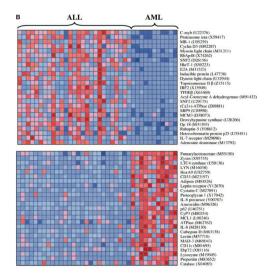
Some contributions of machine learning in bioinformatics

Jean-Philippe Vert Jean-Philippe.Vert@mines-paristech.fr

Mines ParisTech / Curie Institute / Inserm

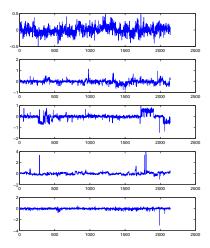
ENS Paris, séminaire du Département d'informatique, Nov 24, 2009

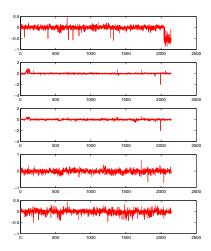
Cancer diagnosis



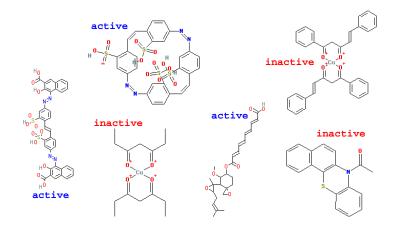
Jean-Philippe Vert (ParisTech)

Cancer prognosis



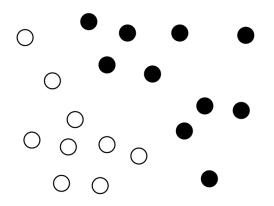


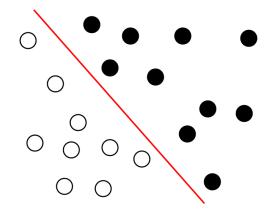
Virtual screening for drug discovery

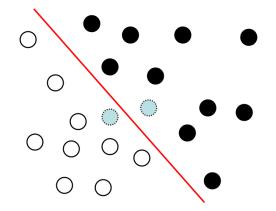


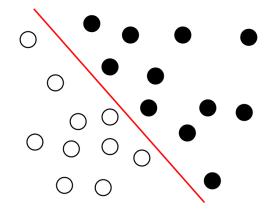
NCI AIDS screen results (from http://cactus.nci.nih.gov).

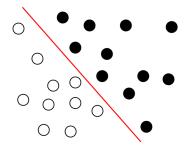
Jean-Philippe Vert (ParisTech)











Challenges

- High dimension
- Few samples
- Structured data
- Heterogeneous data
- Prior knowledge
- Fast and scalable implementations
- Interpretable models

The problem

- Given a set of training instances (x₁, y₁), ..., (x_n, y_n), where x_i ∈ X are data and y_i ∈ Y are continuous or discrete variables of interest,
- Estimate a function

$$y = f(x)$$

where x is any new data to be labeled.

• *f* should be accurate and intepretable.

The model

Each sample x ∈ X is represented by a vector of features (or descriptors, or patterns):

$$\Phi(x) = (\Phi_1(x), \ldots, \Phi_p(x)) \in \mathbb{R}^p.$$

Based on the training set we estimate a linear function:

$$f_{\beta}(x) = \sum_{i=1}^{p} \beta_i \Phi_i(x) = \beta^{\top} \Phi(x) .$$

Estimating linear classifiers

 For any candidate set of weights β = (β₁,..., β^p) we quantify how "good" the linear function f_β is on the training set with some empirical risk:

$$R(\beta) = \frac{1}{n} \sum_{i=1}^{n} l(f_{\beta}(\mathbf{x}_i), \mathbf{y}_i).$$

 We choose the β that achieves the minimium empirical risk, subject to some constraint:

$$\Omega(\beta) \leq C$$
.

