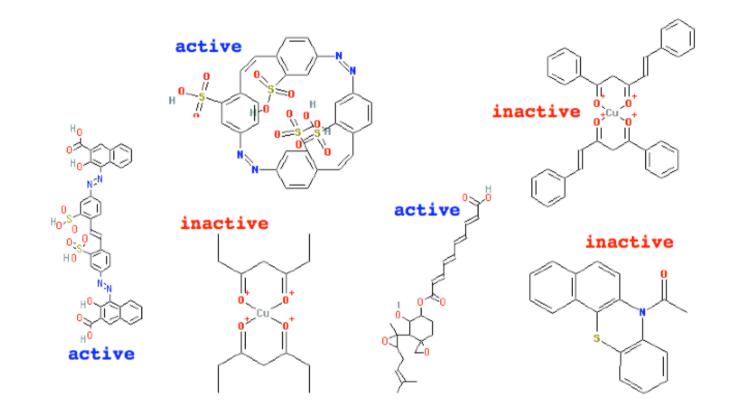
Kernel methods for virtual screening and *in silico* chemogenomics

Jean-Philippe Vert

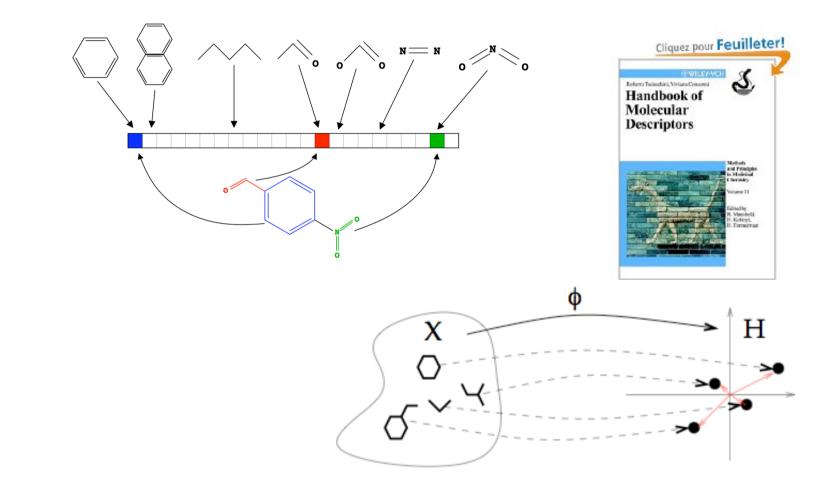
Curie Institute - INSERM U900 - Mines ParisTech

Computational Biology Research Center, Tokyo, Aug 7, 2009.

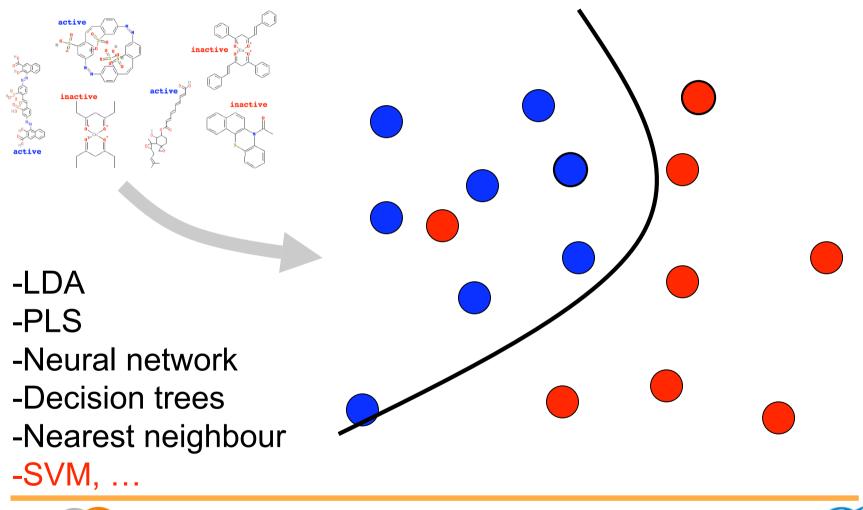
- 1. Kernel methods for QSAR and virtual screening
- 2. 2D kernels
- 3. 3D kernels
- 4. Towards in silico chemogenomics


