Collaborative filtering in Hilbert spaces with spectral regularization

Jacob Abernethy¹ Theodoros Evgeniou³

Francis Bach²
Jean-Philippe Vert⁴

¹UC Berkeley

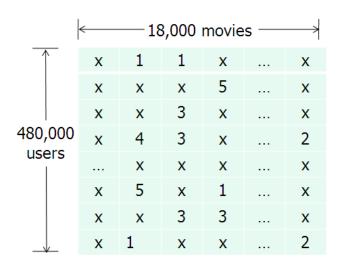
²INRIA / Ecole normale superieure de Paris

3INSEAD

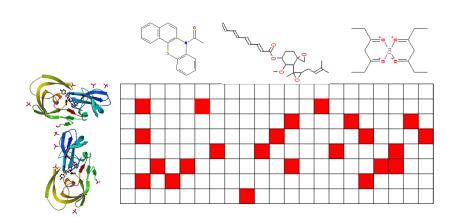
⁴Mines ParisTech / Institut Curie / INSERM

Göttingen University, Centre for Statistics seminar, Nov 27, 2009.

The NETFLIX challenge



In silico chemogenomics



Formalization

The problem

- ullet $\mathcal X$ and $\mathcal Y$ two sets ("customers" and "movies").
- Training data: $(\mathbf{x}_i, \mathbf{y}_i, t_i)_{i=1,...,n} \in (\mathcal{X}, \mathcal{Y}, \mathbb{R})^n$ some ratings t_i by customer \mathbf{x}_i for movie \mathbf{y}_i
- $n_{\mathcal{X}} \leq n$ (resp. $n_{\mathcal{Y}} \leq n$) the number of different customers (resp. movies) in the training data.
- Goal: learn the "rating function" $f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.

Existing strategies

- Collaborative filtering
- Regression over pairs

Formalization

The problem

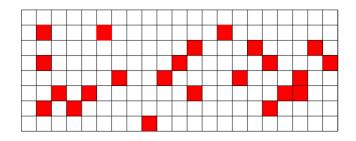
- ullet $\mathcal X$ and $\mathcal Y$ two sets ("customers" and "movies").
- Training data: $(\mathbf{x}_i, \mathbf{y}_i, t_i)_{i=1,...,n} \in (\mathcal{X}, \mathcal{Y}, \mathbb{R})^n$ some ratings t_i by customer \mathbf{x}_i for movie \mathbf{y}_i
- $n_{\mathcal{X}} \leq n$ (resp. $n_{\mathcal{Y}} \leq n$) the number of different customers (resp. movies) in the training data.
- Goal: learn the "rating function" $f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.

Existing strategies

- Collaborative filtering
- Regression over pairs

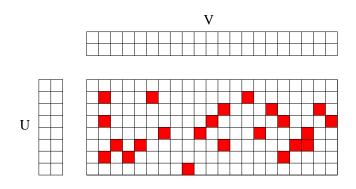
Strategy 1: Collaborative Filtering (CF)

- Ignore any information about movies and customers
- $\mathcal{X}=\left\{\mathbf{x}^1,\ldots,\mathbf{x}^{n_{\mathcal{X}}}\right\}$ and $\mathcal{Y}=\left\{\mathbf{y}^1,\ldots,\mathbf{y}^{n_{\mathcal{Y}}}\right\}$ are finite
- Training data: large $n_X \times n_Y$ incomplete matrix F that describes the known ratings of some customers for some movies
- Goal: complete the matrix.



CF by low-rank matrix approximation

- A common strategy for CF
- F has rank less than $k \Leftrightarrow F = UV^{\top} \cup \mathbb{R}^{n_{\mathcal{X}} \times k}, \ V \in \mathbb{R}^{n_{\mathcal{Y}} \times k}$
- Examples: PLSA (Hoffmann, 2001), MMMF (Srebro et al, 2004)
- Numerical and statistical efficiency



CF by low-rank matrix approximation example

Fitting low-rank models (Srebro et al, 2004)

• Relax the (non-convex) rank of F into the (convex) trace norm of F: if $\sigma_i(F)$ are the singular values of F,

$$\operatorname{rank} F = \sum_{i} 1_{\sigma_{i}(F) > 0} \qquad \|F\|_{*} = \sum_{i} \sigma_{i}(F).$$

• *i*-th observation t_i corresponding to $\mathbf{x}_i = \mathbf{x}^{u(i)}$ and $\mathbf{y}_i = \mathbf{y}^{v(i)}$:

$$\min_{F \in \mathbb{R}^{n_{\mathcal{X}} \times n_{\mathcal{Y}}}} \sum_{i=1}^{n} \ell(t_i, F_{u(i), v(i)}) + \lambda ||F||_*,$$

where $\ell(z, z')$ is a convex loss function.

