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Where we are

A joint lab about “Cancer computational genomics, bioinformatics,
biostatistics and epidemiology”
Located in th Institut Curie, a major hospital and cancer research
institute in Europe
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Statistical machine learning for cancer informatics

Main topics
Towards better diagnosis, prognosis, and personalized medicine

Supervised classification of genomic, transcriptomic, proteomic
data; heterogeneous data integration

Towards new drug targets
Systems biology, reconstruction of gene networks, pathway
enrichment analysis, multidimensional phenotyping of cell
populations.

Towards new drugs
Ligand-based virtual screening, in silico chemogenomics.
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Towards personalized medicine:
Diagnosis/prognosis from genome/transcriptome

From Golub et al., Science, 1999.
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Towards new drug targets:
Inference of biological networks

From Mordelet and Vert, Bioinformatics, 2008.
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Towards new drugs:
Ligand-Based Virtual Screening and QSAR
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NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Pattern recognition, aka supervised classification
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Pattern recognition, aka supervised classification

Challenges
High dimension
Few samples
Structured data
Prior knowledge
Fast and scalable
implementations
Interpretable models
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Linear classifiers

The model
Each sample is represented by a vector x = (x1, . . . , xp)

Goal: from a training set of samples with known labels, estimate a
linear function:

fβ(x) =

p∑
i=1

βixi + β0 .

whose sign is a good predictor.
Interpretability: the weight βi quantifies the influence of feature i
(but...)
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Estimating a linear classifiers

We have a training set of samples (x (1), . . . , x (n)) with known class
(y (1), . . . , y (n)).
For any candidate set of weights β = (β1, . . . , β

p) we quantify how
"good" the linear function fβ is on the training set with some
average loss, e.g.,

R(β) =
1
n

n∑
i=1

l(fβ(x (i)), y (i)) ,

We choose the β that achieves the minimium risk, subject to some
constraint on β, e.g.:

Ω(β) ≤ C .
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Importance of the constraint Ω(β) < C

Why it is necessary
Prevents overfitting (especially when n is small)
Helps to overcome numerical issues (regularization)

Why it is useful
Can lead to efficient implementations (convexification)
Good place to put prior knowledge!
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Outline

1 Gene selection for transcriptomic signatures

2 Prognosis from array CGH data

3 Pathway signatures
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Tissue profiling with DNA chips

Data
Gene expression measures for more than 10k genes
Measured typically on less than 100 samples of two (or more)
different classes (e.g., different tumors)
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Tissue classification from microarray data

Goal
Design a classifier to
automatically assign a
class to future samples
from their expression
profile
Interpret biologically the
differences between the
classes

Difficulty
Large dimension
Few samples
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Gene signature

The idea
We look for a limited set of genes that are sufficient for prediction.
Equivalently, the linear classifier will be sparse

Motivations
Bet on sparsity: we believe the "true" model is sparse.
Interpretation: we will get a biological interpretation more easily by
looking at the selected genes.
Accuracy: by restricting the class of classifiers, we "increase the
bias" but "decrease the variance". This should be helpful in large
dimensions (it is better to estimate well a wrong model than
estimate badly a good model).

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics 16 / 43



Example: MAMMAPRINT
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How to estimate a sparse linear model?

Best subset selection
We look for a sparse weight vector β by solving the problem:

min R(fβ) s.t. ‖β ‖0 ≤ k

This is usually a NP-hard problem, feasible for p as large as 30 or
40
The state-of-the-art is branch-and-bound optimization, known as
leaps and bound for least squares (Furnival and Wilson, 1974).
Not useful in practice for us...
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Efficient feature selection

To work with more variables, we must use different methods. The
state-of-the-art is split among

Filter methods : the predictors are preprocessed and ranked from
the most relevant to the less relevant. The subsets are then
obtained from this list, starting from the top.
Wrapper method: here the feature selection is iterative, and uses
the ERM algorithm in the inner loop
Embedded methods : here the feature selection is part of the
ERM algorithm itself (see later the shrinkage estimators).
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Filter methods

Associate a score S(i) to each feature i , then rank the features by
decreasing score.
Many scores / criteria can be used

Loss of the ERM trained on a single feature
Statistical tests (Fisher, T-test)
Other performance criteria of the ERM restricted to a single feature
(AUC, ...)
Information theoretical criteria (mutual information...)

Pros
Simple, scalable, good empirical success

Cons
Selection of redundant features
Some variables useless alone can become useful together
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Wrapper methods

Forward stepwise selection
Start from no features
Sequentially add into the model the feature that most improves the
fit

Backward stepwise selection (if n>p)
Start from all features
Sequentially removes from the model the feature that least
degrades the fit

Other variants
Hybrid stepwise selection strategies that consider both forward and
backward moves at each stage, and make the "best" move
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Embedded methods (LASSO)

min
β

R(β) +

p∑
i=1

|βi |
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Why LASSO leads to sparse solutions
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Outline

1 Gene selection for transcriptomic signatures

2 Prognosis from array CGH data

3 Pathway signatures
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Chromosomic aberrations in cancer
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Comparative Genomic Hybridization (CGH)

Motivation
Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome
Very useful, in particular in cancer research
Can we classify CGH arrays for diagnosis or prognosis purpose?
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Aggressive vs non-aggressive melanoma
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Example: CGH array classification

Prior knowledge
For a CGH profile x = (x1, . . . , xp), we focus on linear classifiers,
i.e., the sign of :

f (x) =

p∑
i=1

βixi .