Equivalently we solve

$$\min_{\beta\in\mathbb{R}^p}\frac{1}{n}\sum_{i=1}^n I(f_\beta(x_i),y_i)+\lambda\Omega(\beta)\,.$$

Two related questions

$$f_{\beta}(x) = \sum_{i=1}^{p} \beta_i \Phi_i(x)$$
$$\min_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} l(f_{\beta}(x_i), y_i) + \lambda \Omega(\beta)$$

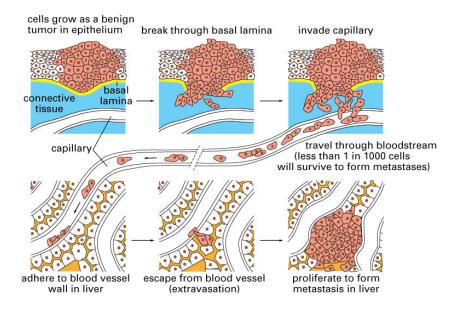
- How to design the features $\Phi(x)$?
- How to estimate the model β?

- 2 Diagnosis and prognosis from gene expression data
- 3 Virtual screening for drug discovery
- 4 Conclusion

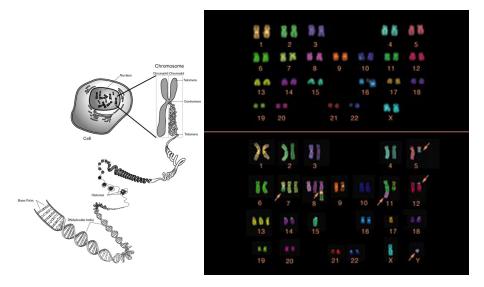
Cancer prognosis from DNA copy number variations

- 2 Diagnosis and prognosis from gene expression data
- 3 Virtual screening for drug discovery
- 4 Conclusion

A simple view of cancer progression



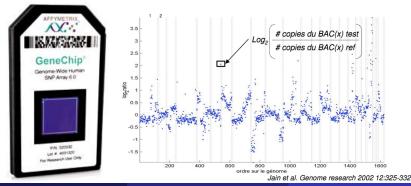
Chromosomic aberrations in cancer



Comparative Genomic Hybridization (CGH)

Motivation

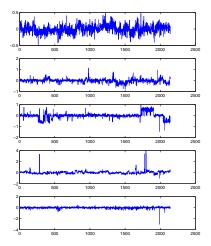
- Comparative genomic hybridization (CGH) data measure the DNA copy number along the genome
- Very useful, in particular in cancer research
- Can we classify CGH arrays for diagnosis or prognosis purpose?

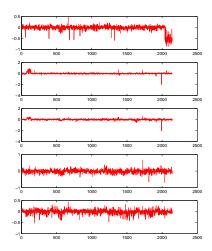


Jean-Philippe Vert (ParisTech)

Machine learning in bioinformatics

Aggressive vs non-aggressive melanoma





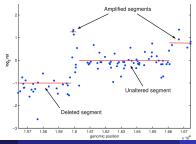
CGH array classification

Prior knowledge

• For a CGH profile $x \in \mathbb{R}^{p}$, we focus on linear classifiers, i.e., the sign of :

$$f_{\beta}(\mathbf{x}) = \beta^{\top} \mathbf{x}$$
.

- We expect β to be
 - sparse : not all positions should be discriminative
 - piecewise constant : within a selected region, all probes should contribute equally

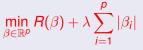


Machine learning in bioinformatics

Promoting sparsity with the ℓ_1 penalty

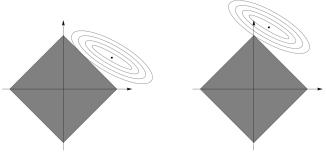
The ℓ_1 penalty (Tibshirani, 1996; Chen et al., 1998)

The solution of



is usually sparse.

Geometric interpretation with p=2



Promoting piecewise constant profiles penalty

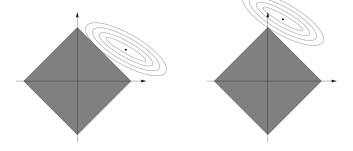
The variable fusion penalty (Land and Friedman, 1996)

The solution of

$$\min_{\beta \in \mathbb{R}^p} R(\beta) + \lambda \sum_{i=1}^{p-1} |\beta_{i+1} - \beta_i|$$

is usually piecewise constant.