This is an SDP if ℓ is SDP-representable

CF by low-rank matrix approximation example

Fitting low-rank models (Srebro et al, 2004)

• Relax the (non-convex) rank of F into the (convex) trace norm of F: if $\sigma_i(F)$ are the singular values of F,

$$\operatorname{rank} F = \sum_{i} 1_{\sigma_{i}(F) > 0} \qquad \|F\|_{*} = \sum_{i} \sigma_{i}(F).$$

• *i*-th observation t_i corresponding to $\mathbf{x}_i = \mathbf{x}^{u(i)}$ and $\mathbf{y}_i = \mathbf{y}^{v(i)}$:

$$\min_{F \in \mathbb{R}^{n_{\mathcal{X}} \times n_{\mathcal{Y}}}} \sum_{i=1}^{n} \ell(t_i, F_{u(i),v(i)}) + \lambda ||F||_*,$$

where $\ell(z, z')$ is a convex loss function.

ullet This is an SDP if ℓ is SDP-representable

Strategy 2: Regression over pairs

- ullet $\mathcal X$ and $\mathcal Y$ represent the attributes of each customer/movie
- This is a classical regression problem over $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$
- For example, take $\mathbf{z} = \mathbf{x} \otimes \mathbf{y}$ and find

$$f(\mathbf{x}, \mathbf{y}) = \mathbf{w}^{\top} \mathbf{z} = \mathbf{w}^{\top} (\mathbf{x} \otimes \mathbf{y})$$

by solving

$$\min_{\mathbf{w} \in \mathcal{X} \otimes \mathcal{Y}} \sum_{i=1}^n \ell(t_i, \mathbf{w}^\top (\mathbf{x}_i \otimes \mathbf{y}_i)) + \lambda \|\mathbf{w}\|^2.$$

Regression over pairs with kernels

 Kernel methods (SVM...) are efficient methods to solve problems of the form

$$\min_{\mathbf{w} \in \mathcal{Z}} \sum_{i=1}^n \ell(t_i, \mathbf{w}^{\top} \mathbf{z}_i) + \lambda \|\mathbf{w}\|^2$$
.

• They require the definition of the kernel:

$$\mathcal{K}_{\mathcal{Z}}(\mathbf{z}, \mathbf{z}') = \mathbf{z}^{\top} \mathbf{z}'
= (\mathbf{x} \otimes \mathbf{y})^{\top} (\mathbf{x} \otimes \mathbf{y})
= (\mathbf{x}^{\top} \mathbf{x}') \times (\mathbf{y}^{\top} \mathbf{y}')
= \mathcal{K}_{\mathcal{X}}(\mathbf{x}, \mathbf{x}') \mathcal{K}_{\mathcal{Y}}(\mathbf{y}, \mathbf{y}').$$
(1)

Comparison of both strategies

Collaborative filtering

$$\min_{F\in\mathbb{R}^{n_{\mathcal{X}}\times n_{\mathcal{Y}}}}\sum_{i=1}^{n}\ell(t_{i},F_{u(i),v(i)})+\lambda\|F\|_{*}.$$

- Use various spectral penalties of the matrix (rank, trace norm)
- No use of attribute, no prediction outside the training set

Regression over pairs

$$\min_{\mathbf{w} \in \mathcal{X} \otimes \mathcal{Y}} \sum_{i=1}^n \ell(t_i, \mathbf{w}^\top (\mathbf{x}_i \otimes \mathbf{y}_i)) + \lambda \|\mathbf{w}\|^2.$$

- Flexible use of attributes with kernels
- No special treatment of repetitions in the training set

Our contribution

Goal

- Make a link between collaborative filtering and regression over pairs
- Develop methods that combine the advantages of both strategies

Contributions

- A general framework for CF with or without attributes, using kernels to describe attributes ("kernel-CF")
- A family of algorithms in this setting

Our contribution

Goal

- Make a link between collaborative filtering and regression over pairs
- Develop methods that combine the advantages of both strategies

