Machine learning for ligand-based virtual screening and chemogenomics

Jean-Philippe Vert

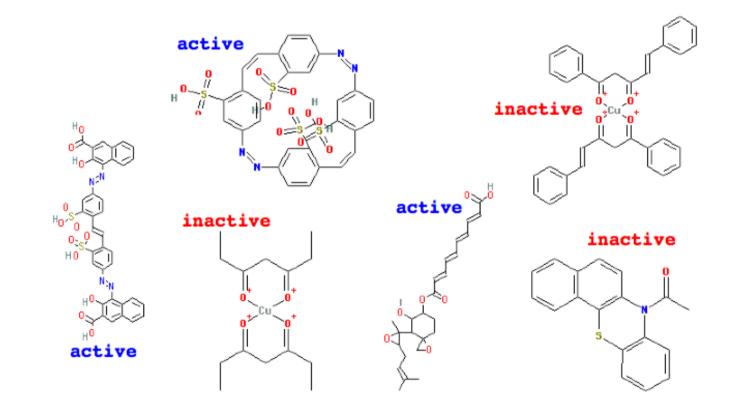
Institut Curie - INSERM U900 - Mines ParisTech

2nd International Summer School on Chemoinformatics, June 20-24, 2010, Obernai, France

- 1. SVM for ligand-based virtual screening
- 2. Kernels for molecules
- 3. Towards in silico chemogenomics

