Supervised classification for structured data: Applications in bio- and chemoinformatics

Jean-Philippe Vert
Jean-Philippe.Vert@mines-paristech.fr
Mines ParisTech / Curie Institute / Inserm

The third school on The Analysis of Patterns, Pula Science Park, Italy, June 1, 2009

Virtual screening for drug discovery

NCI AIDS screen results (from http://cactus.nci.nih.gov).

Image retrieval and classification

From Harchaoui and Bach (2007).

Cancer diagnosis

Cancer prognosis

Pattern recognition, aka supervised classification

Formalization

The problem

- Given a set of training instances $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, where $x_{i} \in \mathcal{X}$ are data and $y_{i} \in \mathcal{Y}$ are continuous or discrete variables of interest,
- Estimate a function

$$
y=f(x)
$$

where x is any new data to be labeled.

- f should be accurate and intepretable.

Linear classifiers

The model

- Each sample $x \in \mathcal{X}$ is represented by a vector of features (or descriptors, or patterns):

$$
\Phi(x)=\left(\Phi_{1}(x), \ldots, \Phi_{p}(x)\right)
$$

- Based on the training set we estimate a linear function:

$$
f_{\beta}(x)=\sum_{i=1}^{p} \beta_{i} \Phi_{i}(x)=\beta^{\top} \Phi(x)
$$

Two (related) questions

- How to design the features $\Phi(x)$?
- How to estimate the model β ?

Linear classifiers

The model

- Each sample $x \in \mathcal{X}$ is represented by a vector of features (or descriptors, or patterns):

$$
\Phi(x)=\left(\Phi_{1}(x), \ldots, \Phi_{p}(x)\right)
$$

- Based on the training set we estimate a linear function:

$$
f_{\beta}(x)=\sum_{i=1}^{p} \beta_{i} \Phi_{i}(x)=\beta^{\top} \Phi(x)
$$

Two (related) questions

- How to design the features $\Phi(x)$?
- How to estimate the model β ?

Outline

(9) Explicit computation of features: the case of graph features
(2) Using kernels

- Introduction to kernels
- Graph kernels
- Kernels for gene expression data using gene networks
(3) Using sparsity-inducing shrinkage estimators
- Feature selection for all subgraph indexation
- Classification of array CGH data with piecewise-linear models
- Structured gene selection for microarray classification

4 Conclusion

Outline

(1) Explicit computation of features: the case of graph features
(2) Using kernels

- Introduction to kernels
- Graph kernels
- Kernels for gene expression data using gene networks
(3) Using sparsity-inducing shrinkage estimators
- Feature selection for all subgraph indexation
- Classification of array CGH data with piecewise-linear models
- Structured gene selection for microarray classification

4. Conclusion

Motivation

NCI AIDS screen results (from http://cactus.nci.nih.gov).

The approach

(1) Represent explicitly each graph x by a vector of fixed dimension $\Phi(x) \in \mathbb{R}^{p}$.
(2) Use an algorithm for regression or pattern recognition in \mathbb{R}^{p}.

The approach

- Represent explicitly each graph x by a vector of fixed dimension $\Phi(x) \in \mathbb{R}^{p}$.

(3) Use an algorithm for regression or pattern recognition in \mathbb{R}^{p}.

The approach

- Represent explicitly each graph x by a vector of fixed dimension $\Phi(x) \in \mathbb{R}^{p}$.
(2) Use an algorithm for regression or pattern recognition in \mathbb{R}^{p}.

Example

2D structural keys in chemoinformatics

- Index a molecule by a binary fingerprint defined by a limited set of pre-defined stuctures

- Use a machine learning algorithms such as SVM, NN, PLS, decision tree, ...

Challenge: which descriptors (patterns)?

- Expressiveness: they should retain as much information as possible from the graph
- Computation : they should be fast to compute
- Large dimension of the vector representation: memory storage, speed, statistical issues

Indexing by substructures

- Often we believe that the presence substructures are important predictive patterns
- Hence it makes sense to represent a graph by features that indicate the presence (or the number of occurrences) of particular substructures
- However, detecting the presence of particular substructures may be computationally challenging...

Subgraphs

Definition

A subgraph of a graph (V, E) is a connected graph $\left(V^{\prime}, E^{\prime}\right)$ with $V^{\prime} \subset V$ and $E^{\prime} \subset E$.

Indexing by all subgraphs?

Theorem

Computing all subgraph occurrences is NP-hard.

Proof.

- The linear graph of size n is a subgraph of a graph X with n vertices iff X has an Hamiltonian path
- The decision problem whether a graph has a Hamiltonian path is NP-complete.

Indexing by all subgraphs?

Theorem

Computing all subgraph occurrences is NP-hard.

Proof.

- The linear graph of size n is a subgraph of a graph X with n vertices iff X has an Hamiltonian path
- The decision problem whether a graph has a Hamiltonian path is NP-complete.

Indexing by all subgraphs?

Theorem

Computing all subgraph occurrences is NP-hard.

Proof.

- The linear graph of size n is a subgraph of a graph X with n vertices iff X has an Hamiltonian path
- The decision problem whether a graph has a Hamiltonian path is NP-complete.

Paths

Definition

- A path of a graph (V, E) is sequence of distinct vertices $v_{1}, \ldots, v_{n} \in V\left(i \neq j \Longrightarrow v_{i} \neq v_{j}\right)$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for $i=1, \ldots, n-1$.
- Equivalently the paths are the linear subgraphs.

Indexing by all paths?

Theorem

Computing all path occurrences is NP-hard.

Proof.

Same as for subgraphs.

Indexing by all paths?

Theorem

Computing all path occurrences is NP-hard.

Proof.
 Same as for subgraphs.

Indexing by all paths?

Theorem

Computing all path occurrences is NP-hard.

Proof.

Same as for subgraphs.

Indexing by what?

Substructure selection

We can imagine more limited sets of substuctures that lead to more computationnally efficient indexing (non-exhaustive list)

- substructures selected by domain knowledge (MDL fingerprint)
- all path up to length k (Openeye fingerprint, Nicholls 2005)
- all shortest paths (Borgwardt and Kriegel, 2005)
- all subgraphs up to k vertices (graphlet kernel, Sherashidze et al., 2009)
- all frequent subgraphs in the database (Helma et al., 2004)

Example : Indexing by all shortest paths

Properties (Borgwardt and Kriegel, 2005)

- There are $O\left(n^{2}\right)$ shortest naths.
- The vector of counts can be computed in $O\left(n^{4}\right)$ with the Floyd-Warshall algorithm.

Example : Indexing by all shortest paths

Properties (Borgwardt and Kriegel, 2005)

- There are $O\left(n^{2}\right)$ shortest paths.
- The vector of counts can be computed in $O\left(n^{4}\right)$ with the Floyd-Warshall algorithm.

