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0 Supervised classification of genomic data
@ Context
@ Gene selection for transcriptomic predictive signatures
@ Pathway signatures
@ Predictive chromosomic aberrations with CGH data
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Tissue profiling with DNA chips

Prepare ¢cDNA'Probe’ Prepare'Microarray;

@ Gene expression measures for more than 10k genes

@ Measured typically on less than 100 samples of two (or more)
different classes (e.g., different tumors)
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Tissue classification from microarray data
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Linear classifiers

The approach

@ Each sample is represented by a vector x = (xy,..., Xp) where
p > 10° is the number of probes

@ Classification: given the set of labeled samples, learn a linear
decision function:

p
f3(x) =>_ BiXi+ Po ,
i=1
that is positive for one class, negative for the other

@ Interpretation: the weight g; quantifies the influence of gene i for
the classification

@ We must use prior knowledge for this small n large p problem.
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0 Supervised classification of genomic data

@ Gene selection for transcriptomic predictive signatures
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@ In feature selection, we look for a linear function f(x) = x 3,
where only a limited number of coefficients in 5 are non-zero.
@ Motivations
e Accuracy: by restricting F, we increase the bias but decrease the

variance. This should be helpful in particular in high dimension,
where bias is low and variance is large.

o Interpretation: with a large number of predictors, we often would
like to determine a smaller subset that exhibit the strongest effects.

@ Of course, this is particularly relevant if we believe that there exist
good predictors which are sparse (prior knowledge).
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Best subset selection

@ In best subset selection, we must solve the problem:
min R(f3) st ||Bllo <k

fork=1,...,p.

@ The state-of-the-art is branch-and-bound optimization, known as
leaps and bound for least squares (Furnival and Wilson, 1974).

@ This is usually a NP-hard problem, feasible for p as large as 30 or
40
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Efficient feature selection

To work with more variables, we must use different methods. The
state-of-the-art is split among

@ Filter methods : the predictors are preprocessed and ranked from
the most relevant to the less relevant. The subsets are then
obtained from this list, starting from the top.

@ Wrapper method: here the feature selection is iterative, and uses
the ERM algorithm in the inner loop

@ Embedded methods : here the feature selection is part of the
ERM algorithm itself (see later the shrinkage estimators).
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Filter methods

@ Associate a score S(i) to each feature i, then rank the features by
decreasing score.
@ Many scores / criteria can be used
o Loss of the ERM trained on a single feature

o Statistical tests (Fisher, T-test)
e Other performance criteria of the ERM restricted to a single feature

(AUC, ...)
e Information theoretical criteria (mutual information...)
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Filter methods

@ Associate a score S(i) to each feature i, then rank the features by
decreasing score.
@ Many scores / criteria can be used
o Loss of the ERM trained on a single feature

o Statistical tests (Fisher, T-test)
e Other performance criteria of the ERM restricted to a single feature

(AUG, ..))
e Information theoretical criteria (mutual information...)

v

Simple, scalable, good empirical success

@ Selection of redundant features
@ Some variables useless alone can become useful together
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Wrapper methods

Forward stepwise selection
@ Start from no features

@ Sequentially add into the model the feature that most improves the
fit
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Wrapper methods

Forward stepwise selection

@ Start from no features

@ Sequentially add into the model the feature that most improves the
fit

v

Backward stepwise selection (if n>p)
@ Start from all features

@ Sequentially removes from the model the feature that least
degrades the fit

\
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Wrapper methods

Forward stepwise selection
@ Start from no features

@ Sequentially add into the model the feature that most improves the
fit

Backward stepwise selection (if n>p)
@ Start from all features

@ Sequentially removes from the model the feature that least
degrades the fit

| A\

Other variants
Hybrid stepwise selection strategies that consider both forward and
backward moves at each stage, and make the "best" move
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Embedded methods (LASSO)
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Why LASSO leads to sparse solutions

Geometric interpretation with p = 2

T
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Example: MAMMAPRINT
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Example: MAMMAPRINT
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0 Supervised classification of genomic data

@ Pathway signatures
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Gene networks
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Gene networks and expression data

@ Basic biological functions usually involve the coordinated action of
several proteins:

e Formation of protein complexes
e Activation of metabolic, signalling or regulatory pathways

@ Many pathways and protein-protein interactions are already known

@ Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge
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The fused LASSO

@ The LASSO performs gene selection by solving

m|nF1’ +Z|ﬁ,

@ Here we want instead to enforce connected genes to have similar
weights

@ We can try the following embedded methods:

m|n R(3 Z : (1)

