boldsymbol{u},\boldsymbol{v})=(\boldsymbol{u}\otimes\boldsymbol{v})+(\boldsymbol{v}\otimes\boldsymbol{u})\;.$

Intuition: a pair (A, B) is similar to a pair (C, D) if:

- A is similar to C and B is similar to D, or...
- A is similar to D and B is similar to C

Metric learning (V. et al, 2007)

$$\psi(u,v)=(u-v)^{\otimes 2}.$$

Intuition: a pair (A, B) is similar to a pair (C, D) if:

•
$$A - B$$
 is similar to $C - D$, or...

• A - B is similar to D - C.

Supervised inference with local models

The idea (Bleakley et al., 2007)

- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.

Supervised inference with local models

The idea (Bleakley et al., 2007)

- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.

• Weak hypothesis:

- if A is connected to B,
- if C is similar to B,
- then A is likely to be connected to C.
- Computationally: much faster to train *N* local models with *N* training points each, than to train 1 model with *N*² training points.
- Caveats:
 - each local model may have very few training points
 - no sharing of information between different local models

Weak hypothesis:

- if A is connected to B,
- if C is similar to B,
- then A is likely to be connected to C.
- Computationally: much faster to train *N* local models with *N* training points each, than to train 1 model with *N*² training points.

• Caveats:

- each local model may have very few training points
- no sharing of information between different local models

Weak hypothesis:

- if A is connected to B,
- if C is similar to B,
- then A is likely to be connected to C.
- Computationally: much faster to train *N* local models with *N* training points each, than to train 1 model with *N*² training points.
- Caveats:
 - each local model may have very few training points
 - no sharing of information between different local models

Results: protein-protein interaction (yeast)

(from Bleakley et al., 2007)

Results: metabolic gene network (yeast)

(from Bleakley et al., 2007)

Results: regulatory network (E. coli)

Method	Recall at 60%	Recall at 80%
SIRENE	44.5%	17.6%
CLR	7.5%	5.5%
Relevance networks	4.7%	3.3%
ARACNe	1%	0%
Bayesian network	1%	0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)

Jean-Philippe Vert (ParisTech)

Inferring and using biological networks

Applications: missing enzyme prediction

Prediction of missing enzyme genes in a bacterial metabolic network

Reconstruction of the lysine-degradation pathway of *Pseudomonas* aeruginosa

Yoshihiro Yamanishi¹, Hisaaki Mihara², Motoharu Osaki², Hisashi Muramatsu³, Nobuyoshi Esaki², Tetsuya Sato¹, Yoshiyuki Hizukuri¹, Susumu Goto¹ and Minoru Kanehisa¹

1 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan

2 Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Japan

3 Department of Biology, Graduate School of Science, Osaka University, Japan

Applications: missing enzyme prediction

900

DOI 10.1002/pmic.200600862

Proteomics 2007, 7, 900-909

RESEARCH ARTICLE

Prediction of nitrogen metabolism-related genes in *Anabaena* by kernel-based network analysis

Shinobu Okamoto¹*, Yoshihiro Yamanishi¹, Shigeki Ehira², Shuichi Kawashima³, Koichiro Tonomura¹** and Minoru Kanehisa¹

¹ Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
 ² Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
 ³ Human Genome Center, Institute of Medical Science, University of Tokyo, Meguro, Japan

Determination of the role of the bacterial peptidase PepF by statistical inference and further experimental validation

Liliana LOPEZ KLEINE^{1,2}, Alain TRUBUIL¹, Véronique MONNET²

¹Unité de Mathématiques et Informatiques Appliquées. INRA Jouy en Josas 78352, France. ²Unité de Biochimie Bactérienne. INRA Jouy en Josas 78352, France.

Application: predicted regulatory network (E. coli)

Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).