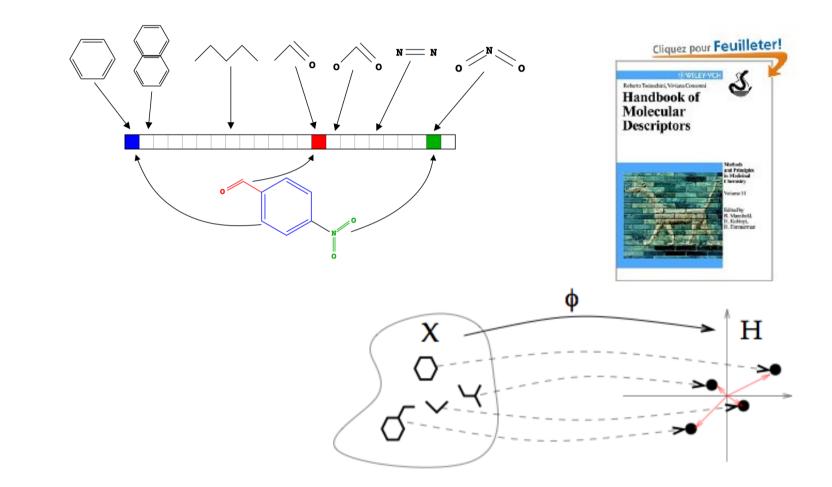
SVM for ligand-based virtual screening

Ligand-based virtual screening / QSAR

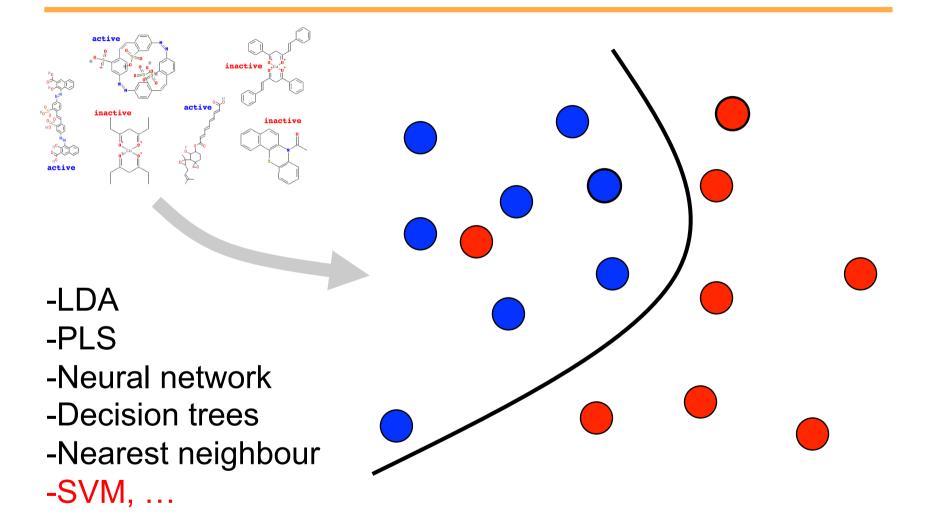


From http://cactus.nci.nih.gov

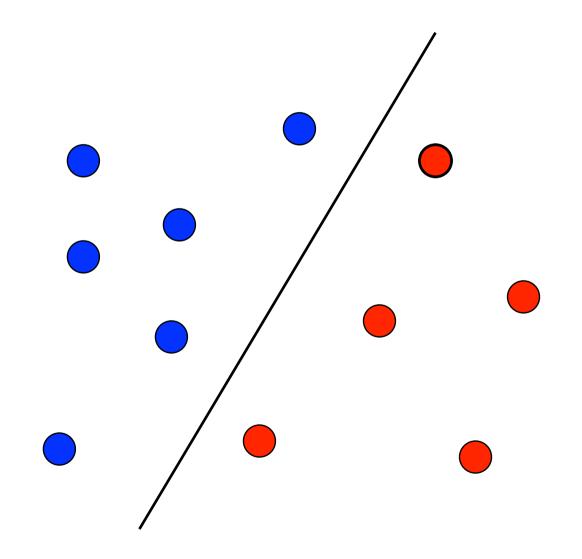
Represent each molecule as a vector...



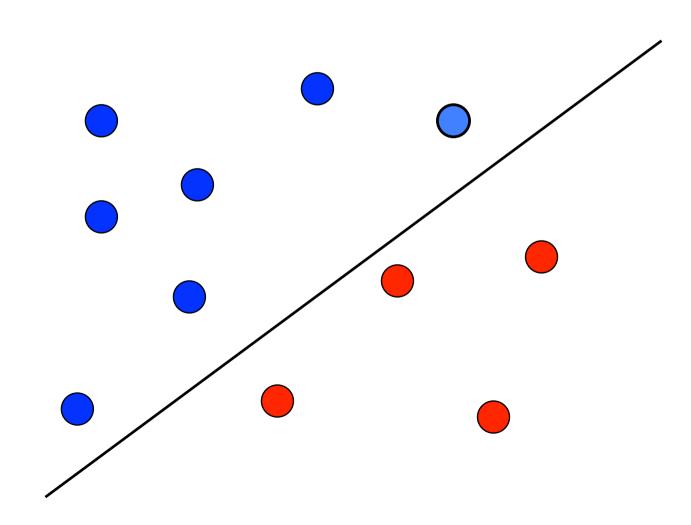
...and discriminate with machine learning



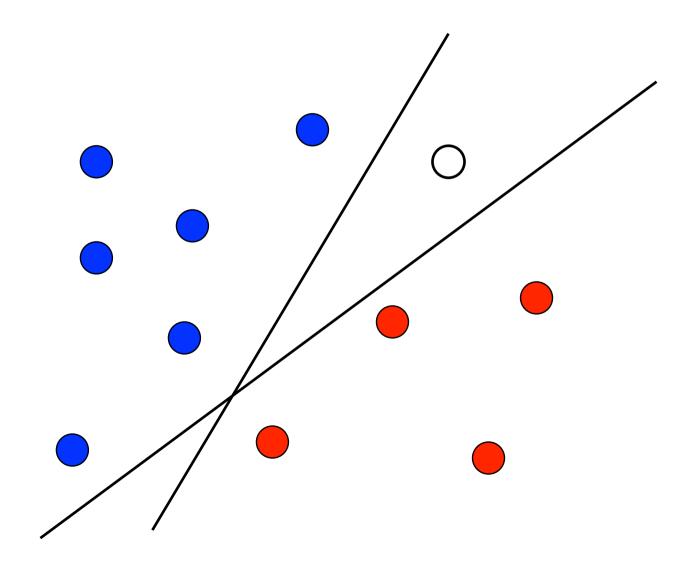
Linear classifier (simple case)