Geometric interpretation with p=2



A penalty for CGH array classification

The fused LASSO penalty (Tibshirani et al., 2005)

$$\Omega_{fusedlasso}(\beta) = \sum_{i} |\beta_i| + \sum_{i \sim j} |\beta_i - \beta_j|.$$

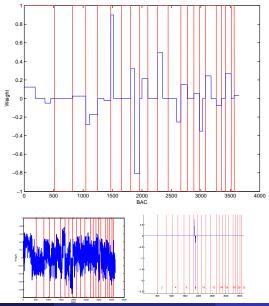
- First term leads to sparse solutions
- Second term leads to piecewise constant solutions

The fused SVM (Rapaport et al., 2008)

$$\min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n \ell\left(\mathbf{y}_i, \beta^\top \mathbf{x}_i\right) + \lambda \sum_i |\beta_i| + \mu \sum_{i \sim j} |\beta_i - \beta_j|.$$

where ℓ is, e.g., the hinge loss $\ell(y, t) = max(1 - yt, 0)$. It is then a LP.

Application: predicting metastasis in melanoma



Jean-Philippe Vert (ParisTech)

Machine learning in bioinformatics

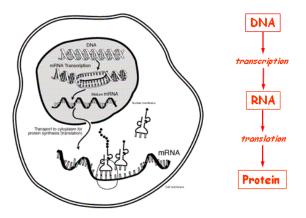
Cancer prognosis from DNA copy number variations

2 Diagnosis and prognosis from gene expression data

3 Virtual screening for drug discovery

4 Conclusion

$DNA \rightarrow RNA \rightarrow protein$



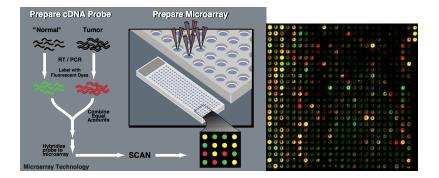
- CGH shows the (static) DNA
- Cancer cells have also abnormal (dynamic) gene expression (= transcription)

Jean-Philippe Vert (ParisTech)

Machine learning in bioinformatics

ENS Paris 23 / 59

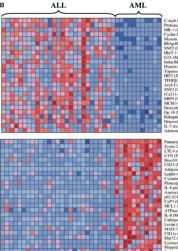
Tissue profiling with DNA chips



Data

- Gene expression measures for more than 10k genes
- Measured typically on less than 100 samples of two (or more) different classes (e.g., different tumors)

Tissue classification from microarray data



C-myb (U22376) Proteasome iota (X59417) MB-1 (U05259) Cyclin D3 (M92287) Myosin light chain (M31211) RhAp48 (X74262) SNF2 (D26156) HkrT-1 (\$50223) E2A (M31523) Inducible protein (L47738) Dynein light chain (U32944) Topoisomerase II B (Z15115) IRF2 (X15949) TFIIEB (X63469) Acyl-Coenzyme A dehydrozenase (M91432) SNF2 (U29175) (Ca2+)-ATPase (Z69881) SRP9 (U20998) MCM3 (D38073) Deoxyhypusine synthase (U26266) Op 18 (M31303) Rabaptin-5 (Y08612) Heterochromatin protein p25 (U35451) IL-7 receptor (M29696) Adenosine deaminase (M13792)

fumarylacetoacetate (M55150) Zyxin (X95735) LTC4 synthase (U50136) LYN (M16038) Hox A9 (1182759) CD33 (M23197) Adipsin (M84526) Leptin receptor (Y12670 Cystatin C (M27891) Proteoglycan 1 (X17042) IL-8 precursor (Y00787) Azurocidin (M96326) p62 (U46751) C+P3 (M80254 MCL1 (L08246) ATPase (M62762) IL-8 (M28130) Cathensin D (M63138) Lectin (M57710) MAD-3 (M69043) CD11c (M81695) Ebp72 (X85116) Lysozyme (M19045 Propentin (M83652) atalase (X04085

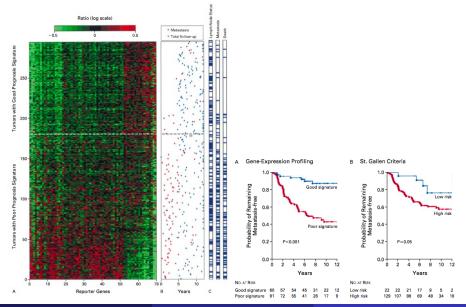
Goal

- Design a classifier to automatically assign a class to future samples from their expression profile
- Interpret biologically the differences between the classes