Kernel methods for QSAR and virtual screening

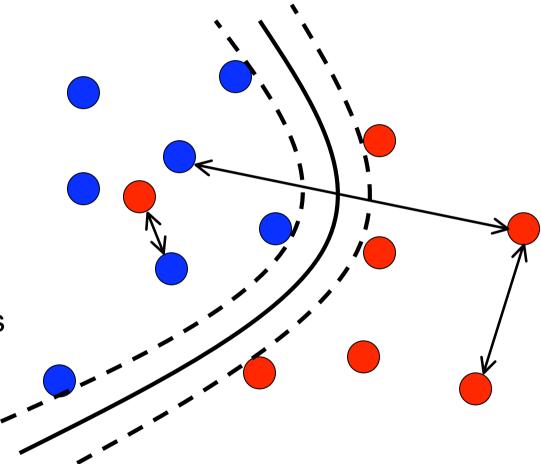
Ligand-based virtual screening / QSAR


From http://cactus.nci.nih.gov

Represent each molecule as a vector...

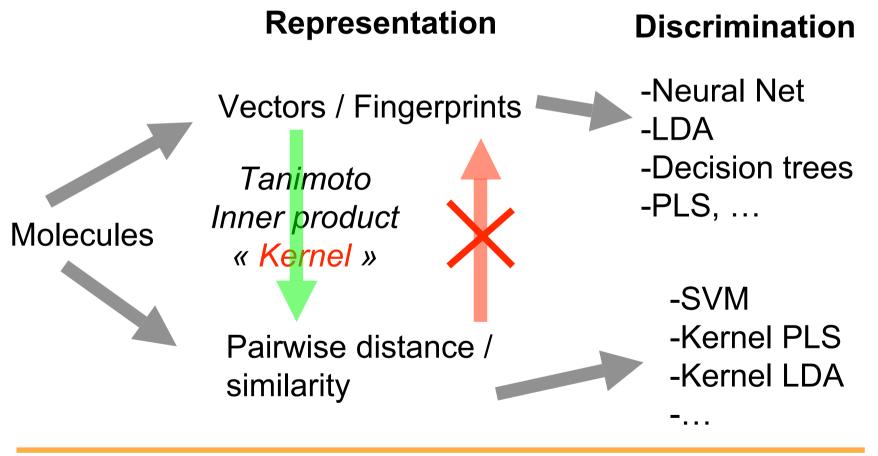


...and discriminate with machine learning

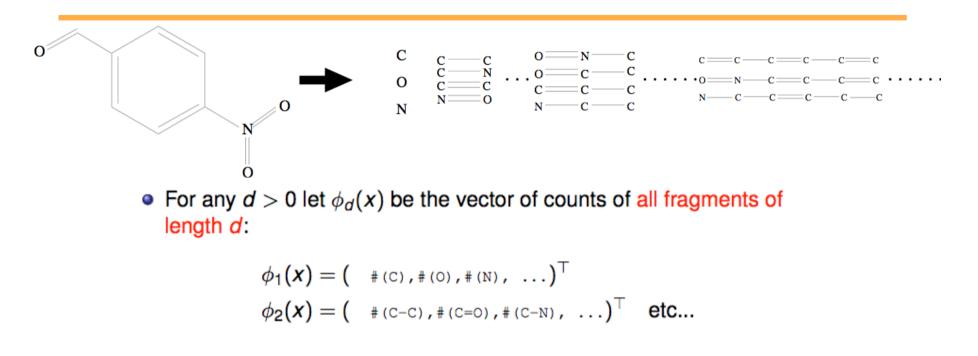


Support Vector Machine (SVM)

- Large margin
- Nonlinear
- Need pairwise
 distance / similarity
 as input instead of
 vectors / fingerprints



From fingerprints to similarities

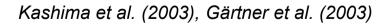

2D kernels

2D fragment kernels (walks)

• The 2D fingerprint kernel is defined, for $\lambda < 1$, by

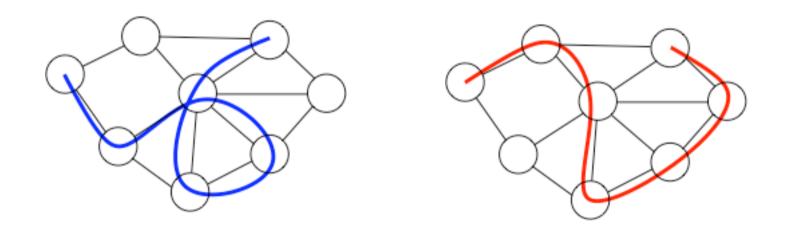
$$K_{2D}(\boldsymbol{x}, \boldsymbol{x}') = \sum_{d=1}^{\infty} \lambda(d) \phi_d(\boldsymbol{x})^\top \phi_d(\boldsymbol{x}') \, .$$

Kashima et al. (2003), Gärtner et al. (2003)