Example : Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

- Naive enumeration scales as $O\left(n^{k}\right)$
- Enumeration of connected graphlets in $O\left(n d^{k-1}\right)$ for graphs with degree $\leq d$ and $k \leq 5$.
- Randomly sample subaraphs if enumeration is infeasible.

Example : Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

- Naive enumeration scales as $O\left(n^{k}\right)$.
- Enumeration of connected graphlets in $O\left(n d^{k-1}\right)$ for graphs with degree $\leq d$ and $k \leq 5$.
- Randomly sample subgraphs if enumeration is infeasible.

Summary

- Explicit computation of substructure occurrences can be computationnally prohibitive (subgraph, paths)
- Several ideas to reduce the set of substructures considered
- In practice, NP-hardness may not be so prohibitive (e.g., graphs with small degrees), the strategy followed should depend on the data considered.

Outline

(1) Explicit computation of features: the case of graph features
(2) Using kernels

- Introduction to kernels
- Graph kernels
- Kernels for gene expression data using gene networks
(3) Using sparsity-inducing shrinkage estimators
- Feature selection for all subgraph indexation
- Classification of array CGH data with piecewise-linear models
- Structured gene selection for microarray classification

4. Conclusion

Outline

(1) Explicit computation of features: the case of graph features
(2) Using kernels

- Introduction to kernels
- Graph kernels
- Kernels for gene expression data using gene networks
(3) Using sparsity-inducing shrinkage estimators
- Feature selection for all subgraph indexation
- Classification of array CGH data with piecewise-linear models
- Structured gene selection for microarray classification

4 Conclusion

Positive definite kernels

Definition

- Let $\Phi(x)$ be a vector representation of the data x
- The kernel between two graphs is defined by:

$$
K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right)
$$

The kernel trick

The trick

- Many linear algorithms for regression or pattern recognition can be expressed only in terms of inner products between vectors
- Computing the kernel is often more efficient than computing $\Phi(x)$, especially in high or infinite dimensions!
- Perhaps we can consider more features with kernels than with explicit feature computation?

Learning linear classifiers with kernels

Training the model

- Minimize an empirical risk on the training samples:

$$
\min _{\beta \in \mathbb{R}^{p+1}} R_{e m p}(\beta)=\frac{1}{n} \sum_{i=1}^{n} I\left(\beta^{\top} \Phi\left(x_{i}\right), y_{i}\right)
$$

- ... subject to a constraint on β :

$$
\|\beta\| \leq C
$$

Making kernels

Two important strategies (not the only ones!)

- Feature design :

$$
K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right)
$$

We illustrate this idea with graph kernels.

- Regularization design :

$$
\|\beta\| \leq C
$$

We illustrate this idea with kernels for microarray data.

Outline

(1) Explicit computation of features: the case of graph features
(2) Using kernels

- Introduction to kernels
- Graph kernels
- Kernels for gene expression data using gene networks
(3) Using sparsity-inducing shrinkage estimators
- Feature selection for all subgraph indexation
- Classification of array CGH data with piecewise-linear models
- Structured gene selection for microarray classification
(4) Conclusion

The idea

(1) Represent implicitly each graph x by a vector $\Phi(x) \in \mathcal{H}$ through the kernel

$$
K\left(x, x^{\prime}\right)=\phi(x)^{\top} \Phi\left(x^{\prime}\right)
$$

(2) Use a kernel method for classification in \mathcal{H}.

The idea

(1) Represent implicitly each graph x by a vector $\Phi(x) \in \mathcal{H}$ through the kernel

$$
K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right) .
$$

(3) Use a kernel method for classification in \mathcal{H}.

The idea

(1) Represent implicitly each graph x by a vector $\Phi(x) \in \mathcal{H}$ through the kernel

$$
K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right) .
$$

(2) Use a kernel method for classification in \mathcal{H}.

Expressiveness vs Complexity

Definition: Complete graph kernels
A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

$$
\forall G_{1}, G_{2} \in \mathcal{X}, \quad d_{K}\left(G_{1}, G_{2}\right)=0 \Longrightarrow G_{1} \simeq G_{2}
$$

Equivalently, $\Phi\left(G_{1}\right) \neq \Phi\left(G_{1}\right)$ if G_{1} and G_{2} are not isomorphic.
Expressiveness vs Complexity trade-off

- If a graph kernel is not complete, then there is no hope to learn all possible functions over \mathcal{X} : the kernel is not expressive enough.
- On the other hand, kernel computation must be tractable, i.e., no more than polynomial (with small degree) for practical
applications.
- Can we define tractable and expressive graph kernels?

Expressiveness vs Complexity

Definition: Complete graph kernels

A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

$$
\forall G_{1}, G_{2} \in \mathcal{X}, \quad d_{K}\left(G_{1}, G_{2}\right)=0 \Longrightarrow G_{1} \simeq G_{2}
$$

Equivalently, $\Phi\left(G_{1}\right) \neq \Phi\left(G_{1}\right)$ if G_{1} and G_{2} are not isomorphic.

Expressiveness vs Complexity trade-off

- If a graph kernel is not complete, then there is no hope to learn all possible functions over \mathcal{X} : the kernel is not expressive enough.
- On the other hand, kernel computation must be tractable, i.e., no more than polynomial (with small degree) for practical applications.
- Can we define tractable and expressive graph kernels?

Complexity of complete kernels

Proposition (Gärtner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph isomorphism problem.

Proof

- For any kernel K the complexity of computing d_{K} is the same as the complexity of computing K, because:

$$
d_{K}\left(G_{1}, G_{2}\right)^{2}=K\left(G_{1}, G_{1}\right)+K\left(G_{2}, G_{2}\right)-2 K\left(G_{1}, G_{2}\right)
$$

- If K is a complete graph kernel, then computing d_{K} solves the graph isomorphism problem $\left(d_{K}\left(G_{1}, G_{2}\right)=0\right.$ iff $\left.G_{1} \simeq G_{2}\right) . \square$

Complexity of complete kernels

Proposition (Gärtner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph isomorphism problem.

Proof

- For any kernel K the complexity of computing d_{K} is the same as the complexity of computing K, because:

$$
d_{K}\left(G_{1}, G_{2}\right)^{2}=K\left(G_{1}, G_{1}\right)+K\left(G_{2}, G_{2}\right)-2 K\left(G_{1}, G_{2}\right)
$$

- If K is a complete graph kernel, then computing d_{K} solves the graph isomorphism problem $\left(d_{K}\left(G_{1}, G_{2}\right)=0\right.$ iff $\left.G_{1} \simeq G_{2}\right)$.