Difficulty

- Large dimension
- Few samples

Prognosis from microarray data (MAMMAPRINT)



Jean-Philippe Vert (ParisTech)

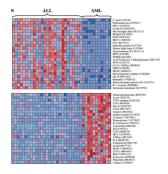
Machine learning in bioinformatics

The idea

- We look for a limited set of genes that are sufficient for prediction.
- Equivalently, the linear classifier will be sparse

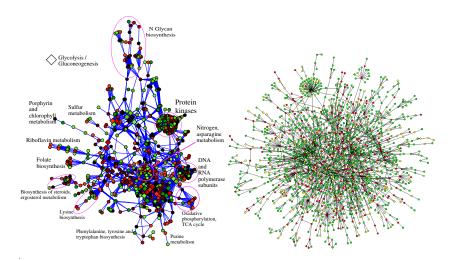
Motivations

- Bet on sparsity: we believe the "true" model is sparse.
- Interpretation: we will get a biological interpretation more easily by looking at the selected genes.
- Accuracy: by restricting the class of classifiers, we "increase the bias" but "decrease the variance". This should be helpful in large dimensions (it is better to estimate well a wrong model than estimate badly a good model).



Challenging the idea of gene signature

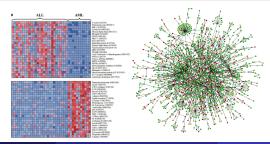
- We often observe little stability in the genes selected...
- Is gene selection the most biologically relevant hypothesis?
- What about thinking instead of "pathways" or "modules" signatures?



Gene networks and expression data

Motivation

- Basic biological functions usually involve the coordinated action of several proteins:
 - Formation of protein complexes
 - Activation of metabolic, signalling or regulatory pathways
- Many pathways and protein-protein interactions are already known
- Hypothesis: the weights of the classifier should be "coherent" with respect to this prior knowledge



Jean-Philippe Vert (ParisTech)

Machine learning in bioinformatics

Prior hypothesis

Genes near each other on the graph should have similar weigths.

Two solutions (Rapaport et al., 2007, 2008)

$$egin{aligned} \Omega_{ extsf{spectral}}(eta) &= \sum_{i \sim j} (eta_i - eta_j)^2 \ , \ \Omega_{ extsf{graphfusion}}(eta) &= \sum_{i \sim j} |eta_i - eta_j| + \sum_i |eta_i| \end{aligned}$$

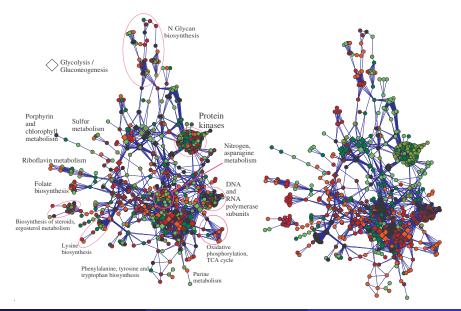
Prior hypothesis

Genes near each other on the graph should have similar weigths.

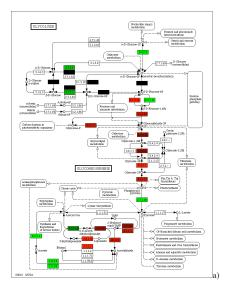
Two solutions (Rapaport et al., 2007, 2008)

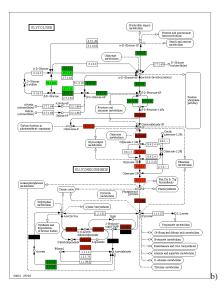
$$egin{aligned} \Omega_{ extsf{spectral}}(eta) &= \sum_{i \sim j} (eta_i - eta_j)^2 \,, \ \Omega_{ extsf{graphfusion}}(eta) &= \sum_{i \sim j} |eta_i - eta_j| + \sum_i |eta_i| \,. \end{aligned}$$

Classifiers



Classifier





Example: finding discriminant modules in gene networks

Prior hypothesis

Genes near each other on the graph should have non-zero weigths (i.e., the support of β should be made of a few connected components).

