Including prior knowledge in shrinkage classifiers for genomic data

Jean-Philippe Vert

Jean-Philippe. Vert@mines-paristech.fr

Mines ParisTech / Institut Curie / Inserm

Institute for Statistical Mathematics, Tokyo, August 5, 2009.

- Supervised classification of genomic data
- Classification of array CGH data
- Classification of expression data using gene networks
- 4 Conclusion

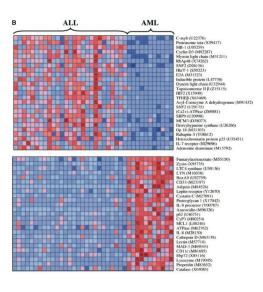
- Supervised classification of genomic data
- Classification of array CGH data
- Classification of expression data using gene networks
- 4 Conclusion

- Supervised classification of genomic data
- Classification of array CGH data
- Classification of expression data using gene networks
- 4 Conclusion

- Supervised classification of genomic data
- Classification of array CGH data
- Classification of expression data using gene networks
- 4 Conclusion

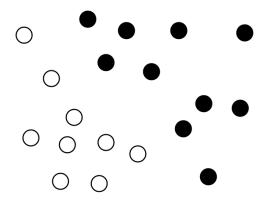
- Supervised classification of genomic data
- Classification of array CGH data
- Classification of expression data using gene networks
- 4 Conclusion

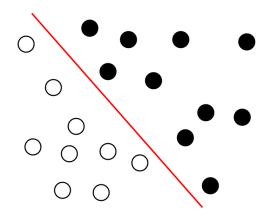
Motivation

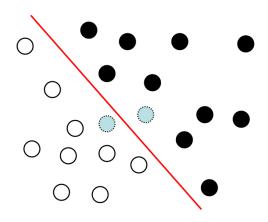


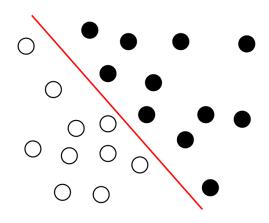
Goal

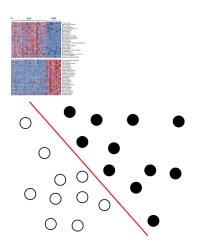
- Design a classifier to automatically assign a class to future samples from their expression profile
- Interpret biologically the differences between the classes











Challenges

- High dimension
- Few samples
- Structured data
- Heterogeneous data
- Prior knowledge
- Fast and scalable implementations

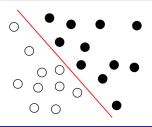
Linear classifiers

The model

- Each sample is represented by a vector $x = (x_1, \dots, x_p)$
- Goal: estimate a linear function:

$$f_{\beta}(x) = \sum_{i=1}^{p} \beta_i x_i + \beta_0.$$

Interpretability: the weight β_i quantifies the influence of feature i
(but...)



Linear classifiers

Training the model

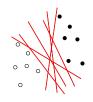
Minimize an empirical risk on the training samples:

$$\min_{\beta \in \mathbb{R}^{p+1}} R_{emp}(\beta) = \frac{1}{n} \sum_{i=1}^{n} I(f_{\beta}(x_i), y_i),$$

• ... subject to some constraint on β , e.g.:

$$\Omega(\beta) \leq C$$
.

Linear classifiers



Training the model

• Minimize an empirical risk on the training samples:

$$\min_{\beta \in \mathbb{R}^{p+1}} R_{emp}(\beta) = \frac{1}{n} \sum_{i=1}^{n} I(f_{\beta}(x_i), y_i),$$

• ... subject to some constraint on β , e.g.:

$$\Omega(\beta) \leq C$$
.

Example: Norm Constraints

The approach

A common method in statistics to learn with few samples in high dimension is to constrain the Euclidean norm of β

$$\Omega_{ridge}(\beta) = \|\beta\|_2^2 = \sum_{i=1}^p \beta_i^2,$$

(ridge regression, support vector machines...)