Subgraph kernel

Definition

- Let $\left(\lambda_{G}\right)_{G \in \mathcal{X}}$ a set or nonnegative real-valued weights
- For any graph $G \in \mathcal{X}$, let

$$
\forall H \in \mathcal{X}, \quad \Phi_{H}(G)=\mid\left\{G^{\prime} \text { is a subgraph of } G: G^{\prime} \simeq H\right\} \mid .
$$

- The subgraph kernel between any two graphs G_{1} and $G_{2} \in \mathcal{X}$ is defined by:

$$
K_{\text {subgraph }}\left(G_{1}, G_{2}\right)=\sum_{H \in \mathcal{X}} \lambda_{H} \Phi_{H}\left(G_{1}\right) \Phi_{H}\left(G_{2}\right)
$$

Subgraph kernel complexity

Proposition (Gärtner et al., 2003)
Computing the subgraph kernel is NP-hard.
Proof (1/2)

- Let P_{n} be the path graph with n vertices.
- Subgraphs of P_{n} are path graphs:

$$
\Phi\left(P_{n}\right)=n e_{P_{1}}+(n-1) e_{P_{2}}+\ldots+e_{P_{n}}
$$

- The vectors $\Phi\left(P_{1}\right), \ldots, \Phi\left(P_{n}\right)$ are linearly independent, therefore:

where the coefficients α_{i} can be found in polynomial time (solving a $n \times n$ triangular system).

Subgraph kernel complexity

Proposition (Gärtner et al., 2003)

Computing the subgraph kernel is NP-hard.

Proof (1/2)

- Let P_{n} be the path graph with n vertices.
- Subgraphs of P_{n} are path graphs:

$$
\Phi\left(P_{n}\right)=n e_{P_{1}}+(n-1) e_{P_{2}}+\ldots+e_{P_{n}} .
$$

- The vectors $\Phi\left(P_{1}\right), \ldots, \Phi\left(P_{n}\right)$ are linearly independent, therefore:

$$
e_{P_{n}}=\sum_{i=1}^{n} \alpha_{i} \Phi\left(P_{i}\right)
$$

where the coefficients α_{i} can be found in polynomial time (solving a $n \times n$ triangular system).

Subgraph kernel complexity

Proposition (Gärtner et al., 2003)

Computing the subgraph kernel is NP-hard.

Proof (2/2)

- If G is a graph with n vertices, then it has a path that visits each node exactly once (Hamiltonian path) if and only if $\Phi(G)^{\top} e_{n}>0$, i.e.,

$$
\Phi(G)^{\top}\left(\sum_{i=1}^{n} \alpha_{i} \Phi\left(P_{i}\right)\right)=\sum_{i=1}^{n} \alpha_{i} K_{\text {subgraph }}\left(G, P_{i}\right)>0
$$

- The decision problem whether a graph has a Hamiltonian path is NP-complete.

Path kernel

Definition

The path kernel is the subgraph kernel restricted to paths, i.e.,

$$
K_{\text {path }}\left(G_{1}, G_{2}\right)=\sum_{H \in \mathcal{P}} \lambda_{H} \Phi_{H}\left(G_{1}\right) \Phi_{H}\left(G_{2}\right)
$$

where $\mathcal{P} \subset \mathcal{X}$ is the set of path graphs.
Proposition (Gärtner et al., 2003)
Computing the path kernel is NP-hard.

Path kernel

Definition

The path kernel is the subgraph kernel restricted to paths, i.e.,

$$
K_{\text {path }}\left(G_{1}, G_{2}\right)=\sum_{H \in \mathcal{P}} \lambda_{H} \Phi_{H}\left(G_{1}\right) \Phi_{H}\left(G_{2}\right)
$$

where $\mathcal{P} \subset \mathcal{X}$ is the set of path graphs.

Proposition (Gärtner et al., 2003)

Computing the path kernel is NP-hard.

Summary

Expressiveness vs Complexity trade-off

- It is intractable to compute complete graph kernels.
- It is intractable to compute the subgraph kernels.
- Restricting subgraphs to be linear does not help: it is also intractable to compute the path kernel.
- One approach to define polynomial time computable graph kernels is to have the feature space be made up of graphs homomorphic to subgraphs, e.g., to consider walks instead of paths.

Walks

Definition

- A walk of a graph (V, E) is sequence of $v_{1}, \ldots, v_{n} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for $i=1, \ldots, n-1$.
- We note $\mathcal{W}_{n}(G)$ the set of walks with n vertices of the graph G, and $\mathcal{W}(G)$ the set of all walks.

Walks \neq paths

Walk kernel

Definition

- Let \mathcal{S}_{n} denote the set of all possible label sequences of walks of length n (including vertices and edges labels), and $\mathcal{S}=\cup_{n \geq 1} \mathcal{S}_{n}$.
- For any graph \mathcal{X} let a weight $\lambda_{G}(w)$ be associated to each walk $w \in \mathcal{W}(G)$.
- Let the feature vector $\Phi(G)=\left(\Phi_{s}(G)\right)_{s \in \mathcal{S}}$ be defined by:

$$
\Phi_{s}(G)=\sum_{w \in \mathcal{W}(G)} \lambda_{G}(w) 1(s \text { is the label sequence of } w) .
$$

- A walk kernel is a graph kernel defined by:

Walk kernel

Definition

- Let \mathcal{S}_{n} denote the set of all possible label sequences of walks of length n (including vertices and edges labels), and $\mathcal{S}=\cup_{n \geq 1} \mathcal{S}_{n}$.
- For any graph \mathcal{X} let a weight $\lambda_{G}(w)$ be associated to each walk $w \in \mathcal{W}(G)$.
- Let the feature vector $\Phi(G)=\left(\Phi_{s}(G)\right)_{s \in \mathcal{S}}$ be defined by:

$$
\Phi_{s}(G)=\sum_{w \in \mathcal{W}(G)} \lambda_{G}(w) \mathbf{1}(s \text { is the label sequence of } w) .
$$

- A walk kernel is a graph kernel defined by:

$$
K_{\text {walk }}\left(G_{1}, G_{2}\right)=\sum_{s \in \mathcal{S}} \Phi_{s}\left(G_{1}\right) \Phi_{s}\left(G_{2}\right)
$$

Walk kernel examples

Examples

- The n th-order walk kernel is the walk kernel with $\lambda_{G}(w)=1$ if the length of w is $n, 0$ otherwise. It compares two graphs through their common walks of length n.

- The random walk kernel is obtained with $\lambda_{G}(w)=P_{G}(w)$, where P_{G} is a Markov random walk on G. In that case we have:

$K\left(G_{1}, G_{2}\right)=P\left(\operatorname{label}\left(W_{1}\right)=\operatorname{label}\left(W_{2}\right)\right)$

where W_{1} and W_{2} are two independant random walks on G_{1} and G_{2}, respectively (Kashima et al., 2003).

