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Cancer diagnosis
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Cancer prognosis
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Virtual screening for drug discovery
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NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Pattern recognition, aka supervised classification
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Pattern recognition, aka supervised classification

Challenges

@ High dimension
Few samples

@ Structured data

@ Heterogeneous data
@ Prior knowledge
°

Fast and scalable
implementations

Interpretable models
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Formalization

The problem

@ Given a set of training instances (x1, y1), ..., (Xa, ¥n), Where

X; € X are data and y; € ) are continuous or discrete variables of
interest,

@ Estimate a function

y =f(x)
where x is any new data to be labeled.
@ f should be accurate and intepretable.
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Linear classifiers

The model

@ Each sample x € X is represented by a vector of features (or
descriptors, or patterns):

O(X) = (P1(X),...,Dp(x)) € RP.

@ Based on the training set we estimate a linear function:

p
fa(x) =Y Bidi(x) = BT d(x) .
i=1
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Estimating linear classifiers

@ For any candidate set of weights 5 = (51, . . ., BP) we quantify how
"good" the linear function f3 is on the training set with some

empirical risk:
1 n
== 21: I(fa(xi), ¥i) -
=

@ We choose the g that achieves the minimium empirical risk,
subject to some constraint:

QB)<C

@ Equivalently we solve

min — ZI f(x:), ¥i) + AQ(B) -

BERP N
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Two related questions

p
f3(x) = Bidi(x)
i=1

1
ﬂrglgj - ; I(f3(xi), yi) + AQ(B)

@ How to design the features ¢(x)?
@ How to estimate the model 5? J

Jean-Philippe Vert (ParisTech) Machine learning in bioinformatics ENS Paris 10/59



0 Cancer prognosis from DNA copy number variations
e Diagnosis and prognosis from gene expression data
e Virtual screening for drug discovery

e Conclusion
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0 Cancer prognosis from DNA copy number variations
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A simple view of cancer progression

cells grow as a benign
tumor in epithelium break through basal lamina invade capillary

2 b.
cannective lamina —

travel through bloodstream
(less than 1in 1000 cells
will survive to form metastases)

proliferate to form
wall in liver (extravasation) metastasis in liver
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Chromosomic aberrations in cancer
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Comparative Genomic Hybridization (CGH)

@ Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome

@ Very useful, in particular in cancer research
@ Can we classify CGH arrays for diagnosis or prognosis purpose?
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Jain et al. Genome research 2002 12:325-332
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Aggressive vs non-aggressive melanoma

a4 , . ! . " , . . .
J 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
1 2
. . A 1
o 0ty W s [
a - ]
-2 -4
o 500 1000 1500 2000 2500 o 500 1000 1500 2000 2500
4 1
2
o ]
0
-2 -1
o 500 1000 1500 2000 2500 o 500 1000 1500 2000 2500
2 T T T T 05 T T T T
i L ‘ U ey 0 WWWWWMWWMW ]
-2 05 q
” , . . . 1 , . . .
o 500 1000 1500 2000 2500 ] 500 1000 1500 2000 2500

Jean-Philippe Vert (P Machine learning in Paris 6/59



CGH array classification

Prior knowledge

@ For a CGH profile x € RP, we focus on linear classifiers, i.e., the
sign of :

fa(x) = 8" x.
@ We expect (5 to be

@ sparse : not all positions should be discriminative
@ piecewise constant : within a selected region, all probes should
contribute equally

Amplified segments
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Unaltered segment

Deleted segment

T 457 158 159 16 181 162 163 164 165 186 167
ion N
10"

Jean-Philippe Vert (ParisTech) Machine learning in bioinformatics ENS Paris 17 /59



Promoting sparsity with the /1 penalty

The ¢4 penalty (Tibshirani, 1996; Chen et al., 1998)
The solution of

m|n R(5 +>\Z|ﬂ,

is usually sparse.

Geometric interpretation with p = 2
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Promoting piecewise constant profiles penalty

The variable fusion penalty (Land and Friedman, 1996)
The solution of

p—1
min R(B) + A |Bi+1 — Bil

BERP -
i=1

is usually piecewise constant.

Geometric interpretation with p = 2
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A penalty for CGH array classification

The fused LASSO penalty (Tibshirani et al., 2005)
Qtusediasso(3 Z |8l + Z 18i — Bjl -

i~j

@ First term leads to sparse solutions

@ Second term leads to piecewise constant solutions

The fused SVM (Rapaport et al., 2008)

n
[52}1@) 1€<y,,ﬁ X,)+)\Z|5/|+M§|5/ Bil -

where / is, e.g., the hinge loss ¢(y, t) = max(1 — yt,0). It is then a LP.
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Application: predicting metastasis in melanoma
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e Diagnosis and prognosis from gene expression data
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DNA — RNA — protein

DNA
T
e
- &%\\a@-&‘a\% N Franseription

L Rt X

Fransiotion

@ CGH shows the (static) DNA

@ Cancer cells have also abnormal (dynamic) gene expression (=
transcription)

Jean-Philippe Vert (ParisTech) Machine learning in bioinformatics ENS Paris 23/59



