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Tissue profiling with DNA chips

Data
Gene expression measures for more than 10k genes
Measured typically on less than 100 samples of two (or more)
different classes (e.g., different tumors)
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Tissue classification from microarray data

Goal
Design a classifier to
automatically assign a
class to future samples
from their expression
profile
Interpret biologically the
differences between the
classes

Difficulty
Large dimension
Few samples
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Linear classifiers

The approach
Each sample is represented by a vector x = (x1, . . . , xp) where
p > 105 is the number of probes
Classification: given the set of labeled samples, learn a linear
decision function:

fβ(x) =

p∑
i=1

βixi + β0 ,

that is positive for one class, negative for the other
Interpretation: the weight βi quantifies the influence of gene i for
the classification
We must use prior knowledge for this small n large p problem.
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Motivation

In feature selection, we look for a linear function f (x) = x>β,
where only a limited number of coefficients in β are non-zero.
Motivations

Accuracy: by restricting F , we increase the bias but decrease the
variance. This should be helpful in particular in high dimension,
where bias is low and variance is large.
Interpretation: with a large number of predictors, we often would
like to determine a smaller subset that exhibit the strongest effects.

Of course, this is particularly relevant if we believe that there exist
good predictors which are sparse (prior knowledge).
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Best subset selection

In best subset selection, we must solve the problem:

min R(fβ) s.t. ‖β ‖0 ≤ k

for k = 1, . . . , p.
The state-of-the-art is branch-and-bound optimization, known as
leaps and bound for least squares (Furnival and Wilson, 1974).
This is usually a NP-hard problem, feasible for p as large as 30 or
40
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Efficient feature selection

To work with more variables, we must use different methods. The
state-of-the-art is split among

Filter methods : the predictors are preprocessed and ranked from
the most relevant to the less relevant. The subsets are then
obtained from this list, starting from the top.
Wrapper method: here the feature selection is iterative, and uses
the ERM algorithm in the inner loop
Embedded methods : here the feature selection is part of the
ERM algorithm itself (see later the shrinkage estimators).
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Filter methods

Associate a score S(i) to each feature i , then rank the features by
decreasing score.
Many scores / criteria can be used

Loss of the ERM trained on a single feature
Statistical tests (Fisher, T-test)
Other performance criteria of the ERM restricted to a single feature
(AUC, ...)
Information theoretical criteria (mutual information...)

Pros
Simple, scalable, good empirical success

Cons
Selection of redundant features
Some variables useless alone can become useful together
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Wrapper methods

Forward stepwise selection
Start from no features
Sequentially add into the model the feature that most improves the
fit

Backward stepwise selection (if n>p)
Start from all features
Sequentially removes from the model the feature that least
degrades the fit

Other variants
Hybrid stepwise selection strategies that consider both forward and
backward moves at each stage, and make the "best" move
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Embedded methods (LASSO)

min
β

R(β) +

p∑
i=1

|βi |
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Why LASSO leads to sparse solutions
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Example: MAMMAPRINT
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Gene networks and expression data

Motivation
Basic biological functions usually involve the coordinated action of
several proteins:

Formation of protein complexes
Activation of metabolic, signalling or regulatory pathways

Many pathways and protein-protein interactions are already known
Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge
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The fused LASSO

The LASSO performs gene selection by solving

min
β

R(β) +

p∑
i=1

|βi | .

Here we want instead to enforce connected genes to have similar
weights
We can try the following embedded methods:

min
β

R(β) +
∑
i∼j

(βi − βi)
2 , (1)

min
β

R(β) +
∑
i∼j

|βi − βi | . (2)
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ClassifierRapaport et al
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Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-

8
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Classifier
Spectral analysis of gene expression profiles using gene networks

 a)  b)
Fig. 5. Theglycolysis/gluconeogenesis pathways ofKEGGwithmapped coefficients of the decision function obtained by applying a customary

linear SVM (a) and using high-frequency eigenvalue attenuation (b). The pathways are mutually exclusive in a cell, as clearly highlighted by

our algorithm.

or under-expression of individual genes, which is the cost to

pay to obtain instead an interpretation in terms of more glo-

bal pathways. Constraining the classifier to rely on just a few

genes would have a similar effect of reducing the complexity

of the problem,butwould lead to amoredifficult interpretation

in terms of pathways.