- The geometric walk kernel is obtained (when it converges) with
$\lambda_{G}(w)=\beta^{\operatorname{length}(w)}$, for $\beta>0$. In that case the feature space is of infinite dimension (Gärtner et al., 2003).

Walk kernel examples

Examples

- The n th-order walk kernel is the walk kernel with $\lambda_{G}(w)=1$ if the length of w is $n, 0$ otherwise. It compares two graphs through their common walks of length n.
- The random walk kernel is obtained with $\lambda_{G}(w)=P_{G}(w)$, where P_{G} is a Markov random walk on G. In that case we have:

$$
K\left(G_{1}, G_{2}\right)=P\left(\text { label }\left(W_{1}\right)=\operatorname{label}\left(W_{2}\right)\right),
$$

where W_{1} and W_{2} are two independant random walks on G_{1} and G_{2}, respectively (Kashima et al., 2003).

Walk kernel examples

Examples

- The n th-order walk kernel is the walk kernel with $\lambda_{G}(w)=1$ if the length of w is $n, 0$ otherwise. It compares two graphs through their common walks of length n.
- The random walk kernel is obtained with $\lambda_{G}(w)=P_{G}(w)$, where P_{G} is a Markov random walk on G. In that case we have:

$$
K\left(G_{1}, G_{2}\right)=P\left(\text { label }\left(W_{1}\right)=\operatorname{label}\left(W_{2}\right)\right),
$$

where W_{1} and W_{2} are two independant random walks on G_{1} and G_{2}, respectively (Kashima et al., 2003).

- The geometric walk kernel is obtained (when it converges) with $\lambda_{G}(w)=\beta^{\operatorname{length}(w)}$, for $\beta>0$. In that case the feature space is of infinite dimension (Gärtner et al., 2003).

Computation of walk kernels

Proposition

These three kernels (nth-order, random and geometric walk kernels) can be computed efficiently in polynomial time.

Product graph

Definition

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs with labeled vertices. The product graph $G=G_{1} \times G_{2}$ is the graph $G=(V, E)$ with:
(1) $V=\left\{\left(v_{1}, v_{2}\right) \in V_{1} \times V_{2}: v_{1}\right.$ and v_{2} have the same label $\}$,
(2) $E=$

$$
\left\{\left(\left(v_{1}, v_{2}\right),\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right) \in V \times V:\left(v_{1}, v_{1}^{\prime}\right) \in E_{1} \text { and }\left(v_{2}, v_{2}^{\prime}\right) \in E_{2}\right\} .
$$

G1

G2

G1 \times G2

Walk kernel and product graph

Lemma

There is a bijection between:
(1) The pairs of walks $w_{1} \in \mathcal{W}_{n}\left(G_{1}\right)$ and $w_{2} \in \mathcal{W}_{n}\left(G_{2}\right)$ with the same label sequences,
(2) The walks on the product graph $w \in \mathcal{W}_{n}\left(G_{1} \times G_{2}\right)$.

Corolary

Walk kernel and product graph

Lemma

There is a bijection between:
(1) The pairs of walks $w_{1} \in \mathcal{W}_{n}\left(G_{1}\right)$ and $w_{2} \in \mathcal{W}_{n}\left(G_{2}\right)$ with the same label sequences,
(2) The walks on the product graph $w \in \mathcal{W}_{n}\left(G_{1} \times G_{2}\right)$.

Corollary

$$
\begin{aligned}
K_{\text {walk }}\left(G_{1}, G_{2}\right) & =\sum_{s \in \mathcal{S}} \Phi_{s}\left(G_{1}\right) \Phi_{s}\left(G_{2}\right) \\
& =\sum_{\left(w_{1}, w_{2}\right) \in \mathcal{W}\left(G_{1}\right) \times \mathcal{W}\left(G_{1}\right)} \lambda_{G_{1}}\left(w_{1}\right) \lambda_{G_{2}}\left(w_{2}\right) \mathbf{1}\left(I\left(w_{1}\right)=I\left(w_{2}\right)\right) \\
& =\sum_{w \in \mathcal{W}\left(G_{1} \times G_{2}\right)} \lambda_{G_{1} \times G_{2}}(w) .
\end{aligned}
$$

Computation of the nth-order walk kernel

- For the n th-order walk kernel we have $\lambda_{G_{1} \times G_{2}}(w)=1$ if the length of w is $n, 0$ otherwise.
- Therefore:

$$
K_{n t h-\operatorname{order}}\left(G_{1}, G_{2}\right)=\sum_{w \in \mathcal{W}_{n}\left(G_{1} \times G_{2}\right)} 1
$$

- Let A be the adjacency matrix of $G_{1} \times G_{2}$. Then we get:

$$
K_{\text {nth-order }}\left(G_{1}, G_{2}\right)=\sum_{i, j}\left[A^{n}\right]_{i, j}=1^{\top} A^{n} 1
$$

- Computation in $O\left(n\left|G_{1}\right|\left|G_{2}\right| d_{1} d_{2}\right)$, where d_{i} is the maximum degree of G_{i}.

Computation of random and geometric walk kernels

- In both cases $\lambda_{G}(w)$ for a walk $w=v_{1} \ldots v_{n}$ can be decomposed as:

$$
\lambda_{G}\left(v_{1} \ldots v_{n}\right)=\lambda^{i}\left(v_{1}\right) \prod_{i=2}^{n} \lambda^{t}\left(v_{i-1}, v_{i}\right)
$$

- Let Λ_{i} be the vector of $\lambda^{i}(v)$ and Λ_{t} be the matrix of $\lambda^{t}\left(v, v^{\prime}\right)$:

$$
\begin{aligned}
K_{\text {walk }}\left(G_{1}, G_{2}\right) & =\sum_{n=1}^{\infty} \sum_{w \in \mathcal{W}_{n}\left(G_{1} \times G_{2}\right)} \lambda^{i}\left(v_{1}\right) \prod_{i=2}^{n} \lambda^{t}\left(v_{i-1}, v_{i}\right) \\
& =\sum_{n=0}^{\infty} \Lambda_{i} \Lambda_{t}^{n} \mathbf{1} \\
& =\Lambda_{i}\left(I-\Lambda_{t}\right)^{-1} 1
\end{aligned}
$$

- Computation in $O\left(\left|G_{1}\right|^{3}\left|G_{2}\right|^{3}\right)$

Extensions 1: label enrichment

Atom relabebling with the Morgan index

- Compromise between fingerprints and structural keys features.
- Other relabeling schemes are possible (graph coloring).
- Faster computation with more labels (less matches implies a smaller product graph).