2 How to use biological networks to help in the analysis of genomic data?

Tissue classification from microarray data

-myb (U22376) Proteasome iota (X59417) MB-1 (U05259) Cyclin D3 (M92287) Myosin light chain (M31211) RhAp48 (X74262) SNF2 (D26156) HkrT-1 (\$50223) E2A (M31523) Inducible protein (L47738) Dynein light chain (U32944) Topoisomerase II B (Z15115) IRF2 (X15949) TFIIEB (X63469) Acyl-Coenzyme A dehydrogenase (M91432) SNF2 (U29175) (Ca2+)-ATPase (Z69881) SRP9 (U20998) MCM3 (D38073) Deoxyhypusine synthase (U26266) Op 18 (M31303) Rabaptin-5 (Y08612) Heterochromatin protein p25 (U35451) IL-7 receptor (M29696) Adenosine deaminase (M13792)

fumarylacetoacetate (M55150) Zyxin (X95735) LTC4 synthase (US0136) LYN (M16038) Hox A9 (1182759) CD33 (M23197) Adipsin (M84526) Leptin receptor (Y12670 Cystatin C (M27891) Proteoglycan 1 (X17042) IL-8 precursor (Y00787) Azurocidin (M96326) p62 (U46751) CyP3 (M80254) MCL1 (L08246) ATPase (M62762) IL-8 (M28130) Cathensin D (M63138) Lectin (M57710) MAD-3 (M69043) CD11c (M81695) Ebn72 (X85116) Lysozyme (M19045) Properdin (M83652) atalase (X04085)

Goal

- Design a classifier to automatically assign a class to future samples from their expression profile
- Interpret biologically the differences between the classes

Issue

20K+ genes but only <100 tumours

Linear classifiers and signatures

The model

- Each sample is represented by a vector $x = (x_1, \ldots, x_p)$
- Goal: estimate a linear function:

$$f_{\beta}(x) = \sum_{i=1}^{p} \beta_i x_i + \beta_0$$
.

Interpretability: the weight β_i quantifies the influence of feature i (but...)

Linear classifiers

Training the model

• Minimize an empirical risk on the training samples:

$$\min_{\beta \in \mathbb{R}^{p+1}} R_{emp}(\beta) = \frac{1}{n} \sum_{i=1}^{n} l(f_{\beta}(x_i), y_i),$$

• ... subject to some constraint on β , e.g.:

 $\Omega(eta) \leq C$.

Classical penalties

• Feature selection (NP-hard, many greedy variants exist):

$$\Omega_{\text{Best subset selection}}(\beta) = \|\beta\|_0 = \sum_{i=1}^p \mathbf{1}(\beta_i > 0).$$

• Small weights (SVM, ridge regression, ...):

$$\Omega_{\mathsf{ridge}}(\beta) = \|\beta\|_2^2 = \sum_{i=1}^{p} \beta_i^2.$$

Sparsity-inducing convex priors (computationnally tractable + feature selection):

$$\Omega_{\text{LASSO}}(\beta) = \|\beta\|_1 = \sum_{i=1}^{p} |\beta_i|.$$

Jean-Philippe Vert (ParisTech)

Inferring and using biological networks

Classical penalties

• Feature selection (NP-hard, many greedy variants exist):

$$\Omega_{\text{Best subset selection}}(\beta) = \|\beta\|_0 = \sum_{i=1}^p \mathbf{1}(\beta_i > 0).$$

• Small weights (SVM, ridge regression, ...):

$$\Omega_{\text{ridge}}(\beta) = \|\beta\|_2^2 = \sum_{i=1}^{p} \beta_i^2.$$

Sparsity-inducing convex priors (computationnally tractable + feature selection):

$$\Omega_{\text{LASSO}}(\beta) = \|\beta\|_1 = \sum_{i=1}^{p} |\beta_i|.$$

Jean-Philippe Vert (ParisTech)

Inferring and using biological networks

Classical penalties

• Feature selection (NP-hard, many greedy variants exist):

$$\Omega_{\text{Best subset selection}}(\beta) = \|\beta\|_0 = \sum_{i=1}^p \mathbf{1}(\beta_i > 0).$$