Two solutions?

$$egin{aligned} \Omega_{\textit{intersection}}(eta) &= \sum_{i \sim j} \sqrt{eta_j^2 + eta_j^2} \,, \ \Omega_{\textit{union}}(eta) &= \sup_{lpha \in \mathbb{R}^p: orall i \sim j, \|lpha_i^2 + lpha_i^2\| \leq 1} lpha^ op eta \end{aligned}$$

Example: finding discriminant modules in gene networks

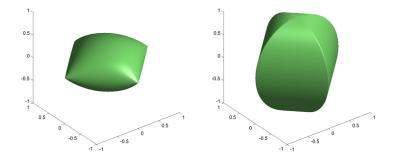
Prior hypothesis

Genes near each other on the graph should have non-zero weigths (i.e., the support of β should be made of a few connected components).

Two solutions?

$$egin{aligned} \Omega_{\textit{intersection}}(eta) &= \sum_{i \sim j} \sqrt{eta_i^2 + eta_j^2} \,, \ \Omega_{\textit{union}}(eta) &= \sup_{lpha \in \mathbb{R}^p: orall i \sim j, \|lpha_i^2 + lpha_i^2\| \leq 1} lpha^ op eta \,. \end{aligned}$$

Example: finding discriminant modules in gene networks



Groups (1, 2) and (2, 3). Left: $\Omega_{intersection}(\beta)$. Right: $\Omega_{union}(\beta)$. Vertical axis is β_2 .

• Graph lasso:

$$\Omega_{ ext{graph lasso}}(extbf{w}) = \sum_{i\sim j} \sqrt{ extbf{w}_i^2 + extbf{w}_j^2} \,.$$

constrains the sparsity, not the values

Graph kernel

$$\Omega_{ ext{graph kernel}}(extbf{w}) = \sum_{i \sim j} (extbf{w}_i - extbf{w}_j)^2 \,.$$

constrains the values (smoothness), not the sparsity

Breast cancer data

- Gene expression data for 8, 141 genes in 295 breast cancer tumors.
- Canonical pathways from MSigDB containing 639 groups of genes, 637 of which involve genes from our study.

Метнор	ℓ_1	$\Omega_{group}.$
Error	$\textbf{0.38}\pm\textbf{0.04}$	0.36 ± 0.03
‡ PATH.	148, 58, 183	6, 5, 78
Prop. path.	0.32, 0.14, 0.41	0.01, 0.01, 0.17

Graph on the genes.

Метнор	ℓ_1	$\Omega_{graph}(.)$
Error	$\textbf{0.39}\pm\textbf{0.04}$	$\textbf{0.36} \pm \textbf{0.01}$
AV. SIZE C.C.	1.1, 1, 1.0	1.3, 1.4, 1.2

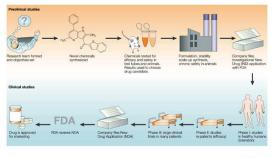
Cancer prognosis from DNA copy number variations

2 Diagnosis and prognosis from gene expression data

3 Virtual screening for drug discovery

4 Conclusion

Drug discovery



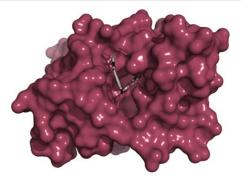
Nature Reviews | Drug Discovery

A long, expensive and risky process

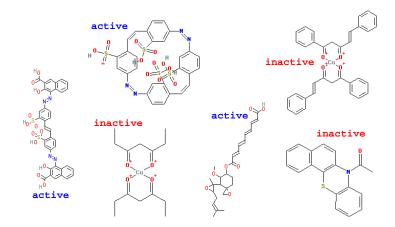
- On average 15 years and \$800 millions
- High attrition rate: for 10,000 molecules tested, 10 make it to clinicals, 1 to the market.
- >70% of the costs are wasted on failures

The use of computers and computational methods permeates all aspects of drug discovery today, in particular for:

- Target identification
- Structure prediction, virtual screening (docking)
- Prediction of drug-likeliness of compounds



Example : ligand-Based Virtual Screening

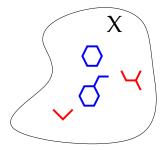


NCI AIDS screen results (from http://cactus.nci.nih.gov).