IN]

min R(8) +>_ 13 = Al (2)

irof
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Classifier
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Classifier
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0 Supervised classification of genomic data

@ Predictive chromosomic aberrations with CGH data
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Chromosomic aberrations in cancer
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Comparative Genomic Hybridization (CGH)

@ Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome

@ Very useful, in particular in cancer research
@ Can we classify CGH arrays for diagnosis or prognosis purpose?
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Aggressive vs non-aggressive melanoma

a4 , . ! . " , . . .
J 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
1 2
. . A 1
o 0ty W s [
a - ]
-2 -4
o 500 1000 1500 2000 2500 o 500 1000 1500 2000 2500
4 1
2
o ]
0
-2 -1
o 500 1000 1500 2000 2500 o 500 1000 1500 2000 2500
2 T T T T 05 T T T T
i L ‘ U ey 0 WWWWWMWWMW ]
-2 -05 q
” , . . . 1 , . . .
o 500 1000 1500 2000 2500 ] 500 1000 1500 2000 2500

Jean-Philippe Ver



Classification of array CGH

Prior knowledge

@ Let x be a CGH profile
@ We focus on linear classifiers, i.e., the sign of :

fx)=x'4.

@ We expect 3 to be
@ sparse : only a few positions should be discriminative
@ piecewise constant : within a region, all probes should contribute
equally

Amplified segments

. Unaltered segment

Deleted segment
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A penalty for CGH array classification

The fused LASSO penalty (Tibshirani et al., 2005)
Qtusediasso(8) = Z |8l + Z 18i = Bil -

inof

@ First term leads to sparse solutions
@ Second term leads to piecewise constant solutions

@ Combined with a hinge loss leads to a fused SVM (Rapaport et
al., 2008);
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Application: metastasis prognosis in melanoma
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Example: finding discriminant modules in gene
networks

The problem

@ Classification of gene expression: too many genes

@ A gene network is given (PPI, metabolic, regulatory, signaling,
co-expression...)

@ We expect that “clusters of genes” (modules) in the network
contribute similarly to the classification

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics



Example: finding discriminant modules in gene
networks

The problem
@ Classification of gene expression: too many genes
@ A gene network is given (PPI, metabolic, regulatory, signaling,
co-expression...)

@ We expect that “clusters of genes” (modules) in the network
contribute similarly to the classification

\

Two solutions (Rapaport et al., 2007, 2008)
S-zspectral(ﬁ) - Z(ﬁ/ - /3j)2 )

i~

Qgraphfusion(ﬂ) - Z W: - Bj’ + Z |B/’ :

i~f

v
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Example: finding discriminant modules in gene

networks
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e Inference on biological networks
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Biological networks
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@ Gene expression,
@ Gene sequence,
@ Protein localization, ...

@ Protein-protein interactions,

@ Metabolic pathways,
@ Signaling pathways, ...
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More precisely

“De novo” inference
@ Given data about individual genes and proteins

@ Infer the edges between genes and proteins
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More precisely

“De novo” inference

@ Given data about individual genes and proteins

@ Infer the edges between genes and proteins

v

“Supervised” inference

@ Given data about individual genes and proteins
@ and given some known interactions
@ infer unknown interactions
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Main messages

@ Most methods developed so far are “de novo” (e.g., co-expression,
Bayesian networks, mutual information nets, dynamical
systems...)

© However most real-world application fit the “supervised”
framework

© Solving the “supervised” problem is much easier (and more
efficient) than the “de novo” problem. It requires less hypothesis.
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De novo methods

Typical strategies

@ Fit a dynamical system to time series (e.g., PDE, boolean
networks, state-space models)

@ Detect statistical conditional indenpence or dependency
(Bayesian netwok, mutual information networks, co-expression)

@ Excellent approach if the @ Specific to particular data
model is correct and and networks
enough data are available @ Needs a correct model!
@ Interpretability of the model e Difficult integration of
@ Inclusion of prior heterogeneous data
knowledge | e Often needs a lot of data
and long computation time
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Supervised methods

In actual applications,
@ we know in advance parts of the network to be inferred

@ the problem is to add/remove nodes and edges using genomic
data as side information

Supervised method

@ Given genomic data and
the currently known
network...

@ Infer missing edges
between current nodes and
additional nodes.
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Supervised approach by Metric learning

@ The direct similarity-based method fails because the distance
metric used might not be adapted to the inference of the targeted
protein network.