Contributions

- A general framework for CF with or without attributes, using kernels to describe attributes ("kernel-CF")
- A family of algorithms in this setting

From CF to regression over pairs

• Represent the *i*-th customer $\mathbf{x}^i \in \mathcal{X}$ (resp. *j*-th movie $\mathbf{y}^j \in \mathcal{Y}$) by the *i*-th basis vector $e_i \in \mathbb{R}^{n_{\mathcal{X}}}$ (resp. $f_i \in \mathbb{R}^{n_{\mathcal{Y}}}$):

$$\phi_X(\mathbf{x}^i) = \mathbf{e}_i, \quad \phi_Y(\mathbf{y}^j) = f_j.$$

• The rating $F_{i,j}$ of \mathbf{x}^i for \mathbf{y}^j is given by

$$F_{i,j} = e_i^{\top} F y_j = Tr \left(F^{\top} (\phi_X(\mathbf{x}^i) \otimes \phi_Y(\mathbf{y}^j)) \right).$$

We can thus rewrite CF as

$$\min_{F \in \mathbb{R}^{n_{\mathcal{X}} \times n_{\mathcal{Y}}}} \sum_{i=1}^{n} \ell(t_i, Tr\left(F^{\top}(\phi_X(\mathbf{x}_i) \otimes \phi_Y(\mathbf{y}_j))) + \lambda \|F\|_*.$$

The idea

$$\begin{split} \min_{\mathbf{w} \in \mathcal{X} \otimes \mathcal{Y}} \sum_{i=1}^{n} \ell(t_i, \mathbf{w}^{\top}(\mathbf{x}_i \otimes \mathbf{y}_i)) + \lambda \|\mathbf{w}\|^2 \,. \\ \min_{F \in \mathbb{R}^{n_{\mathcal{X}} \times n_{\mathcal{Y}}}} \sum_{i=1}^{n} \ell(t_i, \mathit{Tr}\left(F^{\top}(\phi_X(\mathbf{x}_i) \otimes \phi_Y(\mathbf{y}_j)\right)) + \lambda \|F\|_* \,. \end{split}$$

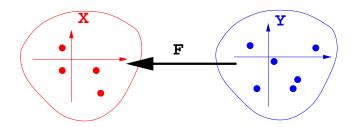
- Put the attribute informations in $\phi_X(\mathbf{x})$ and $\phi_Y(\mathbf{y})$, like in regression
- Investigate penalties beyond the ℓ_2 norm, like in CF
- For this we need to work with "infinite-dimensional matrices", i.e., compact operators

Setting

- Movies: points in a Hilbert space X
- ullet Customers: points in a Hilbert space ${\mathcal Y}$
- We model the preference of customer y for a movie x by a bilinear form:

$$f(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, F\mathbf{y} \rangle_{\mathcal{X}}$$
,

where $F \in \mathcal{B}_0(\mathcal{Y}, \mathcal{X})$ is a compact linear operator (i.e., a "matrix").



Spectra of compact operators

Classical results

• For (\mathbf{x}, \mathbf{y}) in $\mathcal{X} \times \mathcal{Y}$ the tensor product $\mathbf{x} \otimes \mathbf{y}$ is the operator

$$orall \mathbf{h} \in \mathcal{Y} \,, \quad (\mathbf{x} \otimes \mathbf{y}) \, \mathbf{h} = \langle \mathbf{y}, \mathbf{h}
angle_{\mathcal{Y}} \, \mathbf{x} \,.$$

• Any compact operator $F: \mathcal{Y} \to \mathcal{X}$ admits a spectral decomposition:

$$F = \sum_{i=1}^{\infty} \sigma_i \mathbf{u}_i \otimes \mathbf{v}_i.$$

where the $\sigma_i \geq 0$ are the singular values and $(\mathbf{u}_i)_{i \in \mathbb{N}}$ and $(\mathbf{v}_i)_{i \in \mathbb{N}}$ are orthonormal families in \mathcal{X} and \mathcal{Y} .

- The spectrum of F is the set of singular values sorted in decreasing order: $\sigma_1(F) \ge \sigma_2(F) \ge ... \ge 0$.
- This is the natural generalization of singular values for matrices.