Properties of the 2D fragment kernel

- Corresponds to a fingerprint of infinite size
- Solves the problem of clashes and memory storage (fingerprints are not computed explicitly)
- Can be computed efficiently in O(|x|^3 |x'|^3) (much faster in practice)

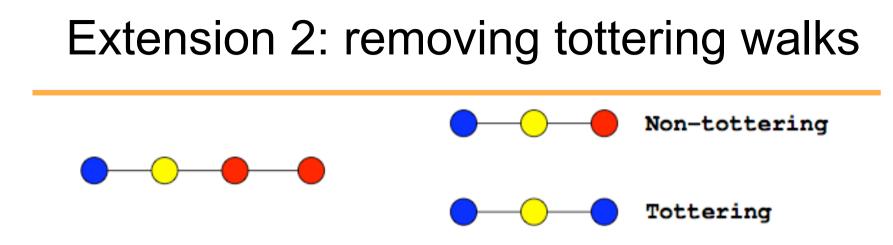


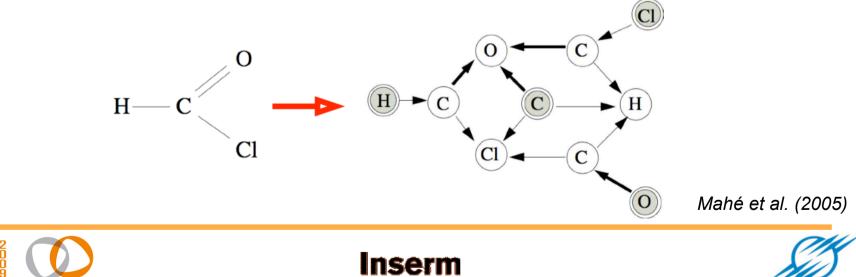
Remark: walks vs paths

Computing the path kernel is NP-hard

Gärtner et al. (2003)

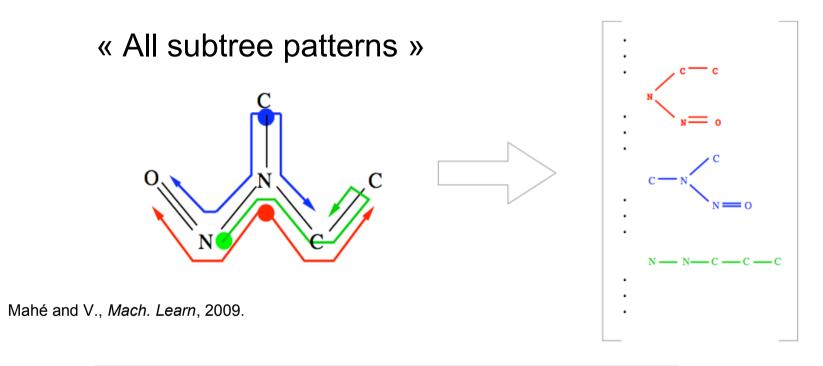
Extension 1: label enrichment


Increases the expressiveness of the kernel
Faster computation with more labels
Other relabeling schemes are possible



Mahé et al. (2005)

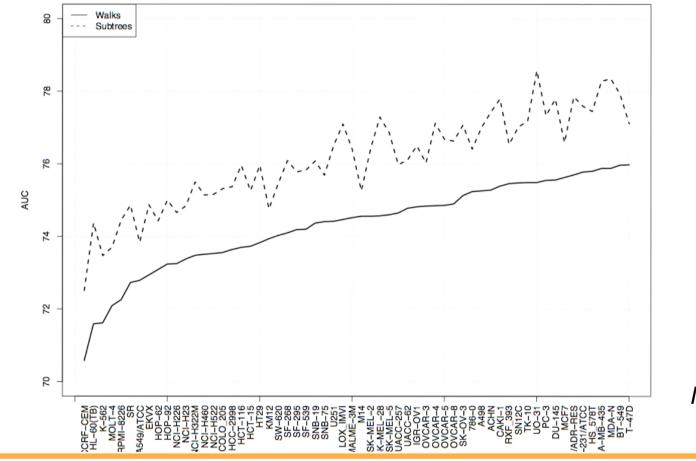
-Tottering walks are irrelevant for many applications (noise) -Focusing on non-tottering walks only is a way to get closer to the path kernel (e.g., equivalent on trees)



institut Ensemble, prenons le cancer de vitesse.