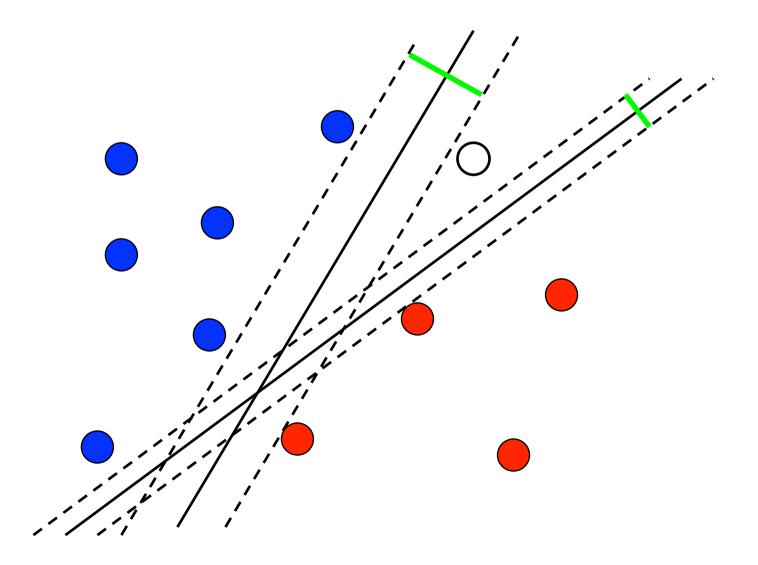
Another possibility...



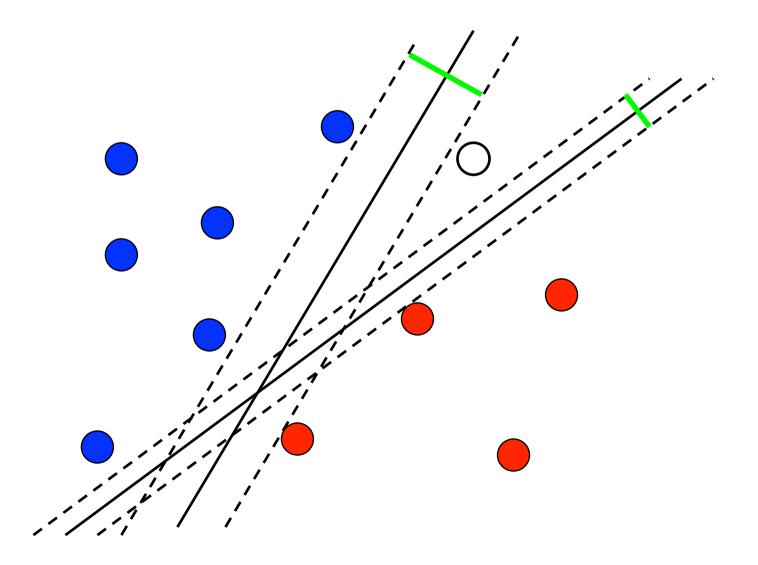
Which one is better?



