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The NETFLIX challenge
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In silico chemogenomics
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Formalization

The problem
X and Y two sets ("customers" and "movies").
Training data: (xi ,yi , ti)i=1,...,n ∈ (X ,Y,R)n some ratings ti by
customer xi for movie yi

nX ≤ n (resp. nY ≤ n) the number of different customers (resp.
movies) in the training data.
Goal: learn the "rating function" f : X × Y → R.

Existing strategies
1 Collaborative filtering
2 Regression over pairs
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Strategy 1: Collaborative Filtering (CF)

Ignore any information about movies and customers
X =

{
x1, . . . ,xnX

}
and Y =

{
y1, . . . ,ynY

}
are finite

Training data: large nX × nY incomplete matrix F that describes
the known ratings of some customers for some movies
Goal: complete the matrix.
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CF by low-rank matrix approximation

A common strategy for CF

F has rank less than k ⇔ F = UV> U ∈ RnX×k , V ∈ RnY×k

Examples: PLSA (Hoffmann, 2001), MMMF (Srebro et al, 2004)
Numerical and statistical efficiency

U

V
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CF by low-rank matrix approximation example

Fitting low-rank models (Srebro et al, 2004)
Relax the (non-convex) rank of F into the (convex) trace norm of
F : if σi(F ) are the singular values of F ,

rankF =
∑

i

1σi (F )>0 ‖F‖∗ =
∑

i

σi(F ) .

i-th observation ti corresponding to xi = xu(i) and yi = yv(i):

min
F∈RnX×nY

n∑
i=1

`(ti ,Fu(i),v(i)) + λ‖F‖∗ ,

where `(z, z ′) is a convex loss function.
This is an SDP if ` is SDP-representable

JP Vert (ParisTech) Spectral collaborative filtering Göttingen University 7 / 33



CF by low-rank matrix approximation example

Fitting low-rank models (Srebro et al, 2004)
Relax the (non-convex) rank of F into the (convex) trace norm of
F : if σi(F ) are the singular values of F ,

rankF =
∑

i

1σi (F )>0 ‖F‖∗ =
∑

i

σi(F ) .

i-th observation ti corresponding to xi = xu(i) and yi = yv(i):

min
F∈RnX×nY

n∑
i=1

`(ti ,Fu(i),v(i)) + λ‖F‖∗ ,

where `(z, z ′) is a convex loss function.
This is an SDP if ` is SDP-representable

JP Vert (ParisTech) Spectral collaborative filtering Göttingen University 7 / 33



Strategy 2: Regression over pairs

X and Y represent the attributes of each customer/movie
This is a classical regression problem over Z = X × Y
For example, take z = x⊗ y and find

f (x,y) = w>z = w>(x⊗ y)

by solving

min
w∈X⊗Y

n∑
i=1

`(ti ,w>(xi ⊗ yi)) + λ‖w‖2 .
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Regression over pairs with kernels

Kernel methods (SVM...) are efficient methods to solve problems
of the form

min
w∈Z

n∑
i=1

`(ti ,w>zi) + λ‖w‖2 .

They require the definition of the kernel:

KZ (z, z′) = z>z′

= (x⊗ y)>(x⊗ y)

= (x>x′)× (y>y′)
= KX (x,x′)KY (y,y′) .

(1)
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Comparison of both strategies

Collaborative filtering

min
F∈RnX×nY

n∑
i=1

`(ti ,Fu(i),v(i)) + λ‖F‖∗ .

Use various spectral penalties of the matrix (rank, trace norm)
No use of attribute, no prediction outside the training set

Regression over pairs

min
w∈X⊗Y

n∑
i=1

`(ti ,w>(xi ⊗ yi)) + λ‖w‖2 .

Flexible use of attributes with kernels

No special treatment of repetitions in the training set
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Our contribution

Goal
Make a link between collaborative filtering and regression over
pairs
Develop methods that combine the advantages of both strategies

Contributions
A general framework for CF with or without attributes, using
kernels to describe attributes (“kernel-CF”)
A family of algorithms in this setting
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From CF to regression over pairs

Represent the i-th customer xi ∈ X (resp. j-th movie yj ∈ Y) by
the i-th basis vector ei ∈ RnX (resp. fj ∈ RnY ):

φX (xi) = ei , φY (yj) = fj .

The rating Fi,j of xi for yj is given by

Fi,j = e>i Fyj = Tr
(

F>(φX (xi)⊗ φY (yj))
)
.

We can thus rewrite CF as

min
F∈RnX×nY

n∑
i=1

`(ti ,Tr
(

F>(φX (xi)⊗ φY (yj)
)

) + λ‖F‖∗ .