Extension 3: subtree patterns

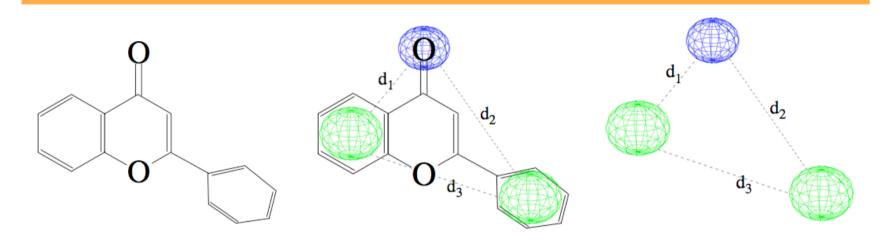
 $\mathcal{T}(\boldsymbol{v},\boldsymbol{n}+1) = \sum_{\boldsymbol{R} \subset \mathcal{N}(\boldsymbol{v})} \prod_{\boldsymbol{v}' \in \boldsymbol{R}} \lambda_t(\boldsymbol{v},\boldsymbol{v}') \mathcal{T}(\boldsymbol{v}',\boldsymbol{n})$


Ramon et al. (2004), Mahé & V. (2009)

2D subtree vs walk kernel

NCI 60 dataset

Mahé & V. (2009)


3D pharmacophore kernel

3-point pharmacophores

A set of 3 atoms, and 3 inter-atom distances:

 $\mathcal{T} = \{((x_1, x_2, x_3), (d_1, d_2, d_3)), x_i \in \{\text{atom types}\}; d_i \in \mathbb{R}\}$

Mahé et al., J. Chem. Inf. Model., 2006.

3D fingerprint kernel

- **Discretize** the space of pharmacophores \mathcal{T} (e.g., 6 atoms or groups of atoms, 6-7 distance bins) into a finite set \mathcal{T}_d
- Count the number of occurrences \(\phi_t(x)\) of each pharmacophore bin t in a given molecule x, to form a pharmacophore fingerprint.

A simple 3D kernel is the inner product of pharmacophore fingerprints:

$$\mathcal{K}(\mathbf{x},\mathbf{x}') = \sum_{t \in \mathcal{T}_d} \phi_t(\mathbf{x}) \phi_t(\mathbf{x}') \, .$$

From the fingerprint kernel to the pharmacophore kernel

$$\begin{aligned} \mathcal{K}(\mathbf{x}, \mathbf{y}) &= \sum_{t \in \mathcal{T}_d} \phi_t(\mathbf{x}) \phi_t(\mathbf{y}) \\ &= \sum_{t \in \mathcal{T}_d} (\sum_{p_x \in \mathcal{P}(\mathbf{x})} \mathbf{1}(\operatorname{bin}(\mathbf{p_x}) = \mathbf{t})) (\sum_{p_y \in \mathcal{P}(y)} \mathbf{1}(\operatorname{bin}(\mathbf{p_y}) = \mathbf{t})) \underbrace{\mathbf{x}^2}_{\mathbf{x}^2} \end{aligned}$$
$$= \sum_{p_x \in \mathcal{P}(\mathbf{x})} \sum_{p_y \in \mathcal{P}(y)} \mathbf{1}(\operatorname{bin}(\mathbf{p_x}) = \operatorname{bin}(\mathbf{p_y}))$$

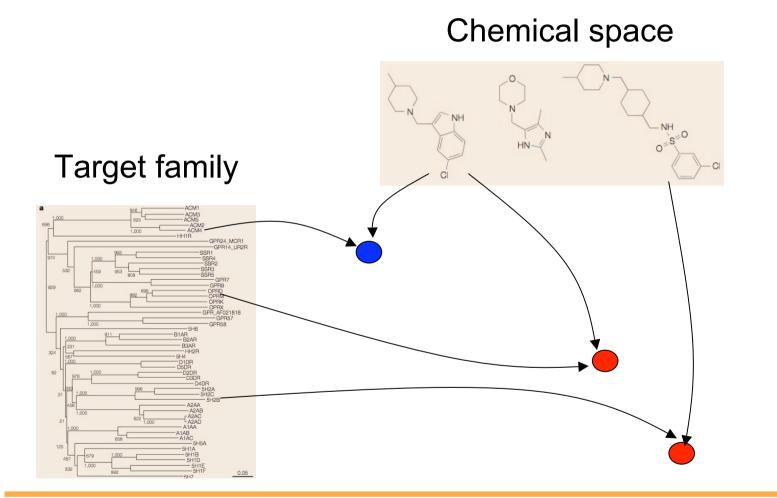
$$K(x,y) = \sum_{p_x \in \mathcal{P}(x)} \sum_{p_y \in \mathcal{P}(y)} \exp\left(-\gamma ||p_x - p_y||^2\right)$$

