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Cancer diagnosis
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Cancer prognosis
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Virtual screening for drug discovery
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NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Pattern recognition, aka supervised classification
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Pattern recognition, aka supervised classification

Challenges
High dimension
Few samples
Structured data
Heterogeneous data
Prior knowledge
Fast and scalable
implementations
Interpretable models
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Formalization

The problem
Given a set of training instances (x1, y1), . . . , (xn, yn), where
xi ∈ X are data and yi ∈ Y are continuous or discrete variables of
interest,
Estimate a function

y = f (x)

where x is any new data to be labeled.
f should be accurate and intepretable.
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Linear classifiers

The model
Each sample x ∈ X is represented by a vector of features (or
descriptors, or patterns):

Φ(x) = (Φ1(x), . . . ,Φp(x)) ∈ Rp .

Based on the training set we estimate a linear function:

fβ(x) =

p∑
i=1

βiΦi(x) = β>Φ(x) .
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Estimating linear classifiers

For any candidate set of weights β = (β1, . . . , β
p) we quantify how

"good" the linear function fβ is on the training set with some
empirical risk:

R(β) =
1
n

n∑
i=1

l(fβ(xi), yi) .

We choose the β that achieves the minimium empirical risk,
subject to some constraint:

Ω(β) ≤ C .

Equivalently we solve

min
β∈Rp

1
n

n∑
i=1

l(fβ(xi), yi) + λΩ(β) .
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Two related questions

fβ(x) =

p∑
i=1

βiΦi(x)

min
β∈Rp

1
n

n∑
i=1

l(fβ(xi), yi) + λΩ(β)

How to design the features Φ(x)?
How to estimate the model β?
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Outline

1 Cancer prognosis from DNA copy number variations

2 Diagnosis and prognosis from gene expression data

3 Virtual screening for drug discovery

4 Conclusion
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A simple view of cancer progression
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Chromosomic aberrations in cancer
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Comparative Genomic Hybridization (CGH)

Motivation
Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome
Very useful, in particular in cancer research
Can we classify CGH arrays for diagnosis or prognosis purpose?
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Aggressive vs non-aggressive melanoma
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CGH array classification

Prior knowledge
For a CGH profile x ∈ Rp, we focus on linear classifiers, i.e., the
sign of :

fβ(x) = β>x .

We expect β to be
sparse : not all positions should be discriminative
piecewise constant : within a selected region, all probes should
contribute equally
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Promoting sparsity with the `1 penalty

The `1 penalty (Tibshirani, 1996; Chen et al., 1998)
The solution of

min
β∈Rp

R(β) + λ

p∑
i=1

|βi |

is usually sparse.

Jean-Philippe Vert (ParisTech) Machine learning in bioinformatics ENS Paris 18 / 59



Promoting piecewise constant profiles penalty

The variable fusion penalty (Land and Friedman, 1996)
The solution of

min
β∈Rp

R(β) + λ

p−1∑
i=1

|βi+1 − βi |

is usually piecewise constant.
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A penalty for CGH array classification

The fused LASSO penalty (Tibshirani et al., 2005)

Ωfusedlasso(β) =
∑

i

|βi |+
∑
i∼j

|βi − βj | .

First term leads to sparse solutions
Second term leads to piecewise constant solutions

The fused SVM (Rapaport et al., 2008)

min
β∈Rp

n∑
i=1

`
(

yi , β
>xi

)
+ λ

∑
i

|βi |+ µ
∑
i∼j

|βi − βj | .

where ` is, e.g., the hinge loss `(y , t) = max(1− yt ,0). It is then a LP.
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Application: predicting metastasis in melanoma
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Outline

1 Cancer prognosis from DNA copy number variations

2 Diagnosis and prognosis from gene expression data

3 Virtual screening for drug discovery

4 Conclusion
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DNA→ RNA→ protein

CGH shows the (static) DNA
Cancer cells have also abnormal (dynamic) gene expression (=
transcription)
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Tissue profiling with DNA chips

Data
Gene expression measures for more than 10k genes
Measured typically on less than 100 samples of two (or more)
different classes (e.g., different tumors)
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Tissue classification from microarray data

Goal
Design a classifier to
automatically assign a
class to future samples
from their expression
profile
Interpret biologically the
differences between the
classes

Difficulty
Large dimension
Few samples
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Prognosis from microarray data (MAMMAPRINT)
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Gene signature

The idea
We look for a limited set of genes that are sufficient for prediction.
Equivalently, the linear classifier will be sparse

Motivations
Bet on sparsity: we believe the "true" model is sparse.
Interpretation: we will get a biological interpretation more easily by
looking at the selected genes.
Accuracy: by restricting the class of classifiers, we "increase the
bias" but "decrease the variance". This should be helpful in large
dimensions (it is better to estimate well a wrong model than
estimate badly a good model).
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But...