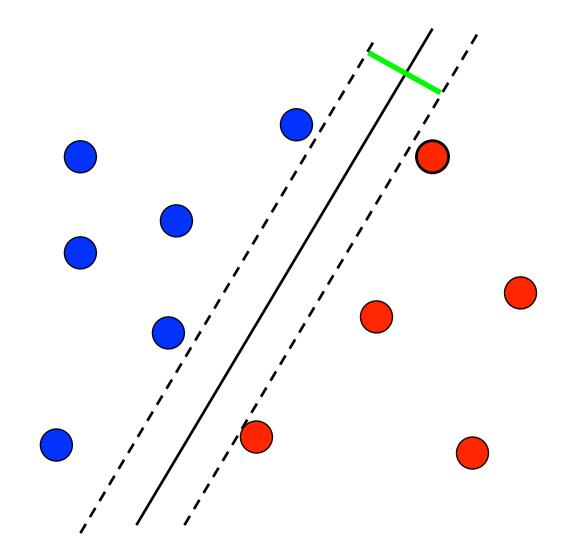
Vapnik's answer: margin



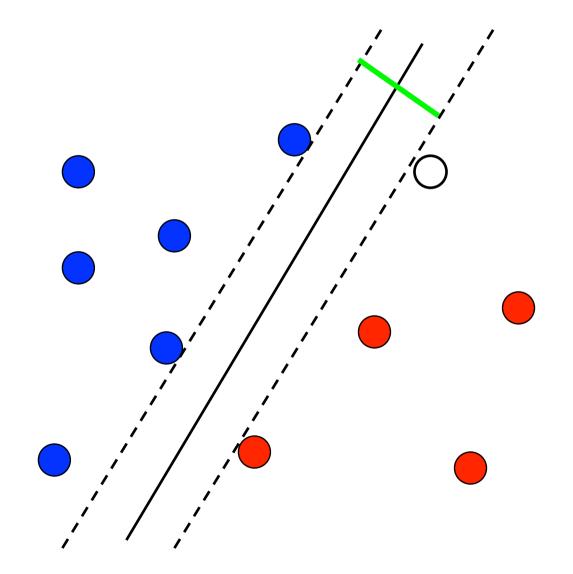
Vapnik's answer: margin



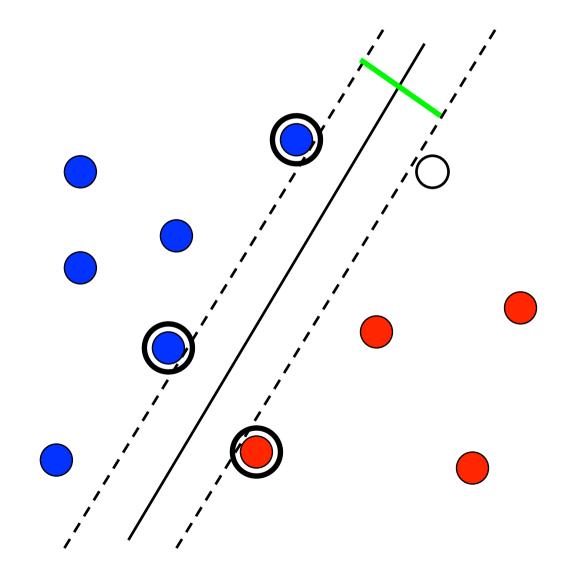
Vapnik's answer: margin



The best: largest margin



Support vectors

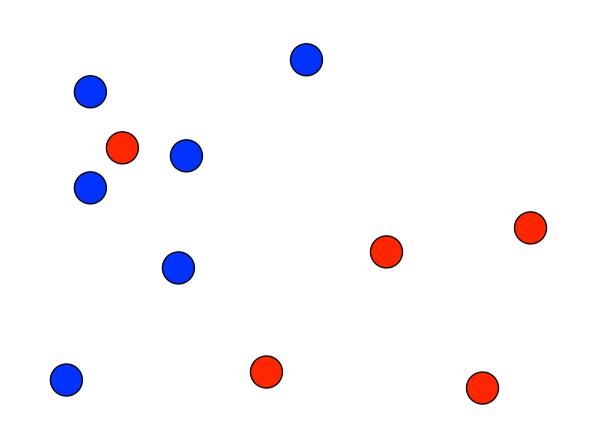


Implementation

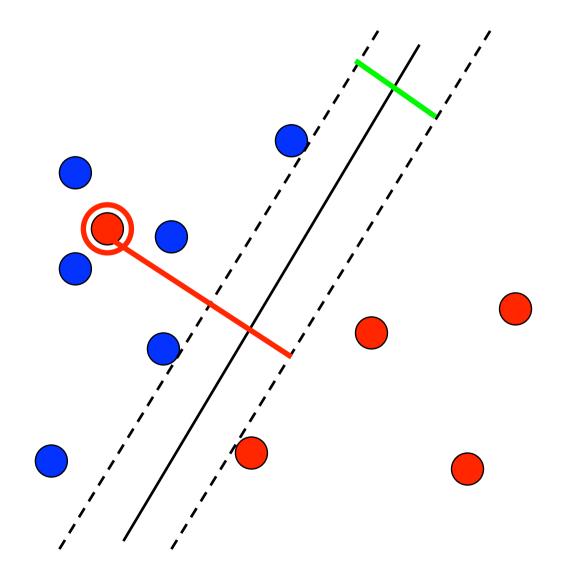
$$\max_{f} \{ margin(f) \} \iff \min_{f} \left\{ \frac{1}{margin(f)} \right\}$$

- The problem of finding the largest margin hyperplane is easy to solve (but not by yourself!)
- Unique solution, no local optimum (convex optimization problem)
- Only depends on the support vectors

New problem



New problem



Soft-margin SVM

- Find a trade-off between:
 - Large margin
 - Few misclassification
- Mathematically:

$$\min_{f} \left\{ \frac{1}{margin(f)} + C \times error(f) \right\}$$

• Still easy to solve (for a good choice of « error »). C is a parameter.