Experiments

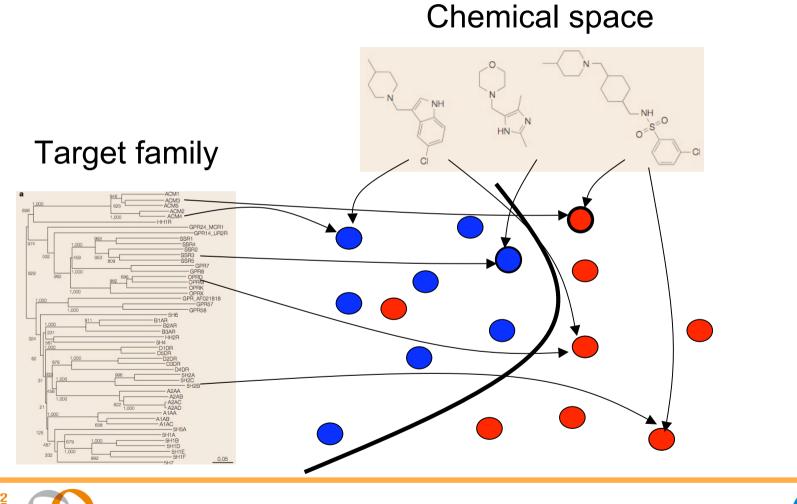
- BZR: ligands for the benzodiazepine receptor
- COX: cyclooxygenase-2 inhibitors
- DHFR: dihydrofolate reductase inhibitors
- ER: estrogen receptor ligands

Kernel	BZR	COX	DHFR	ER
2D (Tanimoto)	71.2	63.0	76.9	77.1
3D fingerprint	75.4	67.0	76.9	78.6
3D not discretized	76.4	69.8	81.9	79.8

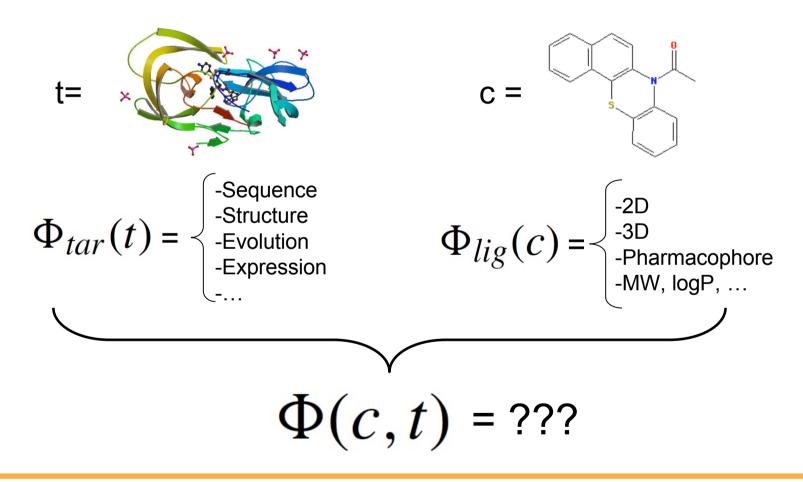
Mahé et al., J. Chem. Inf. Model., 2006.


Towards in silico chemogenomics

Chemogenomics



In silico Chemogenomics

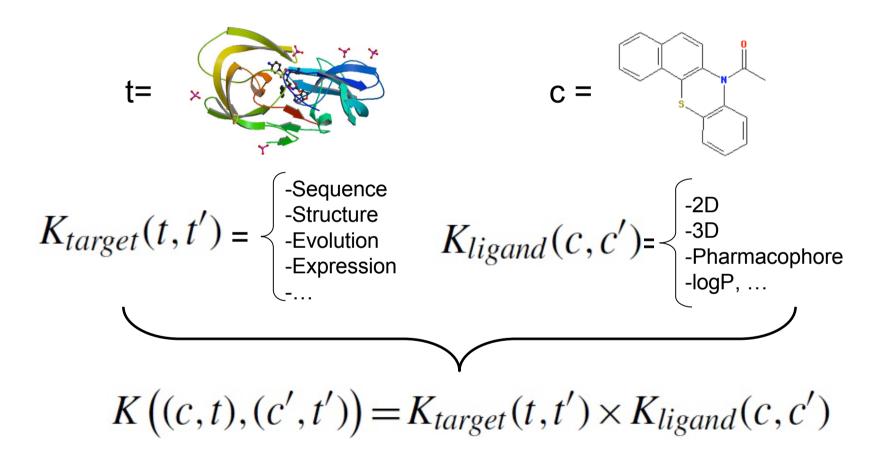


Inserm

Fingerprint for a (target, molecule) pair?