@ Solution: use the known subnetwork to refine the distance
measure, before applying the similarity-based method

@ Examples: kernels CCA (Yamanishi et al. 2004), kernel metric
learning (V and Yamanishi, 2005)
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Supervised approach by Metric learning

@ The direct similarity-based method fails because the distance
metric used might not be adapted to the inference of the targeted
protein network.
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Supervised inference by pattern recognition

Formulation and basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!

1 4
2 [ ]
]
4 ®3
3 2@
Known graph Genomic data
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Supervised inference by pattern recognition

Formulation and basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected

and non-connected pairs

@ However the genomic data characterize individual proteins; we

need to work with pairs of proteins instead!
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Tensor product SVM (Ben-Hur and Noble, 2006)

@ Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ Ais similar to C and B is similar to D, or...
o Ais similarto D and B is similar to C
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Tensor product SVM (Ben-Hur and Noble, 2006)

@ Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ Ais similar to C and B is similar to D, or...
o Ais similarto D and B is similar to C

@ Formally, define a similarity between pairs from a similarity
between individuals by

Krepk ((a, b), (c,d)) = K(a,c)K(b,d) + K(a,d)K(b,c) .
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Tensor product SVM (Ben-Hur and Noble, 2006)

@ Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ Ais similar to C and B is similar to D, or...
o Ais similarto D and B is similar to C

@ Formally, define a similarity between pairs from a similarity
between individuals by

Krepk ((a, b), (c,d)) = K(a,c)K(b,d) + K(a,d)K(b,c) .

@ If K is a positive definite kernel for individuals then Krppi is a p.d.
kernel for pairs which can be used by SVM

@ This amounts to representing a pair (a, b) by the symmetrized
tensor product:

(a,b) — (a@b)d (bw a) .
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Metric learning pairwise SVM (V. et al, 2007)

@ Intuition: a pair (A, B) is similar to a pair (C, D) if:
e A—Bissimilarto C — D, or...
e A— Bissimilarto D — C.
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Metric learning pairwise SVM (V. et al, 2007)

@ Intuition: a pair (A, B) is similar to a pair (C, D) if:
e A—Bissimilarto C — D, or...
e A— Bissimilarto D — C.

@ Formally, define a similarity between pairs from a similarity
between individuals by

KuLex (@, b). (¢, d)) = (K(a,c) + K(b,d) — K(a,c) - K(b,d)) .
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Metric learning pairwise SVM (V. et al, 2007)

@ Intuition: a pair (A, B) is similar to a pair (C, D) if:
e A—Bissimilarto C — D, or...
e A— Bissimilarto D — C.

@ Formally, define a similarity between pairs from a similarity
between individuals by

KuLex (@, b). (¢, d)) = (K(a,c) + K(b,d) — K(a,c) - K(b,d)) .

@ If K is a positive definite kernel for individuals then Ky px is a p.d.
kernel for pairs which can be used by SVM

@ This amounts to representing a pair (a, b) by the symmetrized
difference:

(a,b) — (a— b)¥? .
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Supervised inference with local models

The idea (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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Supervised inference with local models

The idea (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.

+1

O +1 \O?
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The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model
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Results: protein-protein interaction (yeast)
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(from Bleakley et al., 2007)
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Results: metabolic gene network (yeast)
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Results: regulatory network (E. coli)

CLR
SIRENE
" 0.8 0.8 SIRENE-Bias
:g 0.6 5 0.6
"§ 0.4 § 0.4
g
0.2 CLR 0.2
SIRENE
SIRENE-Bias
0O 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8
Ratio of false positives Recall
Method Recall at 60% | Recall at 80%
SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)
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Results: predicted regulatory network (E. coli)
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Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).
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e Virtual screening and chemogenomics
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Ligand-Based Virtual Screening and QSAR
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NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Classical approaches

Two steps

@ Map each molecule to a vector of fixed dimension using molecular
descriptors

o Global properties of the molecules (mass, logP...)

e 2D and 3D descriptors (substructures, fragments, ....)
© Apply an algorithm for regression or pattern recognition.

e PLS, ANN, ...

Example: 2D structural keys

@ ah /\\D O/\\o N O%NQC

NIV

| ENEEEEEENNEN EEEEEEE N
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Which descriptors?