An advantage of our approach over other pathway-based

clustering methods is that we consider the network modules

that naturally appear from spectral analysis rather than a histo-

rically defined separation of the network into pathways. Thus,

pathways cross-talking is taken into account, which is diffi-

cult to do using other approaches. It can however be noticed

that the implicit decomposition into pathways that we obtain

is biased by the very incomplete knowledge of the network

and that certain regions of the network are better understood,

leading to a higher connection concentration.

Like most approaches aiming at comparing expression data

with gene networks such as KEGG, the scope of this work

is limited by two important constraints. First the gene net-

work we use is only a convenient but rough approximation to

describe complex biochemical processes; second, the trans-

criptional analysis of a sample can not give any information

regarding post-transcriptional regulation and modifications.

Nevertheless, we believe that our basic assumptions remain

valid, in that we assume that the expression of the genes

belonging to the same metabolic pathways module are coor-

dinately regulated. Our interpretation of the results supports

this assumption.

Another important caveat is that we simplify the network

description as an undirected graph of interactions. Although

this would seem to be relevant for simplifying the descrip-

tion of metabolic networks, real gene regulation networks are

influenced by the direction, sign and importance of the interac-

tion. Although the incorporationof weights into the Laplacian

(equation 1) is straightforward and allows the extension of the

approach to weighted undirected graphs, the incorporation

of directions and signs to represent signalling or regulatory

pathways requires more work but could lead to important

advances for the interpretation of microarray data in cancer

studies, for example.
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Chromosomic aberrations in cancer
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Comparative Genomic Hybridization (CGH)

Motivation
Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome
Very useful, in particular in cancer research
Can we classify CGH arrays for diagnosis or prognosis purpose?
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Aggressive vs non-aggressive melanoma
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Classification of array CGH

Prior knowledge
Let x be a CGH profile
We focus on linear classifiers, i.e., the sign of :

f (x) = x>β .

We expect β to be
sparse : only a few positions should be discriminative
piecewise constant : within a region, all probes should contribute
equally
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A penalty for CGH array classification

The fused LASSO penalty (Tibshirani et al., 2005)

Ωfusedlasso(β) =
∑

i

|βi |+
∑
i∼j

|βi − βj | .

First term leads to sparse solutions
Second term leads to piecewise constant solutions
Combined with a hinge loss leads to a fused SVM (Rapaport et
al., 2008);
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Application: metastasis prognosis in melanoma
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Example: finding discriminant modules in gene
networks

The problem
Classification of gene expression: too many genes
A gene network is given (PPI, metabolic, regulatory, signaling,
co-expression...)
We expect that “clusters of genes” (modules) in the network
contribute similarly to the classification

Two solutions (Rapaport et al., 2007, 2008)

Ωspectral(β) =
∑
i∼j

(βi − βj)
2 ,

Ωgraphfusion(β) =
∑
i∼j

|βi − βj |+
∑

i

|βi | .
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Biological networks
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Our goal

Data
Gene expression,
Gene sequence,
Protein localization, ...

Graph
Protein-protein interactions,
Metabolic pathways,
Signaling pathways, ...
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More precisely

“De novo” inference
Given data about individual genes and proteins
Infer the edges between genes and proteins

“Supervised” inference
Given data about individual genes and proteins
and given some known interactions
infer unknown interactions
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Main messages

1 Most methods developed so far are “de novo” (e.g., co-expression,
Bayesian networks, mutual information nets, dynamical
systems...)

2 However most real-world application fit the “supervised”
framework

3 Solving the “supervised” problem is much easier (and more
efficient) than the “de novo” problem. It requires less hypothesis.
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De novo methods

Typical strategies
Fit a dynamical system to time series (e.g., PDE, boolean
networks, state-space models)
Detect statistical conditional indenpence or dependency
(Bayesian netwok, mutual information networks, co-expression)

Pros
Excellent approach if the
model is correct and
enough data are available
Interpretability of the model
Inclusion of prior
knowledge

Cons
Specific to particular data
and networks
Needs a correct model!
Difficult integration of
heterogeneous data
Often needs a lot of data
and long computation time
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Supervised methods