An interesting property

• To train a SVM we just need the matrix of pairwise distances:

$$D_{i,j} = ||X_i - X_j||^2$$

• The predictor has the form:

$$f(X) = \sum_{i \in SV} w_i ||X_i - X||^2$$

Generalization (Kernel trick)

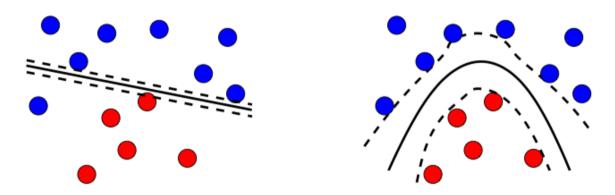
- Take a distance d(X,X')
- Train a SVM from the matrix of pairwise distances:

$$D_{i,j} = d(X_i, X_j)^2$$

• The predictor now is:

$$f(X) = \sum_{i \in SV} w_i d(X_i, X)^2$$

Example: nonlinear SVM



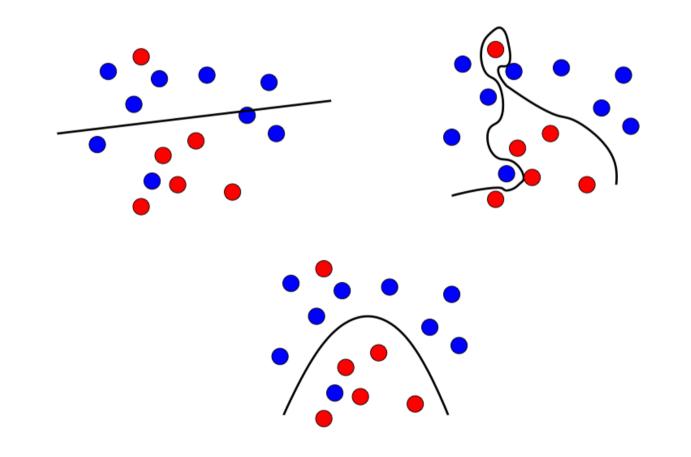
• Take a Gaussian distance:

$$d(X, X')^2 = 1 - \exp\left(-\frac{||X - X'||^2}{2\sigma^2}\right)$$

• We can then learn nonlinear predictors:

$$f(X) = \sum_{i \in SV} w_i \exp\left(-\frac{||X - X_i||^2}{2\sigma^2}\right) + cte$$

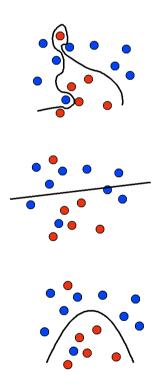
The fundamental trade-off: regularity (margin) vs error