Extension 2: Non-tottering walk kernel

Tottering walks

A tottering walk is a walk $w=v_{1} \ldots v_{n}$ with $v_{i}=v_{i+2}$ for some i.

Tottering

- Tottering walks seem irrelevant for many applications
- Focusing on non-tottering walks is a way to get closer to the path kernel (e.g., equivalent on trees).

Computation of the non-tottering walk kernel (Mahé et al., 2005)

- Second-order Markov random walk to prevent tottering walks
- Written as a first-order Markov random walk on an augmented graph
- Normal walk kernel on the augmented graph (which is always a directed graph).

Extension 3: Subtree kernels

Example: Tree-like fragments of molecules

Computation of the subtree kernel

- Like the walk kernel, amounts to compute the (weighted) number of subtrees in the product graph.
- Recursion: if $\mathcal{T}(v, n)$ denotes the weighted number of subtrees of depth n rooted at the vertex v, then:

$$
\mathcal{T}(v, n+1)=\sum_{R \subset \mathcal{N}(v)} \prod_{v^{\prime} \in R} \lambda_{t}\left(v, v^{\prime}\right) \mathcal{T}\left(v^{\prime}, n\right),
$$

where $\mathcal{N}(v)$ is the set of neighbors of v.

- Can be combined with the non-tottering graph transformation as preprocessing to obtain the non-tottering subtree kernel.

Application in chemoinformatics (Mahé et al., 2004)

MUTAG dataset

- aromatic/hetero-aromatic compounds
- high mutagenic activity /no mutagenic activity, assayed in Salmonella typhimurium.
- 188 compouunds: 125 + / 63 -

Results

10-fold cross-validation accuracy

Method	Accuracy
Progol1	81.4%
2D kernel	91.2%

2D Subtree vs walk kernels

Screening of inhibitors for 60 cancer cell lines.

Image classification (Harchaoui and Bach, 2007)

COREL14 dataset

- 1400 natural images in 14 classes
- Compare kernel between histograms (H), walk kernel (W), subtree kernel (TW), weighted subtree kernel (wTW), and a combination (M).

Performance comparison on Corel14

Summary: graph kernels

What we saw

- Kernels do not allow to overcome the NP-hardness of subgraph patterns
- They allow to work with approximate subgraphs (walks, subtrees), in infinite dimension, thanks to the kernel trick
- However: using kernels makes it difficult to come back to patterns after the learning stage

Outline

(1) Explicit computation of features: the case of graph features
(2) Using kernels

- Introduction to kernels
- Graph kernels
- Kernels for gene expression data using gene networks
(3) Using sparsity-inducing shrinkage estimators
- Feature selection for all subgraph indexation
- Classification of array CGH data with piecewise-linear models
- Structured gene selection for microarray classification

4 Conclusion

Microarrays measure gene expression

Make cDNA reverse transcript
Label cDNAs with fluorescent dyes

Control Experimental

Principle of cDNA microarray assay for gene expression (after Gibson \& Muse 2002)

Red = "up-regulation"
Green = "down-regulation"
Black = constitutive expression

Cancer classification from microarray data

Gene networks

Gene networks and expression data

Motivation

- Basic biological functions usually involve the coordinated action of several proteins:
- Formation of protein complexes
- Activation of metabolic, signalling or regulatory pathways
- Many pathways and protein-protein interactions are already known
- Hypothesis: the weights of the classifier should be "coherent" with respect to this prior knowledge

An idea

(1) Use the gene network to extract the "important information" in gene expression profiles by Fourier analysis on the graph
(2) Learn a linear classifier on the smooth components

Graph Laplacian

Definition

The Laplacian of the graph is the matrix $L=D-A$.

$$
L=D-A=\left(\begin{array}{ccccc}
1 & 0 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
-1 & -1 & 3 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

Fourier basis

- L is positive semidefinite
- The eigenvectors e_{1}, \ldots, e_{n} of L with eigenvalues
$0=\lambda_{1} \leq \ldots \leq \lambda_{n}$ form a basis called Fourier basis
- For any $f: V \rightarrow \mathbb{R}$, the Fourier transform of f is the vector $\hat{f} \in \mathbb{R}^{n}$ defined by:

$$
\hat{f}_{i}=f^{\top} e_{i}, \quad i=1, \ldots, n
$$

- The inverse Fourier formula holds:

$$
f=\sum_{i=1}^{n} \hat{f}_{i} e_{i}
$$

Fourier basis

Fourier basis

Smoothing operator

Definition

- Let $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be non-increasing.
- A smoothing operator S_{ϕ} transform a function $f: V \rightarrow \mathbb{R}$ into a smoothed version:

$$
S_{\phi}(f)=\sum_{i=1}^{n} \hat{f}_{i} \phi\left(\lambda_{i}\right) e_{i}
$$

Smoothing operators

Examples

- Identity operator $\left(S_{\phi}(f)=f\right)$:

$$
\phi(\lambda)=1, \quad \forall \lambda
$$

- Low-pass filter:
- Attenuation of high frequencies:

Smoothing operators

Examples

- Identity operator $\left(S_{\phi}(f)=f\right)$:

$$
\phi(\lambda)=1, \quad \forall \lambda
$$

- Low-pass filter:

$$
\phi(\lambda)= \begin{cases}1 & \text { if } \lambda \leq \lambda^{*} \\ 0 & \text { otherwise }\end{cases}
$$

- Attenuation of high frequencies:

Smoothing operators

Examples

- Identity operator $\left(S_{\phi}(f)=f\right)$:

$$
\phi(\lambda)=1, \quad \forall \lambda
$$

- Low-pass filter:

$$
\phi(\lambda)= \begin{cases}1 & \text { if } \lambda \leq \lambda^{*} \\ 0 & \text { otherwise }\end{cases}
$$

- Attenuation of high frequencies:

$$
\phi(\lambda)=\exp (-\beta \lambda)
$$

Supervised classification and regression

Working with smoothed profiles

- Classical methods for linear classification and regression with a ridge penalty solve:

$$
\min _{\beta \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} I\left(\beta^{\top} f_{i}, y_{i}\right)+\lambda \beta^{\top} \beta .
$$

- Applying these algorithms on the smooth profiles means solving:

$$
\min _{\beta \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} I\left(\beta^{\top} S_{\phi}\left(f_{i}\right), y_{i}\right)+\lambda \beta^{\top} \beta .
$$

Link with shrinkage estimator

Lemma

This is equivalent to:

$$
\min _{v \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} I\left(v^{\top} f_{i}, y_{i}\right)+\lambda \sum_{i=1}^{p} \frac{\hat{v}_{i}^{2}}{\phi\left(\lambda_{i}\right)},
$$

hence the linear classifier v is smooth.