We expect β to be
sparse : not all positions should be discriminative
piecewise constant : within a selected region, all probes should
contribute equally
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A penalty for CGH array classification

The fused LASSO penalty (Tibshirani et al., 2005)

Ωfusedlasso(β) =
∑

i

|βi |+
∑
i∼j

|βi − βj | .

First term leads to sparse solutions
Second term leads to piecewise constant solutions
Combined with a hinge loss leads to a fused SVM (Rapaport et
al., 2008);
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Application: metastasis prognosis in melanoma
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Outline
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2 Prognosis from array CGH data

3 Pathway signatures
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Motivation

Challenging the idea of gene signature
We often observe little stability in the genes selected...
Is gene selection the most biologically relevant hypothesis?
What about thinking instead of "pathways" or "modules"
signatures?
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Gene networks
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Gene networks and expression data

Motivation
Basic biological functions usually involve the coordinated action of
several proteins:

Formation of protein complexes
Activation of metabolic, signalling or regulatory pathways

Many pathways and protein-protein interactions are already known
Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics 34 / 43



Graph based penalty

Prior hypothesis
Genes near each other on the graph should have similar weigths.

Two solutions (Rapaport et al., 2007, 2008)

Ωspectral(β) =
∑
i∼j

(βi − βj)
2 ,

Ωgraphfusion(β) =
∑
i∼j

|βi − βj |+
∑

i

|βi | .
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ClassifiersRapaport et al
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Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-

8
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Classifier
Spectral analysis of gene expression profiles using gene networks

 a)  b)
Fig. 5. Theglycolysis/gluconeogenesis pathways ofKEGGwithmapped coefficients of the decision function obtained by applying a customary

linear SVM (a) and using high-frequency eigenvalue attenuation (b). The pathways are mutually exclusive in a cell, as clearly highlighted by

our algorithm.

or under-expression of individual genes, which is the cost to

pay to obtain instead an interpretation in terms of more glo-

bal pathways. Constraining the classifier to rely on just a few

genes would have a similar effect of reducing the complexity

of the problem,butwould lead to amoredifficult interpretation

in terms of pathways.

An advantage of our approach over other pathway-based

clustering methods is that we consider the network modules

that naturally appear from spectral analysis rather than a histo-

rically defined separation of the network into pathways. Thus,

pathways cross-talking is taken into account, which is diffi-

cult to do using other approaches. It can however be noticed

that the implicit decomposition into pathways that we obtain

is biased by the very incomplete knowledge of the network

and that certain regions of the network are better understood,

leading to a higher connection concentration.

Like most approaches aiming at comparing expression data

with gene networks such as KEGG, the scope of this work

is limited by two important constraints. First the gene net-

work we use is only a convenient but rough approximation to

describe complex biochemical processes; second, the trans-

criptional analysis of a sample can not give any information

regarding post-transcriptional regulation and modifications.

Nevertheless, we believe that our basic assumptions remain

valid, in that we assume that the expression of the genes

belonging to the same metabolic pathways module are coor-

dinately regulated. Our interpretation of the results supports

this assumption.

Another important caveat is that we simplify the network

description as an undirected graph of interactions. Although

this would seem to be relevant for simplifying the descrip-

tion of metabolic networks, real gene regulation networks are

influenced by the direction, sign and importance of the interac-

tion. Although the incorporationof weights into the Laplacian

(equation 1) is straightforward and allows the extension of the

approach to weighted undirected graphs, the incorporation

of directions and signs to represent signalling or regulatory

pathways requires more work but could lead to important

advances for the interpretation of microarray data in cancer

studies, for example.
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Example: finding discriminant modules in gene
networks

Prior hypothesis
Genes near each other on the graph should have non-zero weigths
(i.e., the support of β should be made of a few connected
components).

Two solutions?

Ωintersection(β) =
∑
i∼j

√
β2

i + β2
j ,

Ωunion(β) = sup
α∈Rp:∀i∼j,‖α2

i +α
2
j ‖≤1

α>β .
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Example: finding discriminant modules in gene
networks

Groups (1,2) and (2,3). Left: Ωintersection(β). Right: Ωunion(β). Vertical
axis is β2.
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Graph lasso vs kernel on graph

Graph lasso:

Ωgraph lasso(w) =
∑
i∼j

√
w2

i + w2
j .

constrains the sparsity, not the values
Graph kernel

Ωgraph kernel(w) =
∑
i∼j

(wi − wj)
2 .

constrains the values (smoothness), not the sparsity
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Preliminary results

Breast cancer data
Gene expression data for 8,141 genes in 295 breast cancer
tumors.
Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD `1 Ωgroup.
ERROR 0.38± 0.04 0.36± 0.03
] PATH. 148,58,183 6,5,78
PROP. PATH. 0.32,0.14,0.41 0.01,0.01,0.17

Graph on the genes.

METHOD `1 Ωgraph(.)
ERROR 0.39± 0.04 0.36± 0.01
AV. SIZE C.C. 1.1,1,1.0 1.3,1.4,1.2
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Conclusion

Machine learning provides many solutions for the analysis of
high-throughput data (more examples later..)
The development of dedicated method is increasingly important to
overcome the challenges (few samples, high-dimension,
structures..)
This increasingly requires tight collaboration with domain experts
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Thanks!

Franck Rapaport, Emmanuel Barillot, Andrei Zynoviev, Laurent
Jacob, Anne-Claire Haury (Institut Curie / Mines ParisTech)
Guillaume Obozinski (UC Berkeley / INRIA)

... and the INSERM-JSPS grant for collaborative research which
support this workshop
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