Pros

 Good performance in classification

Cons

- Limited interpretation (small weights)
- No prior biological knowledge

Example: Feature Selection

The approach

Constrain most weights to be 0, i.e., select a few genes whose expression are sufficient for classification.

$$\Omega_{\mathsf{Best \ subset \ selection}}(eta) = \|\,eta\,\|_0 = \sum_{i=1}^p \mathsf{1}(eta_i > 0)\,.$$

This is usually a NP-hard problem, many greedy variants have been proposed (filter methods, wrapper methods)

Pros

- Good performance
- Biomarker selection
- Interpretability

Cons

- NP-hard
- Gene selection not robust
- No use of prior knowledge

Example: Sparsity inducing convex priors

The approach

Constrain most weights to be 0 through a convex non-differentiable penalty:

$$\Omega_{\mathsf{LASSO}}(\beta) = \|\beta\|_{\mathsf{1}} = \sum_{i=1}^{p} |\beta_i|.$$

• Several variants exist, e.g., elastic net penalty ($\|\beta\|_1 + \|\beta\|_2$), ...)

Pros

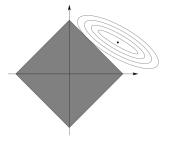
- Good performance
- Biomarker selection
- Interpretability

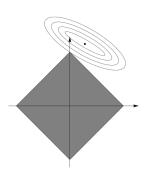
Cons

- Gene selection not robust
- No use of prior knowledge

Why LASSO leads to sparse solutions

Geometric interpretation with $p=2\,$





Incorporating prior knowledge

The idea

• If we have a specific prior knowledge about the "correct" weights, it can be included in Ω in the contraint:

Minimize
$$R_{emp}(\beta)$$
 subject to $\Omega(\beta) \leq C$.

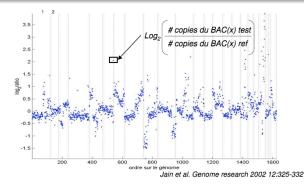
- If we design a convex function Ω , then the algorithm boils down to a convex optimization problem (usually easy to solve).
- Similar to priors in Bayesian statistics

- Supervised classification of genomic data
- Classification of array CGH data
- Classification of expression data using gene networks
- 4 Conclusion

Comparative Genomic Hybridization (CGH)

Motivation

- Comparative genomic hybridization (CGH) data measure the DNA copy number along the genome
- Very useful, in particular in cancer research
- Can we classify CGH arrays for diagnosis or prognosis purpose?



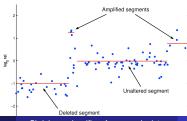
Classification of array CGH

Prior knowledge

- Let x be a CGH profile
- We focus on linear classifiers, i.e., the sign of :

$$f(\mathbf{x}) = \mathbf{x}^{\top} \boldsymbol{\beta}$$
.

- We expect β to be
 - sparse : only a few positions should be discriminative
 - piecewise constant: within a region, all probes should contribute equally



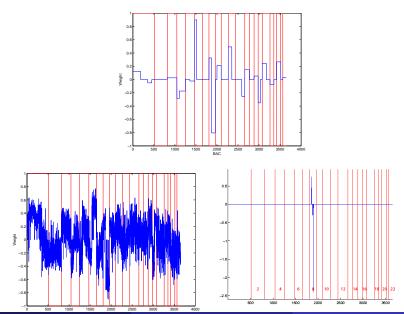
A penalty for CGH array classification

The fused LASSO penalty (Tibshirani et al., 2005)

$$\Omega_{\mathit{fusedlasso}}(\beta) = \sum_{i} |\beta_{i}| + \sum_{i \sim j} |\beta_{i} - \beta_{j}|$$
 .