Proof

- Let $v=\sum_{i=1}^{n} \phi\left(\lambda_{i}\right) e_{i} e_{i}^{\top} \beta$, then
- Then $\hat{v}_{i}=\phi\left(\lambda_{i}\right) \hat{\beta}_{i}$ and $\beta^{\top} \beta=\sum_{i=1}^{n} \frac{\hat{v}_{i}^{2}}{\phi\left(\lambda_{i}\right)^{2}}$

Link with shrinkage estimator

Lemma

This is equivalent to:

$$
\min _{v \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} I\left(v^{\top} f_{i}, y_{i}\right)+\lambda \sum_{i=1}^{p} \frac{\hat{v}_{i}^{2}}{\phi\left(\lambda_{i}\right)},
$$

hence the linear classifier v is smooth.

Proof

- Let $v=\sum_{i=1}^{n} \phi\left(\lambda_{i}\right) e_{i} \boldsymbol{e}_{i}^{\top} \beta$, then

$$
\beta^{\top} S_{\phi}\left(f_{i}\right)=\beta^{\top} \sum_{i=1}^{n} \hat{f}_{i} \phi\left(\lambda_{i}\right) e_{i}=f^{\top} v
$$

- Then $\hat{v}_{i}=\phi\left(\lambda_{i}\right) \hat{\beta}_{i}$ and $\beta^{\top} \beta=\sum_{i=1}^{n} \frac{\hat{v}_{i}^{2}}{\phi\left(\lambda_{i}\right)^{2}}$.

Kernel methods

Smoothing kernel

Kernel methods (SVM, kernel ridge regression..) only need the inner product between smooth profiles:

$$
\begin{aligned}
K(f, g) & =S_{\phi}(f)^{\top} S_{\phi}(g) \\
& =\sum_{i=1}^{n} \hat{f}_{i} \hat{g}_{i} \phi\left(\lambda_{i}\right)^{2} \\
& =f^{\top}\left(\sum_{i=1}^{n} \phi\left(\lambda_{i}\right)^{2} e_{i} e_{i}^{\top}\right) g \\
& =f^{\top} K_{\phi} g,
\end{aligned}
$$

with

$$
K_{\phi}=\sum_{i=1}^{n} \phi\left(\lambda_{i}\right)^{2} e_{i} e_{i}^{\top}
$$

Examples

- For $\phi(\lambda)=\exp (-t \lambda)$, we recover the diffusion kernel:

$$
K_{\phi}=\exp _{M}(-2 t L) .
$$

- For $\phi(\lambda)=1 / \sqrt{1+\lambda}$, we obtain
and the penalization is:

Examples

- For $\phi(\lambda)=\exp (-t \lambda)$, we recover the diffusion kernel:

$$
K_{\phi}=\exp _{M}(-2 t L)
$$

- For $\phi(\lambda)=1 / \sqrt{1+\lambda}$, we obtain

$$
K_{\phi}=(L+I)^{-1}
$$

and the penalization is:

$$
\sum_{i=1}^{n} \frac{\hat{v}_{i}^{2}}{\phi\left(\lambda_{i}\right)}=v^{\top}(L+I) v=\|v\|_{2}^{2}+\sum_{i \sim j}\left(v_{i}-v_{j}\right)^{2}
$$

Data

Expression

- Study the effect of low irradiation doses on the yeast
- 12 non irradiated vs 6 irradiated
- Which pathways are involved in the response at the transcriptomic level?

Graph

- KEGG database of metabolic pathways
- Two genes are connected is they code for enzymes that catalyze successive reactions in a pathway (metabolic gene network).
- 737 genes, 4694 vertices.

Classification performance

Classifier

Classifier

a)

Summary

- With kernels we are able to soft constrain the shape of the classifier through regularization, e.g.:

$$
\min _{v \in \mathbb{R}^{p}} R_{e m p}(v)+\lambda \sum_{i=1}^{p} \frac{\hat{v}_{i}^{2}}{\phi\left(\lambda_{i}\right)},
$$

- This is related to priors in Bayesian learning
- The resulting classifier is interpretable, even without selection of a specific list of features.

Outline

(1) Explicit computation of features: the case of graph features
(2) Using kernels

- Introduction to kernels
- Graph kernels
- Kernels for gene expression data using gene networks
(3) Using sparsity-inducing shrinkage estimators
- Feature selection for all subgraph indexation
- Classification of array CGH data with piecewise-linear models
- Structured gene selection for microarray classification

4 Conclusion

Linear classifiers

Training the model

- Minimize an empirical risk on the training samples:

$$
\min _{\beta \in \mathbb{R}^{p+1}} R_{\text {emp }}(\beta)=\frac{1}{n} \sum_{i=1}^{n} l\left(f_{\beta}\left(x_{i}\right), y_{i}\right)
$$

- ... subject to some constraint on β, e.g.:

$$
\Omega(\beta) \leq C .
$$

Linear classifiers

Training the model

- Minimize an empirical risk on the training samples:

$$
\min _{\beta \in \mathbb{R}^{p+1}} R_{e m p}(\beta)=\frac{1}{n} \sum_{i=1}^{n} l\left(f_{\beta}\left(x_{i}\right), y_{i}\right)
$$

- ... subject to some constraint on β, e.g.:

$$
\Omega(\beta) \leq C
$$

Example : Norm Constraints

The approach

A common method in statistics to learn with few samples in high dimension is to constrain the Euclidean norm of β

$$
\Omega_{\text {ridge }}(\beta)=\|\beta\|_{2}^{2}=\sum_{i=1}^{p} \beta_{i}^{2},
$$

(ridge regression, support vector machines, kernel methods...)

Pros

- Good performance in classification

Cons

- Limited interpretation (small weights)
- No prior biological knowledge

Example : Feature Selection

The approach

Constrain most weights to be 0, i.e., select a few genes whose expression are sufficient for classification.

$$
\Omega_{\text {Best subset selection }}(\beta)=\|\beta\|_{0}=\sum_{i=1}^{p} 1\left(\beta_{i}>0\right) .
$$

This is usually a NP-hard problem, many greedy variants have been proposed (filter methods, wrapper methods)

Pros

- Good performance
- Biomarker selection
- Interpretability

Cons

- NP-hard
- Gene selection not robust
- No use of prior knowledge

Example : Sparsity inducing convex priors

The approach

Constrain most weights to be 0 through a convex non-differentiable penalty:

$$
\Omega_{\mathrm{LASSO}}(\beta)=\|\beta\|_{1}=\sum_{i=1}^{p}\left|\beta_{i}\right| .
$$

- Several variants exist, e.g., elastic net penalty ($\left.\|\beta\|_{1}+\|\beta\|_{2}\right), \ldots$)