Tissue profiling with DNA chips

Prepare ¢cDNA'Probe’ Prepare'Microarray/

@ Gene expression measures for more than 10k genes

@ Measured typically on less than 100 samples of two (or more)
different classes (e.g., different tumors)
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Tissue classification from microarray data

capciiin Goal
an me M)Ill (X59417)

ME-| U0s250)

@ Design a classifier to

3 automatically assign a
class to future samples
m from their expression

S5 t0ms
NN (D07

o pr0f||e
Rabaptin-5 (Y08612)
e el p—

12964

@ Interpret biologically the

oacelate (M55150)

[ differences between the
classes

HoxA9 (US2759)
CD3 97)

Cystatin € (M2
Proteoglycan | (X17042)
ILS precarsor YOOTE?)
Assmocidn (963

Difficulty
S @ Large dimension
@ Few samples

Jean-Philippe Vert (ParisTech) Machine learning in bioinformatics i 25/59



Prognosis from microarray data (MAMMAPRINT)
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Gene signature

@ We look for a limited set of genes that are sufficient for prediction.
@ Equivalently, the linear classifier will be sparse

v

@ Bet on sparsity: we believe the "true" model is sparse.

@ Interpretation: we will get a biological interpretation more easily by
looking at the selected genes.

@ Accuracy: by restricting the class of classifiers, we "increase the
bias" but "decrease the variance". This should be helpful in large
dimensions (it is better to estimate well a wrong model than
estimate badly a good model).
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But...

Challenging the idea of gene signature
@ We often observe little stability in the genes selected...
@ Is gene selection the most biologically relevant hypothesis?

@ What about thinking instead of "pathways" or "modules”
signatures?
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Gene networks
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Gene networks and expression data

@ Basic biological functions usually involve the coordinated action of
several proteins:

e Formation of protein complexes
e Activation of metabolic, signalling or regulatory pathways

@ Many pathways and protein-protein interactions are already known

@ Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge
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Graph based penalty

Prior hypothesis
Genes near each other on the graph should have similar weigths.

Jean-Philippe Vert (ParisTech) Machine learning in bioinformatics ENS Paris 31/59



Graph based penalty

Prior hypothesis
Genes near each other on the graph should have similar weigths.

Two solutions (Rapaport et al., 2007, 2008)
Qspectral(ﬁ) - Z(ﬁ/ - 6])2 >

invf

Qgr.ar,ohfusion(ﬂ) - Z W! - ﬁ/’ + Z |ﬁ/’ :

inf
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Classifiers

N Glycan
biosynthesis

Glycolysis /
Gluconeogenesis

Porphyrin A Protein
and Sulfur
chlorophy metabolism

metabolism
Nitrogen,
Z asparagine
Riboflavin metabolism 0 & ) metabolism

Folate
biosynthesis

_/ polymerase
@ subunits

Biosynthesis of steroids, N

ergosterol metabolism

Lysine R®  Oxidative
biosynthesis phosphorylation,
\ TCA cycle

Phenylalanine, tyrosine and,
tryptophan biosynthesis Purine
metabolism

Jean-Philippe Vert (ParisTech) Machine learning in bioinformatics 32/59



Classifier
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Example: finding discriminant modules in gene
networks

Prior hypothesis

Genes near each other on the graph should have non-zero weigths
(i.e., the support of 5 should be made of a few connected
components).

ENS Paris 34 /59
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Example: finding discriminant modules in gene
networks

Prior hypothesis

Genes near each other on the graph should have non-zero weigths
(i.e., the support of 5 should be made of a few connected
components).

Two solutions?

| A\

Qintersection(8) = Z \/ 5,2 + /3'2 )

i~j

Qunion(B) = sup a'f.

o 2 2
a€RP Vi, || +a; <1

.
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Example: finding discriminant modules in gene

networks
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Graph lasso vs kernel on graph

@ Graph lasso:
Qgraph lasso(W) = Z \ Wi2 + Wj2 :
i~j
constrains the sparsity, not the values

@ Graph kernel

Qgraph kernel(W) = Z(Wi - WI)2

i~of

constrains the values (smoothness), not the sparsity
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Preliminary results

Breast cancer data

@ Gene expression data for 8, 141 genes in 295 breast cancer
tumors.

@ Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD 44 Qgroup-
ERROR 0.38 +0.04 0.36 +0.03
ff PATH. 148, 58,183 6,5,78

PROP. PATH. 0.32,0.14,0.41 0.01,0.01,0.17

@ Graph on the genes.

METHOD 44 Qgrapn(.)
ERROR 0.39+0.04 0.36 +0.01
Av. sizec.c. 1.1,1,1.0 13,14,1.2
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e Virtual screening for drug discovery
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Drug discovery
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A long, expensive and risky process

@ On average 15 years and $800 millions

@ High attrition rate: for 10,000 molecules tested, 10 make it to
clinicals, 1 to the market.