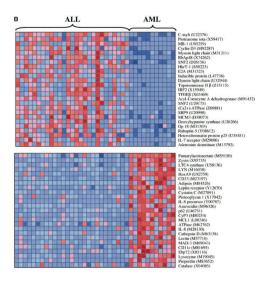
- First term leads to sparse solutions
- Second term leads to piecewise constant solutions
- Combined with a hinge loss leads to a fused SVM (Rapaport et al., 2008);

Application: metastasis prognosis in melanoma

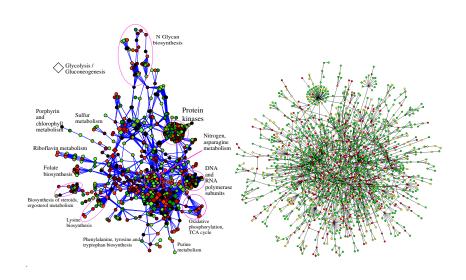


- Supervised classification of genomic data
- Classification of array CGH data
- Classification of expression data using gene networks
- 4 Conclusion

Tissue classification from microarray data



Gene networks

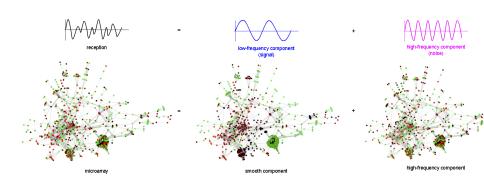


Gene networks and expression data

Motivation

- Basic biological functions usually involve the coordinated action of several proteins:
 - Formation of protein complexes
 - Activation of metabolic, signalling or regulatory pathways
- Many pathways and protein-protein interactions are already known
- Hypothesis: the weights of the classifier should be "coherent" with respect to this prior knowledge

An idea

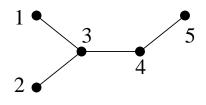


- Use the gene network to extract the "important information" in gene expression profiles by Fourier analysis on the graph
- Learn a linear classifier on the smooth components

Graph Laplacian

Definition

The Laplacian of the graph is the matrix L = D - A.



$$L = D - A = \begin{pmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Fourier basis

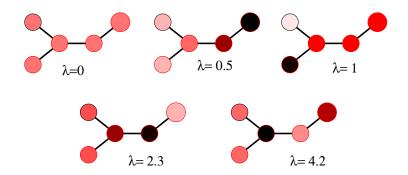
- L is positive semidefinite
- The eigenvectors e_1, \ldots, e_n of L with eigenvalues $0 = \lambda_1 \le \ldots \le \lambda_n$ form a basis called Fourier basis
- For any $f: V \to \mathbb{R}$, the Fourier transform of f is the vector $\hat{f} \in \mathbb{R}^n$ defined by:

$$\hat{f}_i = f^{\top} e_i, \quad i = 1, \dots, n.$$

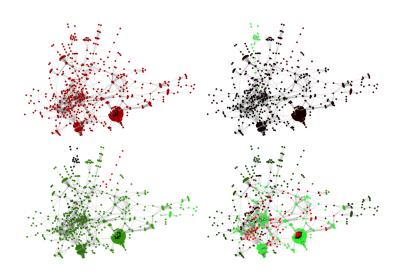
• The inverse Fourier formula holds:

$$f = \sum_{i=1}^{n} \hat{f}_i e_i.$$

Fourier basis



Fourier basis



Smoothing operator

Definition

- Let $\phi: \mathbb{R}^+ \to \mathbb{R}^+$ be non-increasing.
- A smoothing operator S_{ϕ} transform a function $f:V \to \mathbb{R}$ into a smoothed version:

$$\mathcal{S}_{\phi}(f) = \sum_{i=1}^{n} \hat{f}_{i}\phi(\lambda_{i})e_{i}$$
.