Motivation
In actual applications,

we know in advance parts of the network to be inferred
the problem is to add/remove nodes and edges using genomic
data as side information

Supervised method
Given genomic data and
the currently known
network...
Infer missing edges
between current nodes and
additional nodes.
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Supervised approach by Metric learning

Idea
The direct similarity-based method fails because the distance
metric used might not be adapted to the inference of the targeted
protein network.
Solution: use the known subnetwork to refine the distance
measure, before applying the similarity-based method
Examples: kernels CCA (Yamanishi et al. 2004), kernel metric
learning (V and Yamanishi, 2005)
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Supervised inference by pattern recognition

Formulation and basic issue
A pair can be connected (1) or not connected (-1)
From the known subgraph we can extract examples of connected
and non-connected pairs
However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Tensor product SVM (Ben-Hur and Noble, 2006)

Intuition: a pair (A, B) is similar to a pair (C, D) if:
A is similar to C and B is similar to D, or...
A is similar to D and B is similar to C

Formally, define a similarity between pairs from a similarity
between individuals by

KTPPK ((a, b), (c, d)) = K (a, c)K (b, d) + K (a, d)K (b, c) .

If K is a positive definite kernel for individuals then KTPPK is a p.d.
kernel for pairs which can be used by SVM
This amounts to representing a pair (a, b) by the symmetrized
tensor product:

(a, b) → (a⊗ b)⊕ (b ⊗ a) .
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Tensor product SVM (Ben-Hur and Noble, 2006)

Intuition: a pair (A, B) is similar to a pair (C, D) if:
A is similar to C and B is similar to D, or...
A is similar to D and B is similar to C

Formally, define a similarity between pairs from a similarity
between individuals by

KTPPK ((a, b), (c, d)) = K (a, c)K (b, d) + K (a, d)K (b, c) .

If K is a positive definite kernel for individuals then KTPPK is a p.d.
kernel for pairs which can be used by SVM
This amounts to representing a pair (a, b) by the symmetrized
tensor product:

(a, b) → (a⊗ b)⊕ (b ⊗ a) .
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Metric learning pairwise SVM (V. et al, 2007)

Intuition: a pair (A, B) is similar to a pair (C, D) if:
A− B is similar to C − D, or...
A− B is similar to D − C.

Formally, define a similarity between pairs from a similarity
between individuals by

KMLPK ((a, b), (c, d)) = (K (a, c) + K (b, d)− K (a, c)− K (b, d))2 .

If K is a positive definite kernel for individuals then KMLPK is a p.d.
kernel for pairs which can be used by SVM
This amounts to representing a pair (a, b) by the symmetrized
difference:

(a, b) → (a− b)⊗2 .
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Supervised inference with local models

The idea (Bleakley et al., 2007)
Motivation: define specific models for each target node to
discriminate between its neighbors and the others
Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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The LOCAL model
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Results: protein-protein interaction (yeast)
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Results: metabolic gene network (yeast)
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Results: regulatory network (E. coli)
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Method Recall at 60% Recall at 80%
SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)
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Results: predicted regulatory network (E. coli)

Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).
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Outline

1 Supervised classification of genomic data
Context
Gene selection for transcriptomic predictive signatures
Pathway signatures
Predictive chromosomic aberrations with CGH data

2 Inference on biological networks

3 Virtual screening and chemogenomics

4 Conclusion
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Ligand-Based Virtual Screening and QSAR

inactive

active

active

active

inactive

inactive

NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Classical approaches

Two steps
1 Map each molecule to a vector of fixed dimension using molecular

descriptors
Global properties of the molecules (mass, logP...)
2D and 3D descriptors (substructures, fragments, ....)

2 Apply an algorithm for regression or pattern recognition.
PLS, ANN, ...

Example: 2D structural keys
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Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics 52 / 66



Which descriptors?

O

N

O

O

OO

N N N

O O

O

Difficulties
Many descriptors are needed to characterize various features (in
particular for 2D and 3D descriptors)
But too many descriptors are harmful for memory storage,
computation speed, statistical estimation
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Kernels

Definition
Let Φ(x) = (Φ1(x), . . . ,Φp(x)) be a vector representation of the
molecule x
The kernel between two molecules is defined by:

K (x , x ′) = Φ(x)>Φ(x ′) =

p∑
i=1

Φi(x)Φi(x ′) .