This looks like pairwise regression, with a particular penaltyJP Vert (ParisTech) Spectral collaborative filtering Göttingen University 12 / 33



The idea

min
w∈X⊗Y

n∑
i=1

`(ti ,w>(xi ⊗ yi)) + λ‖w‖2 .

min
F∈RnX×nY

n∑
i=1

`(ti ,Tr
(

F>(φX (xi)⊗ φY (yj)
)

) + λ‖F‖∗ .

Put the attribute informations in φX (x) and φY (y), like in regression
Investigate penalties beyond the `2 norm, like in CF
For this we need to work with "infinite-dimensional matrices", i.e.,
compact operators
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Setting

Movies: points in a Hilbert space X
Customers: points in a Hilbert space Y
We model the preference of customer y for a movie x by a bilinear
form:

f (x,y) = 〈x,Fy〉X ,

where F ∈ B0 (Y,X ) is a compact linear operator (i.e., a “matrix”).

Y

F

X
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Spectra of compact operators

Classical results
For (x,y) in X × Y the tensor product x⊗ y is the operator

∀h ∈ Y , (x⊗ y) h = 〈y,h〉Y x .

Any compact operator F : Y → X admits a spectral
decomposition:

F =
∞∑

i=1

σiui ⊗ vi .

where the σi ≥ 0 are the singular values and (ui)i∈N and (vi)i∈N
are orthonormal families in X and Y.
The spectrum of F is the set of singular values sorted in
decreasing order: σ1(F ) ≥ σ2(F ) ≥ . . . ≥ 0.
This is the natural generalization of singular values for matrices.
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Useful classes for operators

Operators of finite rank
The rank of an operator is the number of strictly positive singular
values.
Hence operators of rank smaller or equal to k are characterized
by:

σk+1(F ) = 0 .

Trace-class operators
The trace-class operators are the compact operators F that satisfy:

‖F ‖∗ :=
∞∑

i=1

σi(F ) <∞ .

‖F ‖∗ is a norm over the trace-class operators, called the trace norm.
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Useful classes for operators (cont.)

Hilbert-Schmidt operators
The Hilbert-Schmidt operators are compact operators F that
satisfy:

‖F ‖2Fro :=
∞∑

i=1

σi(F )2 <∞ .

They form a Hilbert space with inner product:〈
x⊗ y,x′ ⊗ y′

〉
X⊗Y =

〈
x,x′

〉
X
〈
y,y′

〉
Y .

It is isomorphic to the reproducing kernel Hilbert space used in
regression over pairs
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Spectral penalty function

Definition
A function Ω : B0 (Y,X ) 7→ R ∪ {+∞} is called a spectral penalty
function if it can be written as:

Ω(F ) =
∞∑

i=1

si (σi(F )) ,

where for any i ≥ 1, si : R+ 7→ R+ ∪ {+∞} is a non-decreasing
penalty function satisfying si(0) = 0.
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Spectral penalty function

Examples
Rank constraint: take sk+1(0) = 0 and sk+1(u) = +∞ for u > 0,
and si = 0 for i ≥ k . Then

Ω(F ) =

{
0 if rank(F ) ≤ k ,
+∞ if rank(F ) > k .

Trace norm: take si(u) = u for all i , then:

Ω(F ) = ‖F ‖∗ .

Hilbert-Schmidt norm: take si(u) = u2 for all i , then

Ω(F ) = ‖F ‖2Fro .
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Learning operator with spectral regularization

Setting
Training set: (xi ,yi , ti)i=1,...,N a set of (movie,customer,preference).
Loss function l(t , t ′) : cost of predicting preference t instead of t ′.
Empirical risk of an operator F :

RN(F ) =
1
N

N∑
i=1

l (〈xi ,Fyi〉X , ti) .

Learning an operator

min
F∈B0(Y,X ), Ω(F )<∞

{RN(F ) + λΩ(F )} .
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Particular cases

min
F∈B0(Y,X ), Ω(F )<∞

{RN(F ) + λΩ(F )} .

CF
KX (x,x′) = δ(x,x′) , KY (y,y′) = δ(y,y′)
Ω(F ) = ‖F‖∗ or rank(F )

Pairwise regression
KX (x,x′) and KY (y,y′) defined by attributes
Ω(F ) = ‖F‖2Fro

Many variants, e.g., multitask learning
KX (x,x′) = δ(x,x′) and KY (y,y′) defined by attributes
Ω(F ) = ‖F‖∗
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Questions

Theory
Is it a "good" algorithm in theory?