Jean-Philippe Vert (ParisTech)

The machine learning approach

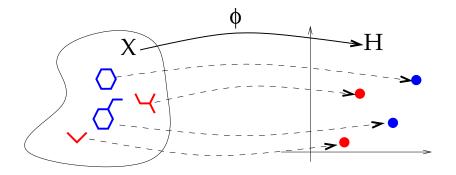
- Represent explicitly each graph *x* by a vector of fixed dimension $\Phi(x) \in \mathbb{R}^{p}$.
- 3 Use an algorithm for regression or pattern recognition in \mathbb{R}^{p} .



The machine learning approach

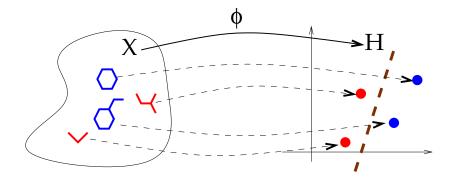
• Represent explicitly each graph x by a vector of fixed dimension $\Phi(x) \in \mathbb{R}^{p}$.

Use an algorithm for regression or pattern recognition in \mathbb{R}^{p} .



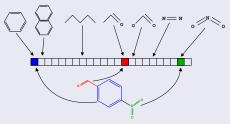
The machine learning approach

- Represent explicitly each graph *x* by a vector of fixed dimension $\Phi(x) \in \mathbb{R}^{p}$.
- 2 Use an algorithm for regression or pattern recognition in \mathbb{R}^{p} .



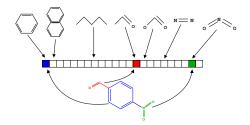
2D structural keys in chemoinformatics

 Index a molecule by a binary fingerprint defined by a limited set of pre-defined stuctures



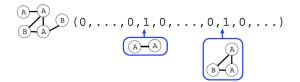
 Use a machine learning algorithms such as SVM, NN, PLS, decision tree, ...

Challenge: which descriptors (patterns)?



- Expressiveness: they should retain as much information as possible from the graph
- Computation : they should be fast to compute
- Large dimension of the vector representation: memory storage, speed, statistical issues

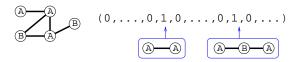
Indexing by all subgraphs?



Theorem

Computing all subgraph occurrences is NP-hard.

Indexing by all paths?



Theorem

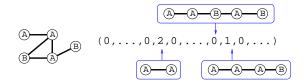
Computing all path occurrences is NP-hard.

Substructure selection

We can imagine more limited sets of substuctures that lead to more computationnally efficient indexing (non-exhaustive list)

- substructures selected by domain knowledge (MDL fingerprint)
- all path up to length k (Openeye fingerprint, Nicholls 2005)
- all shortest paths (Borgwardt and Kriegel, 2005)
- all subgraphs up to k vertices (graphlet kernel, Sherashidze et al., 2009)
- all frequent subgraphs in the database (Helma et al., 2004)

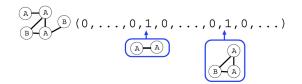
Example : Indexing by all shortest paths



Properties (Borgwardt and Kriegel, 2005)

- There are $O(n^2)$ shortest paths.
- The vector of counts can be computed in $O(n^4)$ with the Floyd-Warshall algorithm.

Example : Indexing by all subgraphs up to k vertices



Properties (Shervashidze et al., 2009)

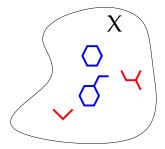
- Naive enumeration scales as $O(n^k)$.
- Enumeration of connected graphlets in O(nd^{k-1}) for graphs with degree ≤ d and k ≤ 5.
- Randomly sample subgraphs if enumeration is infeasible.

Graph kernels

• Represent implicitly each graph x by a vector $\Phi(x) \in \mathcal{H}$ through the kernel

$$\mathcal{K}(x,x') = \Phi(x)^{\top} \Phi(x').$$

2 Use a kernel method for classification in \mathcal{H} .

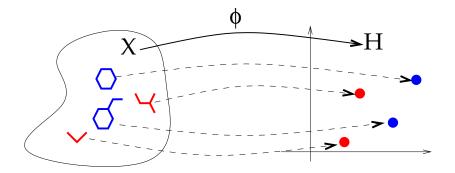


Graph kernels

• Represent implicitly each graph x by a vector $\Phi(x) \in \mathcal{H}$ through the kernel

$$\mathcal{K}(x,x') = \Phi(x)^{\top} \Phi(x').$$

2 Use a kernel method for classification in \mathcal{H} .

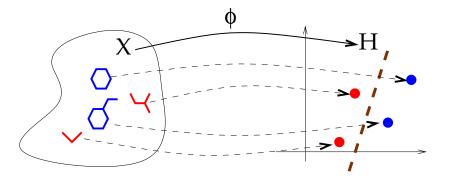


Graph kernels

• Represent implicitly each graph x by a vector $\Phi(x) \in \mathcal{H}$ through the kernel