Fingerprint for a (target, molecule) pair?



Similarity for (target, molecule) pairs

Summary: SVM for chemogenomics

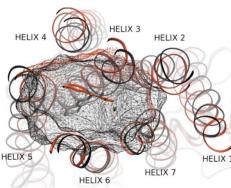
- 1. Choose a kernel (similarity) for targets
- 2. Choose a kernel (similarity) for ligands
- 3. Train a SVM model with the product kernel for (target/ligand) pairs

Important remark

- New methods are being actively developed in machine learning for learning over pairs
- « Collaborative filtering », « transfer learning », « multitask learning », « MMMF », « pairwise SVM », etc...

Þ	👌 🕂 🚖 http://www.netflixpri	^ Q- netflix challe		
TFL	I X			
Ne	etflix Prize	9.		
Ru	es Leaderboard Register	Update Submit	Download	
	aderboard		Display top	40 leaders.
Rank	Team Name No Grand Prize candidates yet	Best Score <u>%</u>		Last Submit Time
Rank	Team Name	Best Score 🧏		
Rank	Team Name No Grand Prize candidates yet	Best Score %		Last Submit Tim
Rank 	Team Name No Grand Prize candidates yet <u>Prize</u> - RMSE <= 0.8563	- 1	Improvement	Last Submit Time - 2009-01-05 22:05:26
Rank Grand	Team Name No Grand Prize candidates yet <u>Prize - RMSE <= 0.8563</u> BellKor in BigChaos	0.8598	Improvement - 9.63	Last Submit Tim - 2009-01-05 22:05:24 2009-02-18 23:29:34
Rank Grand	Team Name No Grand Prize candidates yet I Prize - RMSE <= 0.8563 BelliXorin Bilochaos PragmaticTheory	 0.8598 0.8606	Improvement 9.63 9.54	Last Submit Time - 2009-01-05 22:05:24 2009-02-18 23:29:31 2009-02-21 10:15:24
Rank Grand 1 2 3 4	Team Name No Grand Prize candidates yet IPrize - RMSE <= 0.8563 BeliKor in BigChaos PragmaticTheory Dace	0.8598 0.8606 0.8609 0.8615	Improvement 9.63 9.54 9.51 9.45	Last Submit Time 2009-01-05 22:05:22 2009-02-18 23:29:30 2009-02-21 10:15:24 2009-02-21 10:15:24
Rank Grand 1 2 3 4	Team Name No Grand Prize candidates yet IPrize - RMSE <= 0.8563 BeliKorin BiaChaos PragmaticTheory Dace Grand Prize Team	0.8598 0.8606 0.8609 0.8615	Improvement 9.63 9.54 9.51 9.45	Last Submit Time 2009-01-05 22:05:22 2009-02-18 23:29:30 2009-02-21 10:15:24 2009-02-21 10:15:24
Rank Granc 1 2 3 4 Progr	Team Name No Grand Prize candidates yet IPrize - RMSE <= 0.8563 BeliKorin BioChaos PragmaticTheory Dace Grand Prize Team ess Prize 2008 - RMSE = 0.8610		Improvement 9.63 9.54 9.51 9.45 9.45 stellKor in BigCha	2009-01-05 22:05:22 2009-02-18 23:29:30 2009-02-18 23:29:30 2009-02-21 10:15:24 2009-02-23 10:03:28
Rank Granc 1 2 3 4 Progr	Team Name No Grand Prize candidates yet I <u>Prize</u> - RMSE <= 0.8563 BeliKorin BiloChaos PragmaticTheory Dace Grand Prize Team ess Prize 2008 - RMSE = 0.8610 BiloChaos		9,63 9,54 9,51 9,45 845 840 Kor in BigCha 9,35	Last Submit Tim 2009-01-05 22:05:24 2009-02-18 23:29:34 2009-02-21 10:15:24 2009-02-23 10:03:24 2009-02-23 10:03:24 2009-02-07 13:06:33 2009-02-07 13:06:33 2009-12-31 11:50:44
Grant 1 2 3 4 Progr 5 6	Team Name No Grand Prize candidates yet Iprize - RMSE <= 0.8563 Bolikorin BinChaos PragmaticTheory Dace Grand Prize Team ess Prize 2008 - RMSE = 0.8610 BinChaos Belikor	0.8598 0.8606 0.8609 0.8615 - Winning Team: I 0.8624 0.8628	Improvement 9.63 9.54 9.51 9.51 9.45 BellKor in BigCha 9.35 9.31	Last Submit Time 2009-01-05 22:05:22 2009-02-18 23:29:30 2009-02-21 10:15:22 2009-02-23 10:03:28 009 2009-02-07 13:06:32

37k registered teams from 180 countries!