Spectra of compact operators

Classical results

• For (\mathbf{x}, \mathbf{y}) in $\mathcal{X} \times \mathcal{Y}$ the tensor product $\mathbf{x} \otimes \mathbf{y}$ is the operator

$$\forall \mathbf{h} \in \mathcal{Y} \,, \quad (\mathbf{x} \otimes \mathbf{y}) \, \mathbf{h} = \langle \mathbf{y}, \mathbf{h}
angle_{\mathcal{Y}} \, \mathbf{x} \,.$$

• Any compact operator $F: \mathcal{Y} \to \mathcal{X}$ admits a spectral decomposition:

$$F = \sum_{i=1}^{\infty} \sigma_i \mathbf{u}_i \otimes \mathbf{v}_i.$$

where the $\sigma_i \geq 0$ are the singular values and $(\mathbf{u}_i)_{i \in \mathbb{N}}$ and $(\mathbf{v}_i)_{i \in \mathbb{N}}$ are orthonormal families in \mathcal{X} and \mathcal{Y} .

- The spectrum of F is the set of singular values sorted in decreasing order: $\sigma_1(F) \ge \sigma_2(F) \ge ... \ge 0$.
- This is the natural generalization of singular values for matrices.

Spectra of compact operators

Classical results

• For (\mathbf{x}, \mathbf{y}) in $\mathcal{X} \times \mathcal{Y}$ the tensor product $\mathbf{x} \otimes \mathbf{y}$ is the operator

$$\forall \mathbf{h} \in \mathcal{Y} \,, \quad (\mathbf{x} \otimes \mathbf{y}) \, \mathbf{h} = \langle \mathbf{y}, \mathbf{h}
angle_{\mathcal{Y}} \, \mathbf{x} \,.$$

 Any compact operator F: Y → X admits a spectral decomposition:

$$F = \sum_{i=1}^{\infty} \sigma_i \mathbf{u}_i \otimes \mathbf{v}_i.$$

where the $\sigma_i \geq 0$ are the singular values and $(\mathbf{u}_i)_{i \in \mathbb{N}}$ and $(\mathbf{v}_i)_{i \in \mathbb{N}}$ are orthonormal families in \mathcal{X} and \mathcal{Y} .

- The spectrum of F is the set of singular values sorted in decreasing order: $\sigma_1(F) \ge \sigma_2(F) \ge ... \ge 0$.
- This is the natural generalization of singular values for matrices.

Useful classes for operators

Operators of finite rank

- The rank of an operator is the number of strictly positive singular values.
- Hence operators of rank smaller or equal to k are characterized by:

$$\sigma_{k+1}(F)=0.$$

Trace-class operators

The trace-class operators are the compact operators F that satisfy:

$$\|F\|_*:=\sum_{i=1}^\infty \sigma_i(F)<\infty$$

 $|F|_*$ is a norm over the trace-class operators, called the trace norm.

Useful classes for operators

Operators of finite rank

- The rank of an operator is the number of strictly positive singular values.
- Hence operators of rank smaller or equal to k are characterized by:

$$\sigma_{k+1}(F)=0.$$

Trace-class operators

The trace-class operators are the compact operators F that satisfy:

$$\|F\|_*:=\sum_{i=1}^\infty \sigma_i(F)<\infty$$
.

 $||F||_*$ is a norm over the trace-class operators, called the trace norm.

Useful classes for operators (cont.)

Hilbert-Schmidt operators

 The Hilbert-Schmidt operators are compact operators F that satisfy:

$$\|F\|_{Fro}^2 := \sum_{i=1}^{\infty} \sigma_i(F)^2 < \infty.$$

They form a Hilbert space with inner product:

$$\left\langle \textbf{x} \otimes \textbf{y}, \textbf{x}' \otimes \textbf{y}' \right\rangle_{\mathcal{X} \otimes \mathcal{Y}} = \left\langle \textbf{x}, \textbf{x}' \right\rangle_{\mathcal{X}} \left\langle \textbf{y}, \textbf{y}' \right\rangle_{\mathcal{Y}} \,.$$

 It is isomorphic to the reproducing kernel Hilbert space used in regression over pairs

Definition

A function $\Omega: \mathcal{B}_0(\mathcal{Y}, \mathcal{X}) \mapsto \mathbb{R} \cup \{+\infty\}$ is called a spectral penalty function if it can be written as:

$$\Omega(F) = \sum_{i=1}^{\infty} s_i \left(\sigma_i(F)\right) \,,$$

where for any $i \ge 1$, $s_i : \mathbb{R}^+ \mapsto \mathbb{R}^+ \cup \{+\infty\}$ is a non-decreasing penalty function satisfying $s_i(0) = 0$.