Challenging the idea of gene signature
We often observe little stability in the genes selected...
Is gene selection the most biologically relevant hypothesis?
What about thinking instead of "pathways" or "modules"
signatures?
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Gene networks
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Gene networks and expression data

Motivation
Basic biological functions usually involve the coordinated action of
several proteins:

Formation of protein complexes
Activation of metabolic, signalling or regulatory pathways

Many pathways and protein-protein interactions are already known
Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge
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Graph based penalty

Prior hypothesis
Genes near each other on the graph should have similar weigths.

Two solutions (Rapaport et al., 2007, 2008)

Ωspectral(β) =
∑
i∼j

(βi − βj)
2 ,

Ωgraphfusion(β) =
∑
i∼j

|βi − βj |+
∑

i

|βi | .
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ClassifiersRapaport et al
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Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-

8
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Classifier
Spectral analysis of gene expression profiles using gene networks

 a)  b)
Fig. 5. Theglycolysis/gluconeogenesis pathways ofKEGGwithmapped coefficients of the decision function obtained by applying a customary

linear SVM (a) and using high-frequency eigenvalue attenuation (b). The pathways are mutually exclusive in a cell, as clearly highlighted by

our algorithm.

or under-expression of individual genes, which is the cost to

pay to obtain instead an interpretation in terms of more glo-

bal pathways. Constraining the classifier to rely on just a few

genes would have a similar effect of reducing the complexity

of the problem,butwould lead to amoredifficult interpretation

in terms of pathways.

An advantage of our approach over other pathway-based

clustering methods is that we consider the network modules

that naturally appear from spectral analysis rather than a histo-

rically defined separation of the network into pathways. Thus,

pathways cross-talking is taken into account, which is diffi-

cult to do using other approaches. It can however be noticed

that the implicit decomposition into pathways that we obtain

is biased by the very incomplete knowledge of the network

and that certain regions of the network are better understood,

leading to a higher connection concentration.

Like most approaches aiming at comparing expression data

with gene networks such as KEGG, the scope of this work

is limited by two important constraints. First the gene net-

work we use is only a convenient but rough approximation to

describe complex biochemical processes; second, the trans-

criptional analysis of a sample can not give any information

regarding post-transcriptional regulation and modifications.

Nevertheless, we believe that our basic assumptions remain

valid, in that we assume that the expression of the genes

belonging to the same metabolic pathways module are coor-

dinately regulated. Our interpretation of the results supports

this assumption.

Another important caveat is that we simplify the network

description as an undirected graph of interactions. Although

this would seem to be relevant for simplifying the descrip-

tion of metabolic networks, real gene regulation networks are

influenced by the direction, sign and importance of the interac-

tion. Although the incorporationof weights into the Laplacian

(equation 1) is straightforward and allows the extension of the

approach to weighted undirected graphs, the incorporation

of directions and signs to represent signalling or regulatory

pathways requires more work but could lead to important

advances for the interpretation of microarray data in cancer

studies, for example.
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Example: finding discriminant modules in gene
networks

Prior hypothesis
Genes near each other on the graph should have non-zero weigths
(i.e., the support of β should be made of a few connected
components).

Two solutions?

Ωintersection(β) =
∑
i∼j

√
β2

i + β2
j ,

Ωunion(β) = sup
α∈Rp:∀i∼j,‖α2

i +α
2
j ‖≤1

α>β .
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Example: finding discriminant modules in gene
networks

Groups (1,2) and (2,3). Left: Ωintersection(β). Right: Ωunion(β). Vertical
axis is β2.
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Graph lasso vs kernel on graph

Graph lasso:

Ωgraph lasso(w) =
∑
i∼j

√
w2

i + w2
j .

constrains the sparsity, not the values
Graph kernel

Ωgraph kernel(w) =
∑
i∼j

(wi − wj)
2 .

constrains the values (smoothness), not the sparsity
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Preliminary results

Breast cancer data
Gene expression data for 8,141 genes in 295 breast cancer
tumors.
Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD `1 Ωgroup.
ERROR 0.38± 0.04 0.36± 0.03
] PATH. 148,58,183 6,5,78
PROP. PATH. 0.32,0.14,0.41 0.01,0.01,0.17

Graph on the genes.