Application: virtual screening of GPCR

Data: GLIDA database filtered for drug-like compounds

- 2446 ligands
- 80 GPCR
- 4051 interactions
- 4051 negative interactions generated randomly

Ligand similarity

-2D Tanimoto -3D pharmacophore

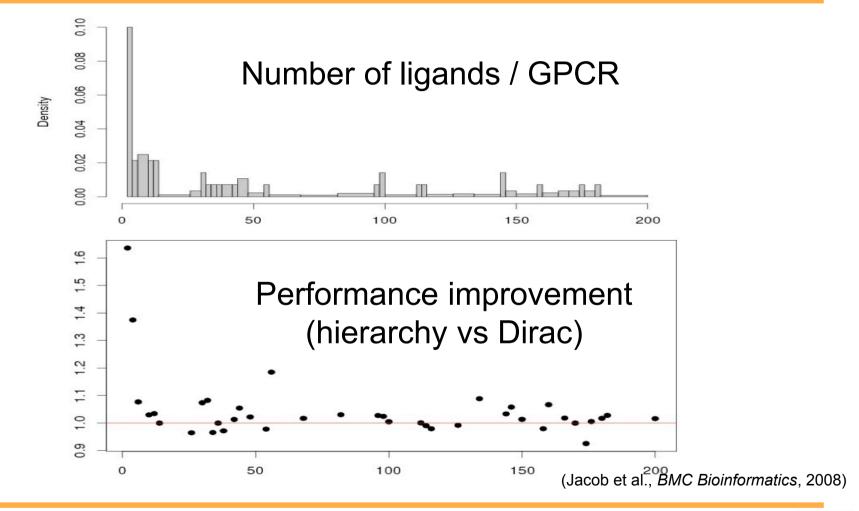
Target similarities

- -0/1 Dirac (no similarity)
- -Multitask (uniform similarity)
- -GLIDA's hierarchy similarity
- -Binding pocket similarity (31 AA)

(Jacob et al., BMC Bioinformatics, 2008)

Results (mean accuracy over GPCRs)

	K _{tar} \K _{lig}	2D Tanimoto	3D pharmacophore
5-fold cross-validation	Dirac	86.2 ± 1.9	84.4 ± 2.0
	multitask	88.8 ± 1.9	85.0 ± 2.3
	hierarchy	93.1 ± 1.3	88.5 ± 2.0
	binding pocket	90.3 ± 1.9	87.1 ± 2.3
	K _{tar} \K _{lig}	2D Tanimoto	3D pharmacophore
	Dirac	50.0 ± 0.0	50.0 ± 0.0
Orphan GPCRs setup	multitask	56.8 ± 2.5	58.2 ± 2.2
	hierarchy	77.4 ± 2.4	76.2 ± 2.2
	binding pocket	78.1 ± 2.3	76.6 ± 2.2


(Jacob et al., BMC Bioinformatics, 2008)

Influence of the number of known ligands

Screening of enzymes, GPCRs, ion channels

Data: KEGG BRITE database, redundancy removed

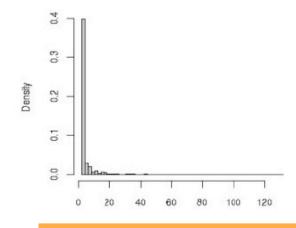
Enzymes

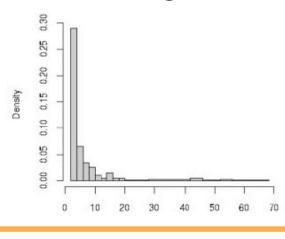
-675 targets -524 molecules -1218 interactions -1218 negatives