Examples

• Rank constraint: take $s_{k+1}(0) = 0$ and $s_{k+1}(u) = +\infty$ for u > 0, and $s_i = 0$ for $i \ge k$. Then

$$\Omega(F) = \begin{cases} 0 & \text{if } rank(F) \leq k \,, \\ +\infty & \text{if } rank(F) > k \,. \end{cases}$$

• Trace norm: take $s_i(u) = u$ for all i, then:

$$\Omega(F) = \|F\|_*.$$

• Hilbert-Schmidt norm: take $s_i(u) = u^2$ for all i, then

$$\Omega(F) = \|F\|_{Fro}^2.$$

Examples

• Rank constraint: take $s_{k+1}(0) = 0$ and $s_{k+1}(u) = +\infty$ for u > 0, and $s_i = 0$ for $i \ge k$. Then

$$\Omega(F) = \begin{cases} 0 & \text{if } \mathit{rank}(F) \leq k \,, \\ +\infty & \text{if } \mathit{rank}(F) > k \,. \end{cases}$$

• Trace norm: take $s_i(u) = u$ for all i, then:

$$\Omega(F) = \|F\|_*.$$

• Hilbert-Schmidt norm: take $s_i(u) = u^2$ for all i, then

$$\Omega(F) = \|F\|_{Fro}^2.$$

Examples

• Rank constraint: take $s_{k+1}(0) = 0$ and $s_{k+1}(u) = +\infty$ for u > 0, and $s_i = 0$ for $i \ge k$. Then

$$\Omega(F) = \begin{cases} 0 & \text{if } rank(F) \leq k, \\ +\infty & \text{if } rank(F) > k. \end{cases}$$

• Trace norm: take $s_i(u) = u$ for all i, then:

$$\Omega(F) = \|F\|_*.$$

• Hilbert-Schmidt norm: take $s_i(u) = u^2$ for all i, then

$$\Omega(F) = \|F\|_{Fro}^2$$
.

Learning operator with spectral regularization

Setting

- Training set: $(\mathbf{x}_i, \mathbf{y}_i, t_i)_{i=1,...,N}$ a set of (movie, customer, preference).
- Loss function I(t, t'): cost of predicting preference t instead of t'.
- Empirical risk of an operator F:

$$R_N(F) = \frac{1}{N} \sum_{i=1}^N I(\langle \mathbf{x}_i, F \mathbf{y}_i \rangle_{\mathcal{X}}, t_i) .$$

Learning an operator

$$\min_{F \in \mathcal{B}_0(\mathcal{Y}, \mathcal{X}), \ \Omega(F) < \infty} \left\{ R_N(F) + \lambda \Omega(F) \right\} .$$

Learning operator with spectral regularization

Setting

- Training set: $(\mathbf{x}_i, \mathbf{y}_i, t_i)_{i=1,\dots,N}$ a set of (movie, customer, preference).
- Loss function I(t, t'): cost of predicting preference t instead of t'.
- Empirical risk of an operator F:

$$R_N(F) = \frac{1}{N} \sum_{i=1}^N I(\langle \mathbf{x}_i, F \mathbf{y}_i \rangle_{\mathcal{X}}, t_i) .$$

Learning an operator

$$\min_{F \in \mathcal{B}_0(\mathcal{Y}, \mathcal{X}), \ \Omega(F) < \infty} \left\{ R_N(F) + \lambda \Omega(F) \right\} .$$

Particular cases

$$\min_{F \in \mathcal{B}_0(\mathcal{Y},\mathcal{X}), \; \Omega(F) < \infty} \left\{ R_N(F) + \lambda \Omega(F) \right\} \; .$$

CF

- $K_X(\mathbf{x}, \mathbf{x}') = \delta(\mathbf{x}, \mathbf{x}')$, $K_Y(\mathbf{y}, \mathbf{y}') = \delta(\mathbf{y}, \mathbf{y}')$
- $\Omega(F) = ||F||_*$ or rank(F)

Pairwise regression

- $K_X(\mathbf{x}, \mathbf{x}')$ and $K_Y(\mathbf{y}, \mathbf{y}')$ defined by attributes

Many variants, e.g., multitask learning

- $K_X(\mathbf{x}, \mathbf{x}') = \delta(\mathbf{x}, \mathbf{x}')$ and $K_Y(\mathbf{y}, \mathbf{y}')$ defined by attributes
- $\Omega(F) = ||F||_*$

Theory

Is it a "good" algorithm in theory?