@ >70% of the costs are wasted on failures
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Computational approaches

The use of computers and computational methods permeates all
aspects of drug discovery today, in particular for:

@ Target identification
@ Structure prediction, virtual screening (docking)
@ Prediction of drug-likeliness of compounds
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Example : ligand-Based Virtual Screening
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NCI AIDS screen results (from http://cactus.nci.nih.gov).

Jean-Philippe Vert (ParisTech) Machine learning in bioinformatics ENS Paris 41/59



The machine learning approach
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The machine learning approach

@ Represent explicitly each graph x by a vector of fixed dimension
d(x) € RP.
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The machine learning approach

@ Represent explicitly each graph x by a vector of fixed dimension
d(x) € RP.
© Use an algorithm for regression or pattern recognition in RP.
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2D structural keys in chemoinformatics

@ Index a molecule by a binary fingerprint defined by a limited set of
pre-defined stuctures

.\HHH»‘HHH.:‘

@ Use a machine learning algorithms such as SVM, NN, PLS,
decision tree, ...
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Challenge: which descriptors (patterns)?

AN

@ Expressiveness: they should retain as much information as
possible from the graph

@ Computation : they should be fast to compute

@ Large dimension of the vector representation: memory storage,
speed, statistical issues
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Indexing by all subgraphs?

@=»
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o

Computing all subgraph occurrences is NP-hard. I
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Indexing by all paths?

B—®
(0,...,0,1,0,...,0,1,0,...)

@‘@ ® t t
(a—a) (6—e—0)

Computing all path occurrences is NP-hard. l
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Indexing by what?

Substructure selection

We can imagine more limited sets of substuctures that lead to more
computationnally efficient indexing (non-exhaustive list)

@ substructures selected by domain knowledge (MDL fingerprint)
@ all path up to length k (Openeye fingerprint, Nicholls 2005)

@ all shortest paths (Borgwardt and Kriegel, 2005)
°

all subgraphs up to k vertices (graphlet kernel, Sherashidze et al.,
2009)

@ all frequent subgraphs in the database (Helma et al., 2004)
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Example : Indexing by all shortest paths

Properties (Borgwardt and Kriegel, 2005)

@ There are O(n?) shortest paths.

@ The vector of counts can be computed in O(n*) with the
Floyd-Warshall algorithm.
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Example : Indexing by all subgraphs up to k vertices

(®(0,..., 0,1,0,..., 0,1,0 )
76 ;
(@&®) ®
D

Properties (Shervashidze et al., 2009)

@ Naive enumeration scales as O(n%).

@ Enumeration of connected graphlets in O(nd*~1) for graphs with
degree < d and k < 5.

@ Randomly sample subgraphs if enumeration is infeasible.
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Graph kernels
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Graph kernels

@ Represent implicitly each graph x by a vector ®(x) € H through
the kernel
K(x,x") = &(x) T o(x').
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Graph kernels

@ Represent implicitly each graph x by a vector ®(x) € H through
the kernel
K(x,x") = &(x) T o(x').

@ Use a kernel method for classification in 7.
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Does the "kernel trick" help?

Unfortunately...

@ ltis intractable to compute complete graph kernels (which
separate non-isomorphic graphs)

@ ltis intractable to compute the subgraph kernels (NP-hard).
@ ltis intractable to compute the path kernel (NP-hard).
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Walks # paths

Jean-Philippe Vert (ParisTech) Machine learning in bioinformatics ENS Paris 52 /59



2D walk kernel

[e] (03 c—c O——N—7¢C c==c——Cc==c——c==cC
» ¢ N o=——=c—C...... O——N——C=——C——C——C * *** '
(N:ig ¢ ¢ ¢ N——C——C—C——C—=C
N/ o N N c—c¢C
(e}

@ ¢4(x) is the vector of counts of all walks of length d:

p1(x)=( #©, 4,4, ...)T

¢a(X) = ( #(c-c), #(c-0), #(cm), ...)"

etc...

@ The 2D fragment kernel is defined by

Kwaik (X, x") Z/\dcf)d $a(X') .
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2D walk kernel in practice

/

o c

@ Kyak can be computed efficiently for various weightings, although
the feature space has infinite dimension.

@ Selecting only walks with no backward moves (“non-tottering”) can
be done efficiently and improves performance.

‘—O—‘ Non-tottering

o OO0 @
.—Q—‘ Tottering
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Extension: 2D subtree kernel

N— N—C—C—C
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Example: 3D pharmacophore kernel (Mahé et al.,
2005)

Kxoy)= >, Y. exp(—yd(pxpy)) -

Px€P(x) pyeP(y)

Results (accuracy)

Kernel | BZR | COX | DHFR | ER
2D (Tanimoto) 712 1 63.0 | 769 |77.1
3D fingerprint 754 | 67.0 | 769 | 78.6
3D not discretized | 76.4 | 69.8 | 81.9 | 79.8
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Outline

e Conclusion
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Conclusion

@ Modern machine learning methods play an increasing role in bio-
and chemo-informatics

@ The development of dedicated method is increasingly important to
overcome the challenges (few samples, high-dimension,
structures..)

@ This increasingly requires tight collaboration with domain experts

v
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