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1.  SVM for ligand-based virtual screening 
2.  Kernels for molecules 
3.  Towards in silico chemogenomics 



SVM for ligand-based virtual 
screening 



From http://cactus.nci.nih.gov!

Ligand-based virtual screening / QSAR 



Represent each molecule as a vector… 



…and discriminate with machine learning 

- LDA 
- PLS 
- Neural network 
- Decision trees 
- Nearest neighbour 
- SVM, … 



Linear classifier (simple case) 



Another possibility… 



Which one is better? 



Vapnik’s answer: margin 



Vapnik’s answer: margin 



Vapnik’s answer: margin 



The best: largest margin 



Support vectors 



Implementation 

•  The problem of finding the largest margin 
hyperplane is easy to solve (but not by 
yourself!) 

• Unique solution, no local optimum (convex 
optimization problem) 

• Only depends on the support vectors 



New problem 



New problem 



Soft-margin SVM 

•  Find a trade-off between: 
– Large margin 
– Few misclassification 

• Mathematically:  

•  Still easy to solve (for a good choice of 
« error »). C is a parameter. 



An interesting property 

•  To train a SVM we just need the matrix 
of pairwise distances: 

•  The predictor has the form: 



Generalization (Kernel trick) 

•  Take a distance d(X,X’) 
•  Train a SVM from the matrix of pairwise 

distances: 

•  The predictor now is: 



Example: nonlinear SVM 

•  Take a Gaussian distance: 

•  We can then learn nonlinear predictors: 



The fundamental trade-off: 
regularity (margin) vs error 



C controls the trade-off 

•  Large C :  
– makes few errors 

•  Small C :  
– ensure a large 

margin 
•  Intermediate C:  

– finds a trade-off 



Why it is important to care about the 
trade-off 

Don’t trust the default « C=1 » ! 



Choosing C 

•  Split the annotated data in 2: training / 
validation 

•  Train a predictor on the training set 
•  Evaluate the performance on the 

validation set 
• Choose C to minimize the validation 

error 
•  (you may repeat all this several times -> 

cross-validation) 



SVM in practice  
(eg: libsvm with Python) 



SVM summary 

- Large margin 

- Nonlinear, no feature 
selection 

-  Need pairwise 
distance / similarity 
as input instead of 
vectors / fingerprints 



Kernels for small molecules 



From descriptors to similarities 

Molecules 

Representation Discrimination 

Vectors / Fingerprints 

Pairwise distance / 
similarity 

- Neural Net 
- LDA 
- Decision trees 
- PLS, … 

- SVM 
- Kernel PLS 
- Kernel LDA 
- … 

Tanimoto 
Inner product 

« Kernel » 



2D fragment kernels (walks) 

Kashima et al. (2003), Gärtner et al. (2003) 



Properties of the 2D fragment kernel 

• Corresponds to a fingerprint of infinite 
size 

• Can be computed efficiently in     O(|x|
^3 |x’|^3) (much faster in practice) 

•  Solves the problem of clashes and 
memory storage (fingerprints are not 
computed explicitly) 

Kashima et al. (2003), Gärtner et al. (2003) 



2D kernel computational trick 



Extension: subtree patterns 

« All subtree patterns » 

Mahé and V., Mach. Learn, 2009. 

Ramon et al. (2004), Mahé & V. (2009) 



2D subtree vs walk kernel 

NCI 60 dataset 
Mahé & V. (2009) 



Other 2D kernels 

•  Indexing by all shortest paths  
(Borgwardt & Kriegel 2005) 

•  Indexing by all small subgraphs 
(Shervashidze et al. 2009) 

•  Optimal assignment kernel 
 (Fröhlich et al. 2005) 



3-point pharmacophores 

Mahé et al., J. Chem. Inf. Model., 2006. 



3D fingerprint kernel 



Removing discretization artifacts 

3D Fuzzy 
Fingerprint 3D Fingerprint 3D Kernel 



From the fingerprint kernel to the 
pharmacophore kernel 



Experiments 

Mahé et al., J. Chem. Inf. Model., 2006. 



Towards in silico chemogenomics 



Chemogenomics 

Target family 

Chemical space 



In silico Chemogenomics 

Target family 

Chemical space 



Fingerprint for a (target,molecule) pair? 

t= c = 

- 2D 
- 3D 
- Pharmacophore 
- MW, logP, … 

= 

- Sequence 
- Structure 
- Evolution 
- Expression 
- … 

= 

= ??? 



Fingerprint for a (target,molecule) pair? 

T= c = 

- 2D 
- 3D 
- Pharmacophore 
- logP, … 

= 

- Sequence 
- Structure 
- Evolution 
- Expression 
- … 

= 

10 3 10 3 10 6 



Similarity for (target,molecule) pairs 

t= c = 

- 2D 
- 3D 
- Pharmacophore 
- logP, … 

= 

- Sequence 
- Structure 
- Evolution 
- Expression 
- … 

= 



Summary: SVM for chemogenomics 

1.  Choose a kernel (similarity) for targets 
2.  Choose a kernel (similarity) for ligands 
3.  Train a SVM model with the product 

kernel for (target/ligand) pairs 



Application: virtual screening of GPCR 

Data: GLIDA database filtered for drug-like compounds 
 - 2446 ligands 
 - 80 GPCR 
 - 4051 interactions 
 - 4051 negative interactions generated randomly 

Ligand similarity 
- 2D Tanimoto 
- 3D pharmacophore 

Target similarities 
- 0/1 Dirac (no similarity) 
- Multitask (uniform similarity) 
- GLIDA’s hierarchy similarity 
- Binding pocket similarity (31 AA) 

(Jacob et al., BMC Bioinformatics, 2008) 



Results (mean accuracy over GPCRs) 

5-fold cross-validation 

Orphan GPCRs setup 

(Jacob et al., BMC Bioinformatics, 2008) 



Influence of the number of known ligands 

Number of ligands / GPCR 

Performance improvement 
(hierarchy vs Dirac) 

(Jacob et al., BMC Bioinformatics, 2008) 



Screening of enzymes, GPCRs, ion channels 

Data: KEGG BRITE database, redundancy removed 

Enzymes 
- 675 targets 

- 524 molecules 
- 1218 interactions 
- 1218 negatives 

Ion channels 
- 114 targets 

- 462 molecules 
- 1165 interactions 
- 1165 negatives 

GPCRs 
- 100 targets 

- 219 molecules 
- 399 interactions 
- 399 negatives 

(Jacob and V., Bioinformatics, 2008) 



Results (mean AUC) 

10-fold CV 

Orphan setting 

(Jacob and V., Bioinformatics, 2008) 



Influence of the number of known ligands 

Enzymes Ion channels GPCRs 

Relative improvement : hierarchy vs Dirac 
(Jacob and V., Bioinformatics, 2008) 



Conclusion 

•  SVM offer state-of-the-art performance in many 
chemo- and bio-informatics applications 

•  The kernel trick is useful to 
–  Work implicitly with many features without computing them 

(2D fragment kernels) 
–  Work with similarity measures that cannot be derived from 

descriptors (optimal alignment kernel) 
–  Relax the need for discretization (3D pharmacophore 

kernel) 
–  Work in a product space (chemogenomics) 

•  Promising direction: 
–  More kernels / Multiple kernel learning 
–  Collaborative filtering in product space 



Thank you ! 

Collaborators:  
P. Mahé, L. Jacob, V. Stoven, B. Hoffmann 

Open-source kernels for chemoinformatics: 
http://chemcpp.sourceforge.net 

References :  
http://cbio.ensmp.fr/~jvert 