- To be investigated...
- See Srebro et al. (2004), Bach (2007) for preliminary results with the trace norm

Practice

- Optimization problem in the space of compact operators... but we show later that it boils down to a finite-dimensional optimization problem
- Promising results on real data

Theory

Is it a "good" algorithm in theory?

- To be investigated...
- See Srebro et al. (2004), Bach (2007) for preliminary results with the trace norm

Practice

- Optimization problem in the space of compact operators... but we show later that it boils down to a finite-dimensional optimization problem
- Promising results on real data

Theory

Is it a "good" algorithm in theory?

- To be investigated...
- See Srebro et al. (2004), Bach (2007) for preliminary results with the trace norm

Practice

- Optimization problem in the space of compact operators... but we show later that it boils down to a finite-dimensional optimization problem
- Promising results on real data

Theory

Is it a "good" algorithm in theory?

- To be investigated...
- See Srebro et al. (2004), Bach (2007) for preliminary results with the trace norm

Practice

- Optimization problem in the space of compact operators... but we show later that it boils down to a finite-dimensional optimization problem
- Promising results on real data

A classical representer theorem

Theorem

If \hat{F} is a solution the problem:

$$\min_{F \in \mathcal{B}_2(\mathcal{Y}, \mathcal{X})} \left\{ R_N(F) + \lambda \sum_{i=1}^{\infty} \sigma_i(F)^2 \right\} ,$$

then it is necessarily in the linear span of $\{\mathbf{x}_i \otimes \mathbf{y}_i : i = 1, ..., N\}$, i.e., it can be written as:

$$\hat{F} = \sum_{i=1}^{N} \alpha_i \mathbf{x}_i \otimes \mathbf{y}_i \,,$$

for some $\alpha \in \mathbb{R}^N$.

Proof sketch

• $\mathcal{B}_2(\mathcal{Y}, \mathcal{X})$ is isomorphic to the RKHS of the tensor product kernel:

$$\textit{k}_{\otimes}\left(\left(\textbf{x},\textbf{y}\right),\left(\textbf{x}',\textbf{y}'\right)\right) = \left\langle \textbf{x},\textbf{x}'\right\rangle_{\mathcal{X}} \left\langle \textbf{y},\textbf{y}'\right\rangle_{\mathcal{Y}}\,,$$

by $f(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, F\mathbf{y} \rangle_{\mathcal{X}}$. In particular,

$$||f||_{\mathcal{H}_{\otimes}}^2 = ||F||^2 = \Omega(F).$$

• The problem is therefore a classical kernel method:

$$\min_{f \in \mathcal{H}_{\otimes}} \left\{ R_{N}(f) + \lambda \| f \|_{\otimes}^{2} \right\} ,$$

so the classical representer theorem can be used. $\ \square$

A generalized representer theorem

Theorem

For any spectral penalty function $\Omega: \mathcal{B}_0(\mathcal{Y}, \mathcal{X}) \mapsto \mathbb{R}$, let the optimization problem:

$$\min_{F \in \mathcal{B}_0(\mathcal{Y}, \mathcal{X}), \Omega(F) < \infty} \left\{ R_N(F) + \lambda \Omega(F) \right\} .$$

If the set of solutions is not empty, then there is a solution F in $\mathcal{X}_N \otimes \mathcal{Y}_N$, i.e., there exists $\alpha \in \mathbb{R}^{m_{\mathcal{X}} \times m_{\mathcal{Y}}}$ such that:

$$F = \sum_{i=1}^{m_{\mathcal{X}}} \sum_{j=1}^{m_{\mathcal{Y}}} \alpha_{ij} \mathbf{u}_i \otimes \mathbf{v}_j,$$

where $(\mathbf{u}_1,\ldots,\mathbf{u}_{m_{\mathcal{X}}})$ and $(\mathbf{v}_1,\ldots,\mathbf{v}_{m_{\mathcal{Y}}})$ form orthonormal bases of \mathcal{X}_N and \mathcal{Y}_N , respectively.

Proof sketch

• For any operator $F \in \mathcal{B}_0(\mathcal{Y}, \mathcal{X})$, let

$$G = \Pi_{\mathcal{X}_N} F \Pi_{\mathcal{Y}_N},$$

where Π_U is the orthogonal projection onto U.