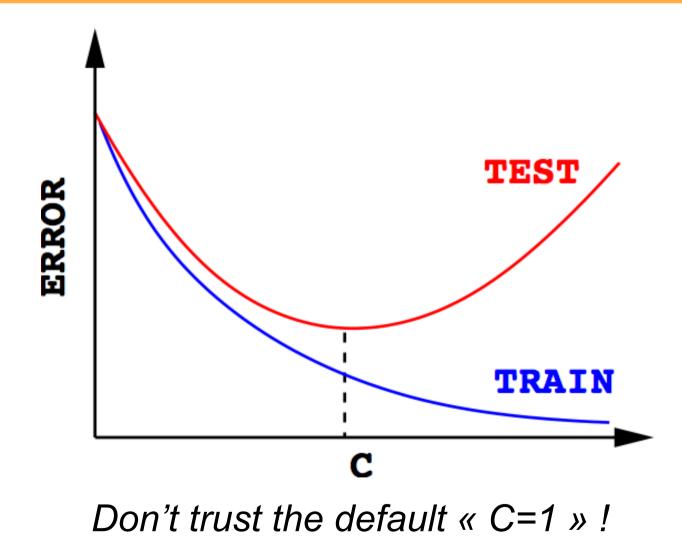
C controls the trade-off

$$\min_{f} \left\{ \frac{1}{margin(f)} + C \times error(f) \right\}$$

- Large C :
 - makes few errors
- Small C :
 - ensure a large margin
- Intermediate C:
 - finds a trade-off



Why it is important to care about the trade-off



Choosing C

- Split the annotated data in 2: training / validation
- Train a predictor on the training set
- Evaluate the performance on the validation set
- Choose C to minimize the validation error
- (you may repeat all this several times -> cross-validation)

SVM in practice (eg: libsvm with Python)

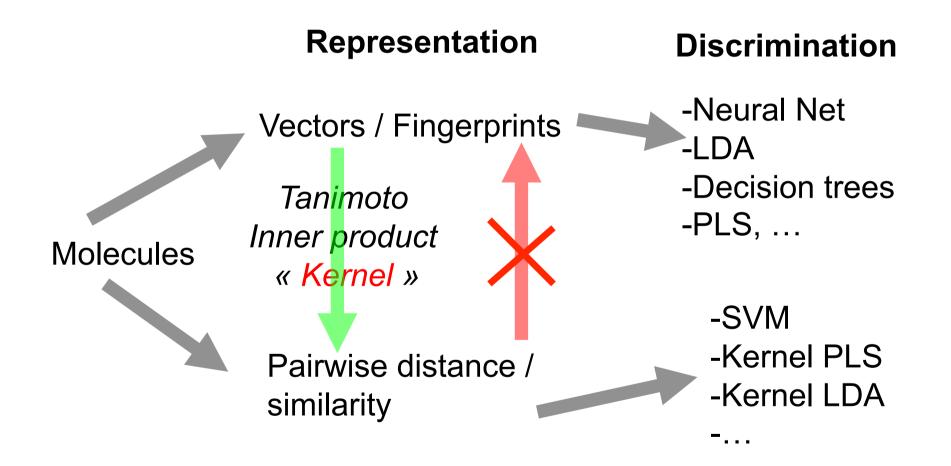
1> from svm import *
2> param = svm_parameter(kernel_type=LINEAR,C=10)
3> prob = svm_problem([1,-1],[[1,0,1],[-1,0,-1]])
4> m = svm_model(prob, param)
5> r = m.predict([1, 1, 1])