φ
X H
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Example: 2D fragment kernel

. . . . . .C N
CC
ON

C C NO C

CO C

CC C
CN C

NO CC C C

CC CC C C

CN CC C C

N

O

O

O N

O

C
. . . . . . . . .

φd(x) is the vector of counts of all fragments of length d :

φ1(x) = ( #(C),#(O),#(N), ...)>

φ2(x) = ( #(C-C),#(C=O),#(C-N), ...)> etc...

The 2D fragment kernel is defined, for λ < 1, by

Kfragment(x , x ′) =
∞∑

d=1

r(λ)φd(x)>φd(x ′) .
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Example: 2D fragment kernel

. . . . . .C N
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C C NO C
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O N

O

C
. . . . . . . . .

In practice
Kfragment can be computed efficiently (geometric kernel, random
walk kernel...) although the feature space has infinite dimension.
Increasing the specificity of atom labels improves performance
Selecting only “non-tottering” fragments can be done efficiently
and improves performance.
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Example: 2D subtree kernel
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2D Subtree vs fragment kernels (Mahé and V, 2007)
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Screening of inhibitors for 60 cancer cell lines (from Mahé and V.,
2008)
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Example: 3D pharmacophore kernel (Mahé et al.,
2005)

O

O

2

d1

d3

d

O

O
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d1

d3

d

K (x , y) =
∑

px∈P(x)

∑
py∈P(y)

exp (−γd (px , py )) .

Results (accuracy)
Kernel BZR COX DHFR ER
2D (Tanimoto) 71.2 63.0 76.9 77.1
3D fingerprint 75.4 67.0 76.9 78.6
3D not discretized 76.4 69.8 81.9 79.8
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Chemogenomics

The problem
Similar targets bind similar ligands
Instead of focusing on each target individually, can we screen the
biological space (target families) vs the chemical space (ligands)?
Mathematically, learn f (target , ligand) ∈ {bind , notbind}
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Chemogenomics with SVM

Tensor product SVM
Take the kernel:

K
(
(t , l), (t ′, l ′)

)
= Kt(t , t ′)Kl(l , l ′) .

Equivalently, represent a pair (t , l) by the vector φt(t)⊗ φl(l)
Allows to use any kernel for proteins Kt with any kernel for small
molecules Kl

When Kt is the Dirac kernel, we recover the classical paradigm:
each target is treated independently from the others.
Otherwise, information is shared across targets. The more similar
the targets, the more they share information.
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Example: MHC-I epitope prediction across different
alleles

The approach (Jacob and V., 2007)
take a kernel to compare different MHC-I alleles (e.g., based on
the amino-acids in the paptide recognition pocket)
take a kernel to compare different epitopes (9-mer peptides)
Combine them to learn the f (allele, epitope) function
State-of-the-art performance
Available at http://cbio.ensmp.fr/kiss
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Generalization: collaborative filtering with attributes

General problem: learn f (x , y) with a kernel Kx for x and a kernel
Ky for y .
SVM with a tensor product kernel Kx ⊗ Ky is a particular case of
something more general: estimating an operator with a spectral
regularization.
Other spectral regularization are possible (e.g., trace norm) and
lead to efficient algorithms
More details in Abernethy et al. (2008).
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Outline

1 Supervised classification of genomic data
Context
Gene selection for transcriptomic predictive signatures
Pathway signatures
Predictive chromosomic aberrations with CGH data
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What we saw

Modern machine learning methods for regression / classification
lend themselves well to the integration of prior knowledge in the
penalization / regularization function, in particular for feature
selection / grouping. Applications in array CGH classification,
siRNA design, microarray classification with gene networks
Inference of biological networks can be formulated as a
supervised problem if the graph is partly known, and powerful
methods can be applied. Application in PPI, metabolic and
regulatory networks inference.
Kernel methods (eg SVM) allow to manipulate complex objects
(eg molecules, biological sequences) as soon as kernels can be
defined and computed. Applications in virtual screening, QSAR,
chemogenomics.
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