Pros

- Good performance
- Biomarker selection
- Interpretability

Cons

- Gene selection not robust
- No use of prior knowledge

Why LASSO leads to sparse solutions

Geometric interpretation with $p=2$

Efficienty computation of the regularization path

$$
\begin{equation*}
\min _{\beta \in \mathbb{R}^{p+1}} R^{n}\left(f_{\beta}\right)=\sum_{i=1}^{n}\left(f_{\beta}\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}\right)^{2}+\lambda \sum_{i=1}^{p}\left|\beta_{i}\right| \tag{2}
\end{equation*}
$$

- No explicit solution, but this is just a quadratic program.
- LARS (Efron et al., 2004) provides a fast algorithm to compute the solution for all λ 's simultaneously (regularization path)

Incorporating prior knowledge

The idea

- If we have a specific prior knowledge about the "correct" weights, it can be included in Ω in the contraint:

Minimize $\boldsymbol{R}_{\text {emp }}(\beta)$ subject to $\Omega(\beta) \leq C$.

- If we design a convex function Ω, then the algorithm boils down to a convex optimization problem (usually easy to solve).
- Similar to priors in Bayesian statistics

Outline

(1) Explicit computation of features: the case of graph features
(2) Using kernels

- Introduction to kernels
- Graph kernels
- Kernels for gene expression data using gene networks
(3) Using sparsity-inducing shrinkage estimators
- Feature selection for all subgraph indexation
- Classification of array CGH data with piecewise-linear models
- Structured gene selection for microarray classification
(4) Conclusion

Motivation

- Indexing by all subgraphs is appealing but intractable in practice (both explicitly and with the kernel trick)
- Can we work implicitly with this representation using sparse learning, e.g., LASSO regression or boosting?
- This may lead to both accurate predictive model and the identification of discriminative patterns.
- The iterations of LARS or boosting amount to an optimization problem over subgraphs, which may be solved efficiently using graph mining technique...

Boosting over subgraph indexation (Kudo et al., 2004)

- Weak learner = decision stump indexed by subgraph H and $\alpha= \pm 1$:

$$
h_{\alpha, H}(G)=\alpha \Phi_{H}(G)
$$

- Boosting: at each iteration, for a given distribution $d_{1}+\ldots+d_{n}=1$ over the training points $\left(G_{i}, y_{i}\right)$, select a weak learner (subgraph \tilde{H}) which maximizes the gain

$$
\operatorname{gain}(H, \alpha)=\sum_{i=1}^{n} y_{i} h_{\alpha, H}\left(G_{i}\right)
$$

- This can be done "efficiently" by branch-and-bound over a DFS code tree (Yan and Han, 2002).

The DFS code tree

Graph LASSO regularization path (Tsuda, 2007)

Summary

- Sparse learning is practically feasible in the space of graphs indexed by all subgraphs
- Leads to subgraph selection
- Several extensions
- LASSO regularization path (Tsuda, 2007)
- gboost (Saigo et al., 2009)
- A beautiful and promising marriage between machine learning and data mining

Outline

(1) Explicit computation of features: the case of graph features
(2) Using kernels

- Introduction to kernels
- Graph kernels
- Kernels for gene expression data using gene networks
(3) Using sparsity-inducing shrinkage estimators
- Feature selection for all subgraph indexation
- Classification of array CGH data with piecewise-linear models
- Structured gene selection for microarray classification

4. Conclusion

Chromosomic aberrations in cancer

88	88	8月			8%	
1	${ }^{2}$	3			4	5
18	$8 \times$	**	\%	\% 8	88	88
-	7	8	9	${ }^{10}$	"	12
A ${ }^{\text {a }}$	**	* ${ }_{\text {a }}$		"\%	**	4
${ }^{13}$	14	15		16	17	18
**	=			*	\% ${ }^{\text {x }}$	
19	${ }^{20}$			22	\times	
γ	$)_{2}^{1}$	81				$j_{5}^{\prime \prime}$
18	${ }_{\substack{881 \\ 7}}$	8!	8	138	$)_{11}^{8}$	18 12
101	10	${ }_{15}$		818 16	$\begin{aligned} & 8 \\ & 17 \end{aligned}$	18 18
41 19	81 20			${ }_{22}$	$\underset{\text { d }}{ }$	$\stackrel{*}{*}^{*}$
19	${ }^{20}$			22	\times	\%

Comparative Genomic Hybridization (CGH)

Motivation

- Comparative genomic hybridization (CGH) data measure the DNA copy number along the genome
- Very useful, in particular in cancer research
- Can we classify CGH arrays for diagnosis or prognosis purpose?

Aggressive vs non-aggressive melanoma

Classification of array CGH

Prior knowledge

- Let \mathbf{x} be a CGH profile
- We focus on linear classifiers, i.e., the sign of :

$$
f(\mathbf{x})=\mathbf{x}^{\top} \beta .
$$

- We expect β to be
- sparse : only a few positions should be discriminative
- piecewise constant : within a region, all probes should contribute equally

A penalty for CGH array classification

The fused LASSO penalty (Tibshirani et al., 2005)

$$
\Omega_{\text {fusedlasso }}(\beta)=\sum_{i}\left|\beta_{i}\right|+\sum_{i \sim j}\left|\beta_{i}-\beta_{j}\right| .
$$

- First term leads to sparse solutions
- Second term leads to piecewise constant solutions
- Combined with a hinge loss leads to a fused SVM (Rapaport et al., 2008);

Application: metastasis prognosis in melanoma

Outline

(1) Explicit computation of features: the case of graph features
(2) Using kernels

- Introduction to kernels
- Graph kernels
- Kernels for gene expression data using gene networks
(3) Using sparsity-inducing shrinkage estimators
- Feature selection for all subgraph indexation
- Classification of array CGH data with piecewise-linear models
- Structured gene selection for microarray classification
(4) Conclusion

How to select jointly genes belonging to the same pathways?

Selecting pre-defined groups of variables

Group lasso (Yuan \& Lin, 2006)

If groups of covariates are likely to be selected together, the ℓ_{1} / ℓ_{2}-norm induces sparse solutions at the group level:

$$
\Omega_{\text {group }}(w)=\sum_{g}\left\|w_{g}\right\|_{2}
$$

What if a gene belongs to several groups?

Issue of using the group-lasso

- $\Omega_{\text {group }}(w)=\sum_{g}\left\|w_{g}\right\|_{2}$ sets groups to 0 .
- One variable is selected \Leftrightarrow all the groups to which it belongs are selected.
Cell
cycle

IGF,

G2

$$
\left\|w_{g_{1}}\right\|_{2}=\left\|w_{g_{3}}\right\|_{2}=0
$$

IGF selection \Rightarrow selection of unwanted groups

Removal of any group
containing a gene \Rightarrow the weight of the gene is 0 .