Smoothing operators

Examples

• Identity operator ($S_{\phi}(f) = f$):

$$\phi(\lambda) = 1$$
, $\forall \lambda$

Low-pass filter:

$$\phi(\lambda) = \begin{cases} 1 & \text{if } \lambda \leq \lambda^*, \\ 0 & \text{otherwise.} \end{cases}$$

Attenuation of high frequencies:

$$\phi(\lambda) = \exp(-\beta\lambda).$$

Smoothing operators

Examples

• Identity operator ($S_{\phi}(f) = f$):

$$\phi(\lambda) = 1$$
, $\forall \lambda$

Low-pass filter:

$$\phi(\lambda) = \begin{cases} 1 & \text{if } \lambda \leq \lambda^*, \\ 0 & \text{otherwise.} \end{cases}$$

Attenuation of high frequencies:

$$\phi(\lambda) = \exp(-\beta\lambda).$$

Smoothing operators

Examples

• Identity operator ($S_{\phi}(f) = f$):

$$\phi(\lambda) = 1$$
, $\forall \lambda$

Low-pass filter:

$$\phi(\lambda) = \begin{cases} 1 & \text{if } \lambda \leq \lambda^*, \\ 0 & \text{otherwise.} \end{cases}$$

Attenuation of high frequencies:

$$\phi(\lambda) = \exp(-\beta\lambda).$$

Supervised classification and regression

Working with smoothed profiles

 Classical methods for linear classification and regression with a ridge penalty solve:

$$\min_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n I\left(\beta^\top f_i, y_i\right) + \lambda \beta^\top \beta.$$

• Applying these algorithms on the smooth profiles means solving:

$$\min_{eta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n I\left(eta^ op \mathcal{S}_\phi(f_i), y_i\right) + \lambda eta^ op eta.$$

Link with shrinkage estimator

Lemma

This is equivalent to:

$$\min_{\mathbf{v} \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n I\left(\mathbf{v}^\top f_i, \mathbf{y}_i\right) + \lambda \sum_{i=1}^p \frac{\hat{v}_i^2}{\phi(\lambda_i)},$$

hence the linear classifier v is smooth.

Proof

• Let $v = \sum_{i=1}^{n} \phi(\lambda_i) e_i e_i^{\top} \beta$, then

$$eta^ op S_\phi(f_i) = eta^ op \sum_{i=1}^n \hat{f}_i \phi(\lambda_i) oldsymbol{e}_i = oldsymbol{f}^ op oldsymbol{v}$$
 .

• Then $\hat{v}_i = \phi(\lambda_i)\hat{\beta}_i$ and $\beta^{\top}\beta = \sum_{i=1}^n \frac{\hat{v}_i^2}{\phi(\lambda_i)^2}$.

Link with shrinkage estimator

Lemma

This is equivalent to:

$$\min_{\mathbf{v} \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n I\left(\mathbf{v}^\top f_i, \mathbf{y}_i\right) + \lambda \sum_{i=1}^p \frac{\hat{v}_i^2}{\phi(\lambda_i)},$$

hence the linear classifier v is smooth.

Proof

• Let $v = \sum_{i=1}^{n} \phi(\lambda_i) e_i e_i^{\top} \beta$, then

$$eta^ op \mathcal{S}_\phi(f_i) = eta^ op \sum_{i=1}^n \hat{f}_i \phi(\lambda_i) \mathbf{e}_i = f^ op \mathbf{v} \,.$$

• Then $\hat{\mathbf{v}}_i = \phi(\lambda_i)\hat{\beta}_i$ and $\beta^{\top}\beta = \sum_{i=1}^n \frac{\hat{\mathbf{v}}_i^2}{\phi(\lambda_i)^2}$.

Kernel methods

Smoothing kernel

Kernel methods (SVM, kernel ridge regression..) only need the inner product between smooth profiles:

$$K(f,g) = S_{\phi}(f)^{\top} S_{\phi}(g)$$

$$= \sum_{i=1}^{n} \hat{f}_{i} \hat{g}_{i} \phi(\lambda_{i})^{2}$$

$$= f^{\top} \left(\sum_{i=1}^{n} \phi(\lambda_{i})^{2} e_{i} e_{i}^{\top} \right) g$$

$$= f^{\top} K_{\phi} g,$$

$$(1)$$

with

$$K_{\phi} = \sum_{i=1}^{n} \phi(\lambda_i)^2 e_i e_i^{\top}.$$

Examples

• For $\phi(\lambda) = \exp(-t\lambda)$, we recover the diffusion kernel:

$$K_{\phi} = \exp_{M}(-2tL)$$
.