• Small weights (SVM, ridge regression, ...):

$$\Omega_{\mathsf{ridge}}(\beta) = \| \beta \|_2^2 = \sum_{i=1}^p \beta_i^2.$$

Sparsity-inducing convex priors (computationnally tractable + feature selection):

$$\Omega_{\text{LASSO}}(\beta) = \|\beta\|_1 = \sum_{i=1}^p |\beta_i|.$$

Jean-Philippe Vert (ParisTech)

Why LASSO leads to sparse solutions

Geometric interpretation with p=2

How protein networks can help us

- Basic biological functions usually involve the coordinated action of several proteins:
 - Formation of protein complexes
 - Activation of metabolic, signalling or regulatory pathways
- Many pathways and protein-protein interactions are already known
- Hypothesis: the signature should be "coherent" with respect to this prior knowledge

Jean-Philippe Vert (ParisTech)

- Hypothesis: adjacent genes should have similar weights in the signature
- Penalty function (Rapaport et al., 2007):

$$\Omega_{smooth}(\beta) = \sum_{i \sim j} (\beta_i - \beta_j)^2$$

Equivalent formulation

- Use the gene network to extract the "important information" in gene expression profiles by Fourier analysis on the graph
- Learn a linear classifier on the smooth components with classical ridge penalty.

Illustration (yeast, high vs. low irradiation doses

Example: smooth and sparse signature

- Hypothesis:
 - the signature should be sparse (gene selection)
 - connected genes should have the same weight
- Penalty function (Rapaport et al., 2008):

$$\Omega_{\text{piecewiseconstant}}(\beta) = \sum_{i \sim j} |\beta_i - \beta_j| + \lambda \sum_i |\beta_i|.$$

• Hypothesis:

- the signature should be sparse (gene selection)
- selected genes should form dense connected components (without any constraint of their relative weights)

• Penalty function (Jacob et al., 2009):

$$\Omega_{intersection}(eta) = \sum_{i \sim j} \sqrt{eta_i^2 + eta_j^2} \, ,$$

$$\Omega_{\textit{union}}(\beta) = \sup_{\alpha \in \mathbb{R}^{p}: \forall i \sim j, \|\alpha_i^2 + \alpha_j^2\| \le 1} \alpha^\top \beta.$$

Graph LASSO leads to structured sparsity

Groups (1, 2) and (2, 3). Left: $\Omega_{intersection}(\beta)$. Right: $\Omega_{union}(\beta)$. Vertical axis is β_2 .

Breast cancer data

- Gene expression data for 8, 141 genes in 295 breast cancer tumors.
- Canonical pathways from MSigDB containing 639 groups of genes, 637 of which involve genes from our study.

Method	ℓ_1	$\Omega^{\mathcal{G}}_{OVERLAP}\left(. ight)$
Error	$\textbf{0.38} \pm \textbf{0.04}$	0.36 ± 0.03
‡ PATH.	148, 58, 183	6, 5, 78
Prop. path.	0.32, 0.14, 0.41	0.01, 0.01, 0.17

Graph on the genes.

Метнор	ℓ_1	$\Omega_{graph}(.)$
Error	0.39 ± 0.04	$\textbf{0.36} \pm \textbf{0.01}$
AV. SIZE C.C.	1.1, 1, 1.0	1.3, 1.4, 1.2

- A supervised machine learning formulation leads to promising results on the problem of inferring unknown relationships between genes and proteins.
- Conversely, biological networks can help fighting the curse of dimensionality for classification of high-dimensional genomic data
- All this is progressing very quickly these days!

People I need to thank

- Graph inference : Yoshihiro Yamanishi, Minoru Kanehisa (Univ. Kyoto), Jian Qian, Bill Noble (Univ. Washington), Kevin Bleakley, Gerard Biau (Univ. Montpellier), Fantine Mordelet (ParisTech)
- Using graphs : Franck Rapaport, Emmanuel Barillot, Andrei Zinovyev (Institut Curie), Laurent Jacob (ParisTech), Guillaume Obozinski (Berkeley / INRIA)

Jean-Philippe Vert (ParisTech)

This presentation is supported by a JSPS Invitation Fellowship Program for Research in Japan, hosted by Tatsuya Akutsu (Kyoto University)