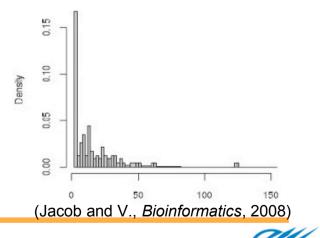
GPCRs

-100 targets

-219 molecules


-399 interactions


-399 negatives


Ion channels

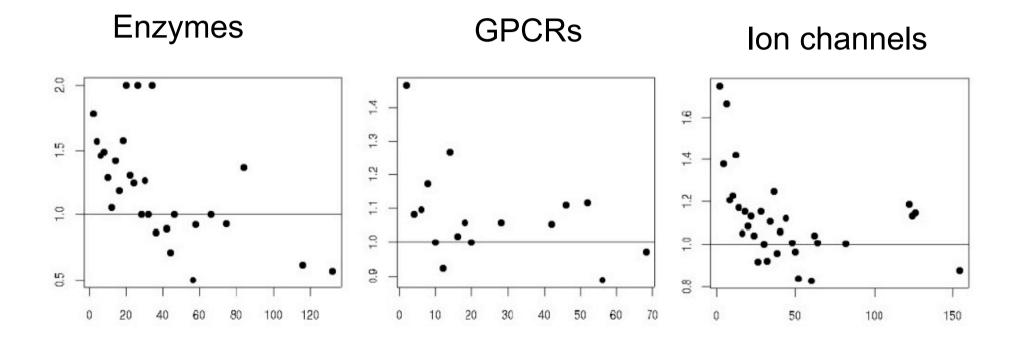
-114 targets

- -462 molecules
- -1165 interactions
 - -1165 negatives

arisTech

Results (mean AUC)

	$K_{tar} \setminus \text{Target}$	Enzymes	GPCR	Channels
	Dirac	0.646 ± 0.009	0.750 ± 0.023	0.770 ± 0.020
10-fold CV	Multitask	0.931 ± 0.006	0.749 ± 0.022	0.873 ± 0.015
	Hierarchy	0.955 ± 0.005	0.926 ± 0.015	0.925 ± 0.012
	Mismatch	0.725 ± 0.009	0.805 ± 0.023	0.875 ± 0.015
	Local alignment	0.676 ± 0.009	0.824 ± 0.021	0.901 ± 0.013
	$K_{tar} \setminus \text{Target}$	Enzymes	GPCR	Channels
	Dirac	0.500 ± 0.000	0.500 ± 0.000	0.500 ± 0.000
Orphan setting	Multitask	0.902 ± 0.008	0.576 ± 0.026	0.704 ± 0.026
	Hierarchy	0.938 ± 0.006	0.875 ± 0.020	0.853 ± 0.019
	Mismatch	0.602 ± 0.008	0.703 ± 0.027	0.729 ± 0.024
	Local alignment	0.535 ± 0.005	0.751 ± 0.025	0.772 ± 0.023


(Jacob and V., Bioinformatics, 2008)

Influence of the number of known ligands

Relative improvement : hierarchy vs Dirac

(Jacob and V., *Bioinformatics*, 2008)

Conclusion

- SVM offer state-of-the-art performance in chemoand bio-informatics
- Much work recently to define « kernels » for small molecules and proteins
- Combining them provides a theoretically sound and computationnally efficient framework for *in silico* chemogenomics
- Promising results on several benchmarks for important target families
- Many more methods for « collaborative filtering » are being actively developed!

References : http://cbio.ensmp.fr/~jvert/

- P. Mahé and J.-P. Vert, "Graph kernels based on tree patterns for molecules", *Machine Learning*, 2009.
- L. Jacob and J.-P. Vert, "Protein-ligand interaction prediction: an improved chemogenomics approach", *Bioinformatics*, 24(19):2149-2156, 2008
- L. Jacob, B. Hoffmann, V. Stoven and J.-P. Vert, "Virtual screening of GPCRs: an *in silico* chemogenomics approach", *BMC Bioinformatics*, 9:363, 2008.
- J.-P. Vert and L. Jacob, "Machine learning for *in silico* virtual screening and chemical genomics: new strategies", *CCHTS*, 11(8):677-685, 2008.
- P. Mahé, L. Ralaivola, V. Stoven and J.-P. Vert, "The pharmacophore kernel for virtual screening with support vector machines", *JCIM*, 46(5):2003-2014, 2006.
- P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret and J.-P. Vert, "Graph kernels for molecular structure-activity relationship analysis with support vector machines", *JCIM*, 45(4):939 -951, 2005.
- H. Kashima, K. Tsuda and A. Inokuchi, A., « Marginalized kernels between labeled graphs}. Proceedings of the 20th ICML, pp. 321-328, 2003.
- T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: hardness results and efficient alternatives. Proceedings of COLT, p.129--143, Springer, 2003.
- J. Ramon and T. Gärtner. Expressivity versus Efficiency of Graph Kernels. First International Workshop on Mining Graphs, Trees and Sequences, 2003.

Acknowledgements

Collaborators: P. Mahé, L. Jacob, V. Stoven, B. Hoffmann

This presentation is supported by a JSPS Invitation Fellowship Program for Research in Japan, hosted by Tatsuya Akutsu (Kyoto University)