METHOD `1 Ωgraph(.)
ERROR 0.39± 0.04 0.36± 0.01
AV. SIZE C.C. 1.1,1,1.0 1.3,1.4,1.2
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Outline
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Drug discovery

A long, expensive and risky process
On average 15 years and $800 millions
High attrition rate: for 10,000 molecules tested, 10 make it to
clinicals, 1 to the market.
>70% of the costs are wasted on failures
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Computational approaches

The use of computers and computational methods permeates all
aspects of drug discovery today, in particular for:

Target identification
Structure prediction, virtual screening (docking)
Prediction of drug-likeliness of compounds
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Example : ligand-Based Virtual Screening
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NCI AIDS screen results (from http://cactus.nci.nih.gov).
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The machine learning approach

1 Represent explicitly each graph x by a vector of fixed dimension
Φ(x) ∈ Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

X

Jean-Philippe Vert (ParisTech) Machine learning in bioinformatics ENS Paris 42 / 59



The machine learning approach

1 Represent explicitly each graph x by a vector of fixed dimension
Φ(x) ∈ Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

φ
HX

Jean-Philippe Vert (ParisTech) Machine learning in bioinformatics ENS Paris 42 / 59



The machine learning approach

1 Represent explicitly each graph x by a vector of fixed dimension
Φ(x) ∈ Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

φ
HX

Jean-Philippe Vert (ParisTech) Machine learning in bioinformatics ENS Paris 42 / 59



Example

2D structural keys in chemoinformatics
Index a molecule by a binary fingerprint defined by a limited set of
pre-defined stuctures

O

N

O

O

OO

N N N

O O

O

Use a machine learning algorithms such as SVM, NN, PLS,
decision tree, ...
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Challenge: which descriptors (patterns)?

O

N

O

O

OO

N N N

O O

O

Expressiveness: they should retain as much information as
possible from the graph
Computation : they should be fast to compute
Large dimension of the vector representation: memory storage,
speed, statistical issues
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Indexing by all subgraphs?

Theorem
Computing all subgraph occurrences is NP-hard.
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Indexing by all paths?

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Theorem
Computing all path occurrences is NP-hard.
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Indexing by what?

Substructure selection
We can imagine more limited sets of substuctures that lead to more
computationnally efficient indexing (non-exhaustive list)

substructures selected by domain knowledge (MDL fingerprint)
all path up to length k (Openeye fingerprint, Nicholls 2005)
all shortest paths (Borgwardt and Kriegel, 2005)
all subgraphs up to k vertices (graphlet kernel, Sherashidze et al.,
2009)
all frequent subgraphs in the database (Helma et al., 2004)
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Example : Indexing by all shortest paths

(0,...,0,2,0,...,0,1,0,...)

B

A
B

A
A A A B

A B A B

A A

A

A

Properties (Borgwardt and Kriegel, 2005)

There are O(n2) shortest paths.
The vector of counts can be computed in O(n4) with the
Floyd-Warshall algorithm.
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Example : Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

Naive enumeration scales as O(nk ).
Enumeration of connected graphlets in O(ndk−1) for graphs with
degree ≤ d and k ≤ 5.
Randomly sample subgraphs if enumeration is infeasible.
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Graph kernels

1 Represent implicitly each graph x by a vector Φ(x) ∈ H through
the kernel

K (x , x ′) = Φ(x)>Φ(x ′) .

2 Use a kernel method for classification in H.

X
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Does the "kernel trick" help?

Unfortunately...
It is intractable to compute complete graph kernels (which
separate non-isomorphic graphs)
It is intractable to compute the subgraph kernels (NP-hard).
It is intractable to compute the path kernel (NP-hard).
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Walks 6= paths

Jean-Philippe Vert (ParisTech) Machine learning in bioinformatics ENS Paris 52 / 59



2D walk kernel

. . . . . .C N
CC
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C C NO C
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O

C
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φd (x) is the vector of counts of all walks of length d :

φ1(x) = ( #(C),#(O),#(N), ...)>

φ2(x) = ( #(C-C),#(C=O),#(C-N), ...)> etc...

The 2D fragment kernel is defined by

Kwalk (x , x ′) =
∞∑

d=1

λdφd (x)>φd (x ′) .
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2D walk kernel in practice

. . . . . .C N
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N
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O
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O

C
. . . . . . . . .

Kwalk can be computed efficiently for various weightings, although
the feature space has infinite dimension.
Selecting only walks with no backward moves (“non-tottering”) can
be done efficiently and improves performance.

Tottering

Non−tottering
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Extension: 2D subtree kernel
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2D Subtree vs fragment kernels (Mahé and V, 2007)
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Screening of inhibitors for 60 cancer cell lines (from Mahé and V.,
2008)
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Example: 3D pharmacophore kernel (Mahé et al.,
2005)
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K (x , y) =
∑

px∈P(x)

∑
py∈P(y)

exp (−γd (px ,py )) .

Results (accuracy)
Kernel BZR COX DHFR ER
2D (Tanimoto) 71.2 63.0 76.9 77.1
3D fingerprint 75.4 67.0 76.9 78.6
3D not discretized 76.4 69.8 81.9 79.8
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Outline

1 Cancer prognosis from DNA copy number variations

2 Diagnosis and prognosis from gene expression data

3 Virtual screening for drug discovery

4 Conclusion
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Conclusion

Modern machine learning methods play an increasing role in bio-
and chemo-informatics
The development of dedicated method is increasingly important to
overcome the challenges (few samples, high-dimension,
structures..)
This increasingly requires tight collaboration with domain experts
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