• For $\phi(\lambda) = 1/\sqrt{1+\lambda}$, we obtain

$$K_{\phi}=(L+I)^{-1},$$

and the penalization is:

$$\sum_{i=1}^{n} \frac{\hat{v}_{i}^{2}}{\phi(\lambda_{i})} = v^{\top} (L+I) v = ||v||_{2}^{2} + \sum_{i \sim j} (v_{i} - v_{j})^{2}.$$

Examples

• For $\phi(\lambda) = \exp(-t\lambda)$, we recover the diffusion kernel:

$$K_{\phi} = \exp_{M}(-2tL)$$
.

• For $\phi(\lambda) = 1/\sqrt{1+\lambda}$, we obtain

$$K_{\phi}=(L+I)^{-1}\;,$$

and the penalization is:

$$\sum_{i=1}^{n} \frac{\hat{v}_{i}^{2}}{\phi(\lambda_{i})} = v^{\top} (L+I) v = ||v||_{2}^{2} + \sum_{i \sim j} (v_{i} - v_{j})^{2}.$$

Data

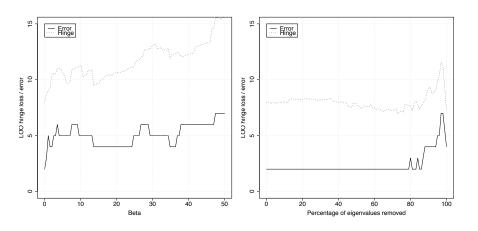
Expression

- Study the effect of low irradiation doses on the yeast
- 12 non irradiated vs 6 irradiated
- Which pathways are involved in the response at the transcriptomic level?

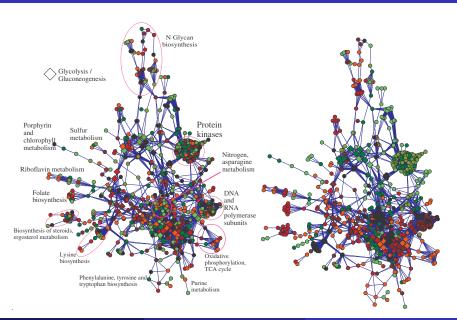
Graph

- KEGG database of metabolic pathways
- Two genes are connected is they code for enzymes that catalyze successive reactions in a pathway (metabolic gene network).
- 737 genes, 4694 vertices.

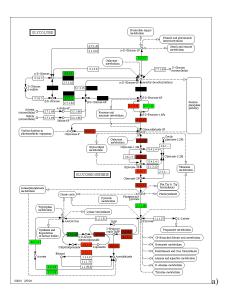
Classification performance

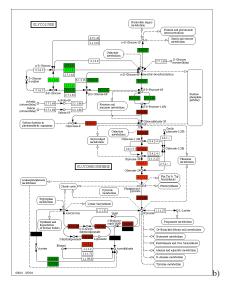


Classifier



Classifier





Other penalties

Prior hypothesis

Genes near each other on the graph should have similar weigths.

Two solutions (Rapaport et al., 2007, 2008)

$$\Omega_{spectral}(\beta) = \sum_{i \sim i} (\beta_i - \beta_j)^2,$$

$$\Omega_{graphfusion}(eta) = \sum_{i \sim j} |eta_i - eta_j| + \sum_i |eta_i|$$
 .

Other penalties

Prior hypothesis

Genes near each other on the graph should have similar weigths.