To be investigated...
See Srebro et al. (2004), Bach (2007) for preliminary results with
the trace norm

Practice
Can we implement it? Does it work on real data?

Optimization problem in the space of compact operators... but we
show later that it boils down to a finite-dimensional optimization
problem
Promising results on real data
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A classical representer theorem

Theorem
If F̂ is a solution the problem:

min
F∈B2(Y,X )

{
RN(F ) + λ

∞∑
i=1

σi(F )2

}
,

then it is necessarily in the linear span of {xi ⊗ yi : i = 1, . . . ,N}, i.e.,
it can be written as:

F̂ =
N∑

i=1

αixi ⊗ yi ,

for some α ∈ RN .
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Proof sketch

B2 (Y,X ) is isomorphic to the RKHS of the tensor product kernel:

k⊗
(
(x,y) ,

(
x′,y′

))
=
〈
x,x′

〉
X
〈
y,y′

〉
Y ,

by f (x,y) = 〈x,Fy〉X . In particular,

‖ f ‖2H⊗ = ‖F ‖2 = Ω(F ) .

The problem is therefore a classical kernel method:

min
f∈H⊗

{
RN(f ) + λ‖ f ‖2⊗

}
,

so the classical representer theorem can be used. �
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A generalized representer theorem

Theorem
For any spectral penalty function Ω : B0 (Y,X ) 7→ R, let the
optimization problem:

min
F∈B0(Y,X ),Ω(F )<∞

{RN(F ) + λΩ(F )} .

If the set of solutions is not empty, then there is a solution F in
XN ⊗ YN , i.e., there exists α ∈ RmX×mY such that:

F =

mX∑
i=1

mY∑
j=1

αijui ⊗ vj ,

where (u1, . . . ,umX ) and
(
v1, . . . ,vmY

)
form orthonormal bases of XN

and YN , respectively.
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Proof sketch

For any operator F ∈ B0 (Y,X ), let

G = ΠXN FΠYN ,

where ΠU is the orthogonal projection onto U.
Lemma: we can show that for all i ≥ 0:

σi(G) ≤ σi(F ).

Therefore Ω(G) ≤ Ω(F ).
On the other hand RN(G) = RN(F ).
Consequently for any solution F we have another solution
G ∈ XN ⊗ YN . �
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Practical consequence

Theorem (cont.)
The coefficients α that define the solution by

F =

mX∑
i=1

mY∑
j=1

αijui ⊗ vj ,

can be found by solving the following finite-dimensional optimization
problem:

min
α∈RmX×mY ,Ω(α)<∞

RN

(
diag

(
XαY>

))
+ λΩ(α) ,

where Ω(α) refers to the spectral penalty function applied to the matrix
α seen as an operator from RmY to RmX , and X and Y denote any
matrices that satisfy K = XX> and G = YY> for the two Gram
matrices K and G of XN and YN .
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Summary

We obtain various algorithms by choosing:
1 A loss function (depends on the application)
2 A spectral regularization (that is amenable to optimization)
3 Two Gram matrices (aka kernel matrices)

Both kernels and spectral regularization can be used to constrain the
solution
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A family of kernels

Taken K⊗ = K ×G with{
K = ηK x

Attribute + (1− η)K x
Dirac ,

G = ζK y
Attribute + (1− ζ)K y

Dirac ,

for 0 ≤ η ≤ 1 and 0 ≤ ζ ≤ 1

ζ

?

multi−task prediction from attributes

multi−task
completion

matrix 1

1

0

η
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Simulated data

Experiment

Generate data (x,y, z) ∈ RfX × RfY × R according to

z = x>By + ε

Observe only nX < fX and nY < fY features
Low-rank assumption will find the missing features
Observed attributes will help the low-rank formulation to
concentrate mostly on the unknown features

Comparison of
Low-rank constraint without tracenorm (note that it requires
regularization)
Trace-norm formulation (regularization is implicit)
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Simulated data: results

Compare MSE
Left: rank constraint (best: 0.1540), right: trace norm (best: 0.1522)
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Movies

MovieLens 100k database, ratings with attributes
Experiments with 943 movies and 1,642 customers, 100,000
rankings in {1, . . . ,5}
Train on a subset of the ratings, test on the rest
error measured with MSE (best constant prediction: 1.26)
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Conclusion

What we saw
A general framework for CF with or without attributes
A generalized representation theorem valid for any spectral
penalty function
A family of new methods

Future work
The bottleneck is often practical optimization. Online version
possible.
Automatic choice of the kernel
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