Overlap norm (Jacob et al., 2009)

An idea

Introduce latent variables v_{g} :

$$
\left\{\begin{array}{l}
\min _{w, V} L(w)+\lambda \sum_{g \in \mathcal{G}}\left\|v_{g}\right\|_{2} \\
w=\sum_{g \in \mathcal{G}} v_{g} \\
\operatorname{supp}\left(v_{g}\right) \subseteq g
\end{array}\right.
$$

Properties

- Resulting support is a union of groups in \mathcal{G}.
- Possible to select one variable without selecting all the groups containing it.
- Setting one v_{g} to 0 doesn't necessarily set to 0 all its variables in W.

A new norm

Overlap norm

$$
\left\{\begin{array}{l}
\min _{w, v} L(w)+\lambda \sum_{g \in \mathcal{G}}\left\|v_{g}\right\|_{2} \\
w=\sum_{g \in \mathcal{G}} v_{g}=\min _{w} L(w)+\lambda \Omega_{\text {overlap }}(w) \\
\operatorname{supp}\left(v_{g}\right) \subseteq g
\end{array}\right.
$$

with

$$
\Omega_{\text {overlap }}(w) \triangleq\left\{\begin{array}{l}
\min _{v} \sum_{g \in \mathcal{G}}\left\|v_{g}\right\|_{2} \\
w=\sum_{g \in \mathcal{G}} v_{g} \\
\operatorname{supp}\left(v_{g}\right) \subseteq g
\end{array}\right.
$$

Property

- $\Omega_{\text {overlap }}(w)$ is a norm of w.
- $\Omega_{\text {overlap }}($.$) associates to w$ a specific (not necessarily unique) decomposition $\left(v_{g}\right)_{g \in \mathcal{G}}$ which is the argmin of $(*)$.

Overlap and group unity balls

Balls for $\Omega_{\text {group }}^{\mathcal{G}}(\cdot)$ (middle) and $\Omega_{\text {overlap }}^{\mathcal{G}}(\cdot)$ (right) for the groups $\mathcal{G}=\{\{1,2\},\{2,3\}\}$ where w_{2} is represented as the vertical coordinate. Left: group-lasso ($\mathcal{G}=\{\{1,2\},\{3\}\}$), for comparison.

Theoretical results

Consistency in group support (Jacob et al., 2009)

- Let \bar{w} be the true parameter vector.
- Assume that there exists a unique decomposition \bar{v}_{g} such that $\bar{w}=\sum_{g} \bar{v}_{g}$ and $\Omega_{\text {overlap }}^{\mathcal{G}}(\bar{w})=\sum\left\|\bar{v}_{g}\right\|_{2}$.
- Consider the regularized empirical risk minimization problem $L(w)+\lambda \Omega_{\text {overlap }}^{\mathcal{G}}(w)$.

Theoretical results

Consistency in group support (Jacob et al., 2009)

- Let \bar{w} be the true parameter vector.
- Assume that there exists a unique decomposition \bar{v}_{g} such that $\bar{w}=\sum_{g} \bar{v}_{g}$ and $\Omega_{\text {overlap }}^{\mathcal{G}}(\bar{w})=\sum\left\|\bar{v}_{g}\right\|_{2}$.
- Consider the regularized empirical risk minimization problem $L(w)+\lambda \Omega_{\text {overlap }}^{\mathcal{G}}(w)$.
Then
- under appropriate mutual incoherence conditions on X,
- as $n \rightarrow \infty$,
- with very high probability,
the optimal solution \hat{w} admits a unique decomposition $\left(\hat{v}_{g}\right)_{g \in \mathcal{G}}$ such that

$$
\left\{g \in \mathcal{G} \mid \hat{v}_{g} \neq 0\right\}=\left\{g \in \mathcal{G} \mid \bar{v}_{g} \neq 0\right\}
$$

Experiments

Synthetic data: overlapping groups

- 10 groups of 10 variables with 2 variables of overlap between two successive groups : $\{1, \ldots, 10\},\{9, \ldots, 18\}, \ldots,\{73, \ldots, 82\}$.
- Support: union of 4 th and 5 th groups.
- Learn from 100 training points.

Frequency of selection of each variable with the lasso (left) and $\Omega_{\text {overlap }}^{\mathcal{G}}$ (.) (middle), comparison of the RMSE of both methods (right).

Extension : Graph lasso

Graph lasso

- Consider groups that are subgraphs whose union would give such connected components (e.g., edges E).

- $\Omega_{\mathrm{graph}}(w)=\min _{v \in \mathcal{V}_{E}} \sum_{e \in E}\left\|v_{e}\right\| \quad$ s.t. $\sum_{e \in E} v_{e}=w, \operatorname{supp}\left(v_{e}\right)=e$.

Graph lasso vs kernel on graph

- Graph lasso:

$$
\Omega_{\text {graph lasso }}(w)=\sum_{i \sim j} \sqrt{w_{i}^{2}+w_{j}^{2}} .
$$

constrains the sparsity, not the values

- Graph kernel

$$
\Omega_{\text {graph kernel }}(w)=\sum_{i \sim j}\left(w_{i}-w_{j}\right)^{2} .
$$

constrains the values (smoothness), not the sparsity

Results

Breast cancer data

- Gene expression data for 8, 141 genes in 295 breast cancer tumors.
- Canonical pathways from MSigDB containing 639 groups of genes, 637 of which involve genes from our study.

METHOD	ℓ_{1}	$\Omega_{\text {OVERLAP }}^{\mathcal{G}}()$.
ERROR	0.38 ± 0.04	0.36 ± 0.03
\sharp PATH.	$148,58,183$	$6,5,78$
PROP. PATH.	$0.32,0.14,0.41$	$0.01,0.01,0.17$

- Graph on the genes.

METHOD	ℓ_{1}	$\Omega_{\text {graph }}()$.
ERROR	0.39 ± 0.04	0.36 ± 0.01
Av. SIZE C.C.	$1.1,1,1.0$	$1.3,1.4,1.2$

Outline

(1) Explicit computation of features : the case of graph features
(2) Using kernels

- Introduction to kernels
- Graph kernels
- Kernels for gene expression data using gene networks
(3) Using sparsity-inducing shrinkage estimators
- Feature selection for all subgraph indexation
- Classification of array CGH data with piecewise-linear models
- Structured gene selection for microarray classification

4 Conclusion

Conclusion

- Machine learning with complex and structured data becomes the rule
- We surveyed several ideas
- Feature construction
- Learning with kernels
- Learning with sparsity
- Performance and interpretability are both important
- Many promising bridges between machine learning and data mining!