Two solutions (Rapaport et al., 2007, 2008)

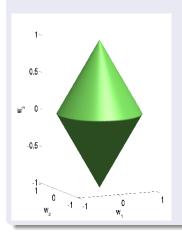
$$\Omega_{\text{spectral}}(\beta) = \sum_{i \sim j} (\beta_i - \beta_j)^2,$$

$$\Omega_{\textit{graphfusion}}(eta) = \sum_{i \sim j} |eta_i - eta_j| + \sum_i |eta_i|$$
 .

Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the ℓ_1/ℓ_2 -norm induces sparse solutions at the group level.

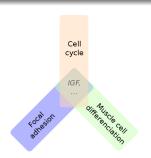


 $min_w L(w) + \lambda (\|(w_1, w_2)\|_2 + \|w_3\|_2).$

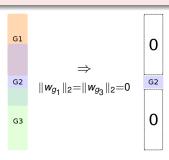
Biological markers for cancer

Issue of using the group-lasso

- $\Omega_{group}(w) = \sum_{g} \|w_g\|_2$ sets groups to 0.
- One variable is selected
 all the groups to which it belongs are selected.



IGF selection ⇒ selection of unwanted groups



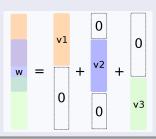
Removal of *any* group containing a gene ⇒ the weight of the gene is 0.

Overlap norm

Overlap norm

Introduce latent variables v_g :

$$egin{cases} \min_{w,v} L(w) + \lambda \sum_{g \in \mathcal{G}} \|v_g\|_2 \ w = \sum_{g \in \mathcal{G}} v_g \ \mathrm{supp}\left(v_g
ight) \subseteq g. \end{cases}$$



Properties

- Resulting support is a union of groups in G.
- Possible to select one variable without selecting all the groups containing it.
- Setting one v_g to 0 doesn't necessarily set to 0 all its variables in w.

Overlap norm

Overlap norm

$$\begin{cases} \min_{w,v} L(w) + \lambda \sum_{g \in \mathcal{G}} \|v_g\|_2 \\ w = \sum_{g \in \mathcal{G}} v_g \\ \text{supp } (v_g) \subseteq g. \end{cases} = \min_{w} L(w) + \lambda \Omega_{\textit{overlap}}(w)$$

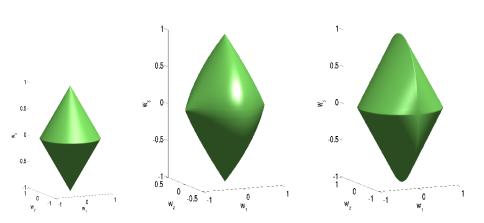
with

$$\Omega_{overlap}(w) \stackrel{\Delta}{=} \left\{egin{array}{l} \min\limits_{v} \sum_{g \in \mathcal{G}} \|v_g\|_2 \ w = \sum_{g \in \mathcal{G}} v_g \ \mathrm{supp}\left(v_g
ight) \subseteq g. \end{array}
ight.$$

Property

- $\Omega_{overlap}(w)$ is a norm of w.
- $\Omega_{overlap}(.)$ associates to w a specific (not necessarily unique) decomposition $(v_g)_{g \in \mathcal{G}}$ which is the argmin of (*).

Overlap and group unity balls



Balls for $\Omega^{\mathcal{G}}_{\mathsf{group}}(\cdot)$ (middle) and $\Omega^{\mathcal{G}}_{\mathsf{overlap}}(\cdot)$ (right) for the groups $\mathcal{G} = \{\{1,2\},\{2,3\}\}$ where w_2 is represented as the vertical coordinate. Left: group-lasso $(\mathcal{G} = \{\{1,2\},\{3\}\})$, for comparison.

Overlap norm

Consistency in group support (Jacob et al., 2009)

- Let w̄ be the true parameter vector.
- Assume that there exists a unique decomposition \bar{v}_g such that $\bar{w} = \sum_g \bar{v}_g$ and $\Omega_{\text{overlap}}^{\mathcal{G}}\left(\bar{w}\right) = \sum \|\bar{v}_g\|_2$.
- Consider the regularized empirical risk minimization problem $L(w) + \lambda \Omega_{\text{overlap}}^{\mathcal{G}}(w)$.