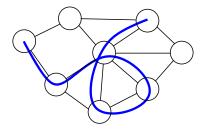
$$K(x, x') = \Phi(x)^{\top} \Phi(x').$$

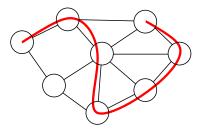
2 Use a kernel method for classification in \mathcal{H} .



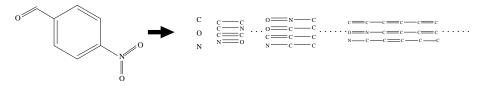
Unfortunately...

- It is intractable to compute complete graph kernels (which separate non-isomorphic graphs)
- It is intractable to compute the subgraph kernels (NP-hard).
- It is intractable to compute the path kernel (NP-hard).





2D walk kernel



φ_d(x) is the vector of counts of all walks of length d:

$$\phi_{1}(x) = (\# (C), \# (O), \# (N), \ldots)^{\top}$$

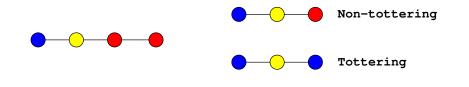
$$\phi_{2}(x) = (\# (C-C), \# (C-O), \# (C-N), \ldots)^{\top} \text{ etc...}$$

• The 2D fragment kernel is defined by

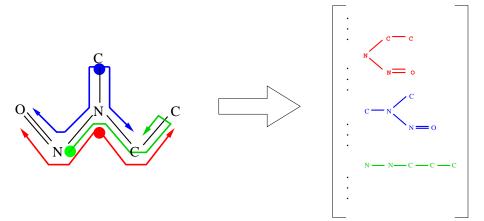
$$K_{walk}(\mathbf{x}, \mathbf{x}') = \sum_{d=1}^{\infty} \lambda_d \phi_d(\mathbf{x})^\top \phi_d(\mathbf{x}') \;.$$

2D walk kernel in practice

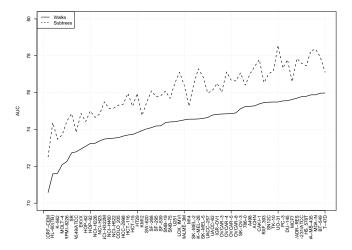
- K_{walk} can be computed efficiently for various weightings, although the feature space has infinite dimension.
- Selecting only walks with no backward moves ("non-tottering") can be done efficiently and improves performance.



Extension: 2D subtree kernel



2D Subtree vs fragment kernels (Mahé and V, 2007)



Screening of inhibitors for 60 cancer cell lines (from Mahé and V., 2008)

Jean-Philippe Vert (ParisTech)

Example: 3D pharmacophore kernel (Mahé et al., 2005)

$$\mathcal{K}(x,y) = \sum_{p_x \in \mathcal{P}(x)} \sum_{p_y \in \mathcal{P}(y)} \exp\left(-\gamma d\left(p_x, p_y\right)\right)$$

Results (accuracy)

Kernel	BZR	COX	DHFR	ER
2D (Tanimoto)	71.2	63.0	76.9	77.1
3D fingerprint	75.4	67.0	76.9	78.6
3D not discretized	76.4	69.8	81.9	79.8

Jean-Philippe Vert (ParisTech)

- Cancer prognosis from DNA copy number variations
- 2 Diagnosis and prognosis from gene expression data
- 3 Virtual screening for drug discovery
- 4 Conclusion

- Modern machine learning methods play an increasing role in bioand chemo-informatics
- The development of dedicated method is increasingly important to overcome the challenges (few samples, high-dimension, structures..)
- This increasingly requires tight collaboration with domain experts