@ Many descriptors are needed to characterize various features (in
particular for 2D and 3D descriptors)

@ But too many descriptors are harmful for memory storage,
computation speed, statistical estimation
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Kernels

Definition
@ Let d(x) = (P4(x),...,Pp(x)) be a vector representation of the
molecule x

@ The kernel between two molecules is defined by:

p
K(x,x') = o(x)To(x') = &;(x)P;(x").
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Example: 2D fragment kernel

=

[¢] (03 c—c O——N—-¢C c=—=c——c=—=c——c=—=c
e I e
’\/o N N—/—O N c—c N——7C—C——C——C——=C
|
@ ¢y(x) is the vector of counts of all fragments of length d:
o1(X)=( #©. 40,40, ...)"
do(x) = ( #(c-c), #(c=0), 4cm, ...)T efc...
@ The 2D fragment kernel is defined, for A < 1, by
Kfragment X X - Z f Tstd( )
d=1
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Example: 2D fragment kernel

(] C c—-c O——N—¢C c=—c——c=—c——c—c
mp o N0 === ——C==C *+ o
N/O Ny N—o ﬁ—i:g N— C—Cc—Cc—cCc—¢
|
In practice

@ Kiagment Can be computed efficiently (geometric kernel, random
walk kernel...) although the feature space has infinite dimension.

@ Increasing the specificity of atom labels improves performance

@ Selecting only “non-tottering” fragments can be done efficiently
and improves performance.
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Example: 2D subtree kernel

Jean-Philippe Vert (ParisTech-Curie)

Machine learning in bioinformatics

c—¢c¢C
v
N —

N— O

C

C—N/

\N=O
N— N—C—C—C




)

V, 2007

Mahé and

(

0
()
=
—
)

X
—
o
)
S
(@)
©
P

Y
n
>
)
()
=

0
>

w

()]

(Q\|

Walks

201V/6YSy
oS
9228-INd:
p-LTOW
29551
(81)09-TH
W3D-D:

Screening of inhibitors for 60 cancer cell lines (from Mahé and V.,

2008)

123
9
©
=
L
=
2
]
=
[S)
=
=
<
©
2
©
=
=
5}
<
=

Jean-Philippe Vert (ParisTech-Curie)




Example: 3D pharmacophore kernel (Mahé et al.,
2005)

Kxoy)= >, Y. exp(—d(pxpy)) -

Px€P(x) pyeP(y)

Results (accuracy)

Kernel | BZR | COX | DHFR | ER
2D (Tanimoto) 712 1 63.0 | 769 |77.1
3D fingerprint 754 | 67.0 | 769 |78.6
3D not discretized | 76.4 | 69.8 | 81.9 | 79.8
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Chemogenomics

The problem
@ Similar targets bind similar ligands

@ Instead of focusing on each target individually, can we screen the
biological space (target families) vs the chemical space (ligands)?

@ Mathematically, learn f(target, ligand) € {bind, notbind}

o ol g J
CEF (W n
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Chemogenomics with SVM

Tensor product SVM

@ Take the kernel:

K ((t.1),(t, 1) = Ke(t. YK (1, 1.

@ Equivalently, represent a pair (t, /) by the vector ¢:(t) @ ¢,(/)

@ Allows to use any kernel for proteins K; with any kernel for small
molecules K;

@ When K; is the Dirac kernel, we recover the classical paradigm:
each target is treated independently from the others.

@ Otherwise, information is shared across targets. The more similar
the targets, the more they share information.
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Example: MHC-I epitope prediction across different
alleles

The approach (Jacob and V., 2007)

@ take a kernel to compare different MHC-I alleles (e.g., based on
the amino-acids in the paptide recognition pocket)

@ take a kernel to compare different epitopes (9-mer peptides)
@ Combine them to learn the f(allele, epitope) function

@ State-of-the-art performance

@ Available at http://cbio.ensmp.fr/kiss
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Generalization: collaborative filtering with attributes

@ General problem: learn f(x, y) with a kernel K, for x and a kernel
Ky for y.

@ SVM with a tensor product kernel Ky ® K is a particular case of
something more general: estimating an operator with a specitral
regularization.

@ Other spectral regularization are possible (e.g., trace norm) and
lead to efficient algorithms

@ More details in Abernethy et al. (2008).

0
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0 Conclusion
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@ Modern machine learning methods for regression / classification
lend themselves well to the integration of prior knowledge in the
penalization / regularization function, in particular for feature
selection / grouping. Applications in array CGH classification,
siRNA design, microarray classification with gene networks

@ Inference of biological networks can be formulated as a
supervised problem if the graph is partly known, and powerful
methods can be applied. Application in PPI, metabolic and
regulatory networks inference.

@ Kernel methods (eg SVM) allow to manipulate complex objects
(eg molecules, biological sequences) as soon as kernels can be
defined and computed. Applications in virtual screening, QSAR,
chemogenomics.
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