Ther

- under appropriate mutual incoherence conditions on *X*,
- as $n \to \infty$,
- with very high probability,

the optimal solution \hat{w} admits a unique decomposition $(\hat{v}_g)_{g \in \mathcal{G}}$ such that

$$ig\{g\in\mathcal{G}|\hat{v}_g
eq0ig\}=ig\{g\in\mathcal{G}|ar{v}_g
eq0ig\}$$
 .

Overlap norm

Consistency in group support (Jacob et al., 2009)

- Let w̄ be the true parameter vector.
- Assume that there exists a unique decomposition \bar{v}_g such that $\bar{w} = \sum_g \bar{v}_g$ and $\Omega_{\text{overlap}}^{\mathcal{G}}\left(\bar{w}\right) = \sum \|\bar{v}_g\|_2$.
- Consider the regularized empirical risk minimization problem $L(w) + \lambda \Omega_{\text{overlap}}^{\mathcal{G}}(w)$.

Then

- under appropriate mutual incoherence conditions on X,
- as $n \to \infty$,
- with very high probability,

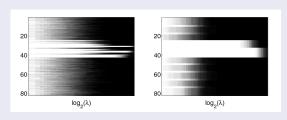
the optimal solution \hat{w} admits a unique decomposition $(\hat{v}_g)_{g\in\mathcal{G}}$ such that

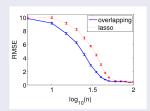
$$ig\{g\in\mathcal{G}|\hat{v}_g
eq 0ig\}=ig\{g\in\mathcal{G}|ar{v}_g
eq 0ig\}$$
 .

Results

Synthetic data: overlapping groups

- 10 groups of 10 variables with 2 variables of overlap between two successive groups :{1,...,10}, {9,...,18},...,{73,...,82}.
- Support: union of 4th and 5th groups.
- Learn from 100 training points.





Frequency of selection of each variable with the lasso (left) and $\Omega_{\text{overlap}}^{\mathcal{G}}(.)$ (middle), comparison of the RMSE of both methods (right).

Results

Breast cancer data

- Gene expression data for 8, 141 genes in 295 breast cancer tumors.
- Canonical pathways from MSigDB containing 639 groups of genes, 637 of which involve genes from our study.

METHOD	ℓ_1	$\Omega_{OVERLAP}^{\mathcal{G}}\left(. ight)$
ERROR	$\textbf{0.38} \pm \textbf{0.04}$	0.36 ± 0.03
♯ PATH.	148, 58, 183	6, 5, 78
PROP. PATH.	0.32, 0.14, 0.41	0.01, 0.01, 0.17

Graph on the genes.

METHOD	ℓ_1	$\Omega_{graph}(.)$
ERROR	$\textbf{0.39} \pm \textbf{0.04}$	0.36 ± 0.01
Av. SIZE C.C.	1.1, 1, 1.0	1.3, 1.4, 1.2

Outline

- Supervised classification of genomic data
- Classification of array CGH data
- Classification of expression data using gene networks
- 4 Conclusion

Conclusion

- Modern machine learning methods for regression / classification lend themselves well to the integration of prior knowledge in the penalization / regularization function.
- Several computationally efficient approaches (structured LASSO, kernels...)
- Natural extensions for data integration
- Extension to "structured statistical tests"?

People I need to thank

- Franck Rapaport, Emmanuel Barillot, Andrei Zynoviev, Laurent Jacob (Institut Curie / Mines ParisTech)
- Guillaume Obozinski (UC Berkeley / INRIA)

This presentation is supported by a JSPS Invitation Fellowship Program for Research in Japan, hosted by Tatsuya Akutsu (Kyoto University)