• Lemma: we can show that for all $i \ge 0$:

$$\sigma_i(G) \leq \sigma_i(F)$$
.

- Therefore $\Omega(G) \leq \Omega(F)$.
- On the other hand $R_N(G) = R_N(F)$.
- Consequently for any solution F we have another solution $G \in \mathcal{X}_N \otimes \mathcal{Y}_N$. \square

Practical consequence

Theorem (cont.)

The coefficients α that define the solution by

$$F = \sum_{i=1}^{m_{\mathcal{X}}} \sum_{j=1}^{m_{\mathcal{Y}}} \alpha_{ij} \mathbf{u}_i \otimes \mathbf{v}_j \,,$$

can be found by solving the following finite-dimensional optimization problem:

$$\min_{\alpha \in \mathbb{R}^{m_{\mathcal{X}} \times m_{\mathcal{Y}}}, \Omega(\alpha) < \infty} R_{N} \left(diag \left(X \alpha Y^{\top} \right) \right) + \lambda \Omega(\alpha),$$

where $\Omega(\alpha)$ refers to the spectral penalty function applied to the matrix α seen as an operator from $\mathbb{R}^{m_{\mathcal{Y}}}$ to $\mathbb{R}^{m_{\mathcal{X}}}$, and X and Y denote any matrices that satisfy $K = XX^{\top}$ and $G = YY^{\top}$ for the two Gram matrices K and G of \mathcal{X}_N and \mathcal{Y}_N .

Summary

We obtain various algorithms by choosing:

- A loss function (depends on the application)
- A spectral regularization (that is amenable to optimization)
- 3 Two Gram matrices (aka kernel matrices)

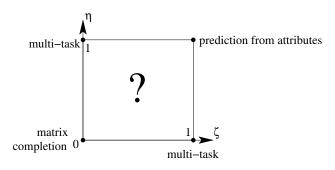
Both kernels and spectral regularization can be used to constrain the solution

A family of kernels

Taken $K_{\otimes} = K \times G$ with

$$\begin{cases} K = \eta K_{Attribute}^{X} + (1 - \eta) K_{Dirac}^{X}, \\ G = \zeta K_{Attribute}^{y} + (1 - \zeta) K_{Dirac}^{y}, \end{cases}$$

for $0 \le \eta \le 1$ and $0 \le \zeta \le 1$



Simulated data

Experiment

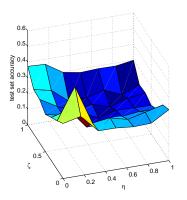
• Generate data $(\mathbf{x}, \mathbf{y}, z) \in \mathbb{R}^{f_\chi} \times \mathbb{R}^{f_\gamma} \times \mathbb{R}$ according to

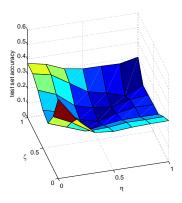
$$\mathbf{z} = \mathbf{x}^{\top} \mathbf{B} \mathbf{y} + \boldsymbol{\varepsilon}$$

- Observe only $n_X < f_X$ and $n_Y < f_Y$ features
 - Low-rank assumption will find the missing features
 - Observed attributes will help the low-rank formulation to concentrate mostly on the unknown features
- Comparison of
 - Low-rank constraint without tracenorm (note that it requires regularization)
 - Trace-norm formulation (regularization is implicit)

Simulated data: results

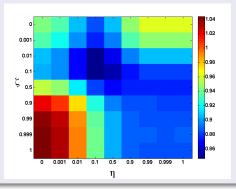
- Compare MSE
- Left: rank constraint (best: 0.1540), right: trace norm (best: 0.1522)





Movies

- MovieLens 100k database, ratings with attributes
- Experiments with 943 movies and 1,642 customers, 100,000 rankings in {1,...,5}
- Train on a subset of the ratings, test on the rest
- error measured with MSE (best constant prediction: 1.26)



Conclusion

What we saw

- A general framework for CF with or without attributes
- A generalized representation theorem valid for any spectral penalty function
- A family of new methods

Future work

- The bottleneck is often practical optimization. Online version possible.
- Automatic choice of the kernel

Reference

J. Abernethy, F. Bach, T. Evgeniou and J.-P. Vert, "A new approach to collaborative filtering: operator estimation with spectral regularization", *Journal of Machine Learning Research*, 10:803-826, 2009.