SVM summary

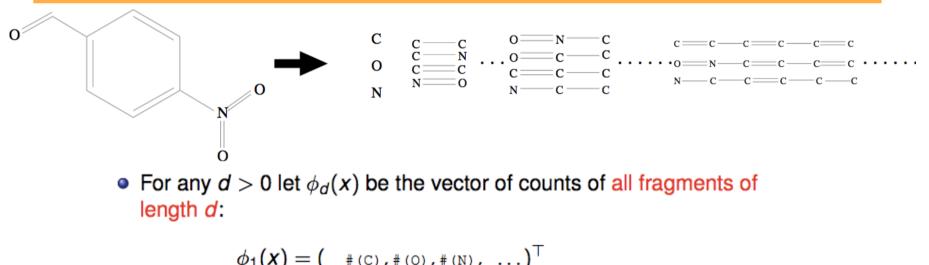
- Large margin
- Nonlinear, no feature selection
- Need pairwise
 distance / similarity
 as input instead of
 vectors / fingerprints

Kernels for small molecules

From descriptors to similarities



2D fragment kernels (walks)



$$\phi_2(\mathbf{x}) = (\#(C-C), \#(C=0), \#(C-N), \dots)^\top \text{ etc...}$$

• The 2D fingerprint kernel is defined, for $\lambda < 1$, by

$$K_{2D}(\boldsymbol{x}, \boldsymbol{x}') = \sum_{d=1}^{\infty} \lambda(d) \phi_d(\boldsymbol{x})^{\top} \phi_d(\boldsymbol{x}') .$$

Kashima et al. (2003), Gärtner et al. (2003)

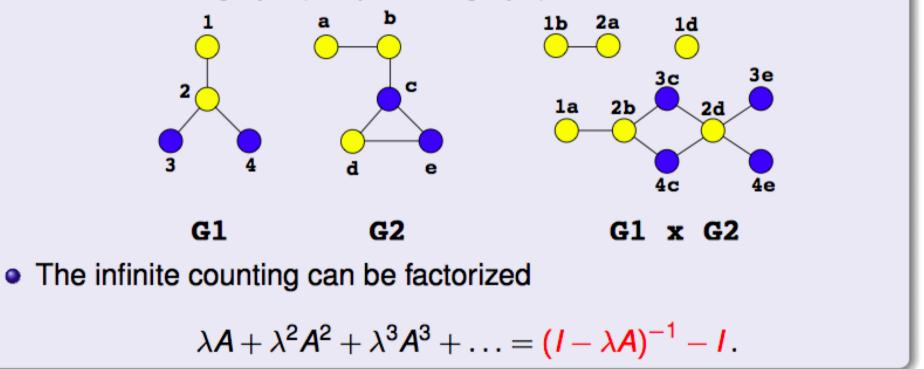
Properties of the 2D fragment kernel

- Corresponds to a fingerprint of infinite size
- Can be computed efficiently in O(|x| ^3 |x'|^3) (much faster in practice)
- Solves the problem of clashes and memory storage (fingerprints are not computed explicitly)

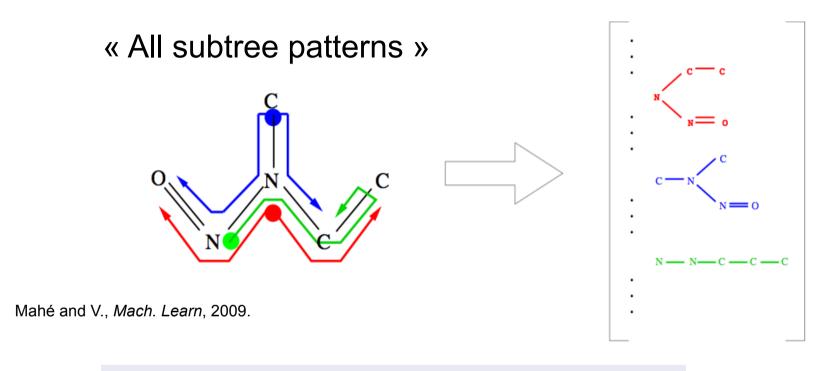
Kashima et al. (2003), Gärtner et al. (2003)

2D kernel computational trick

 Rephrase the kernel computation as that of counting the number of walks on a graph (the product graph)



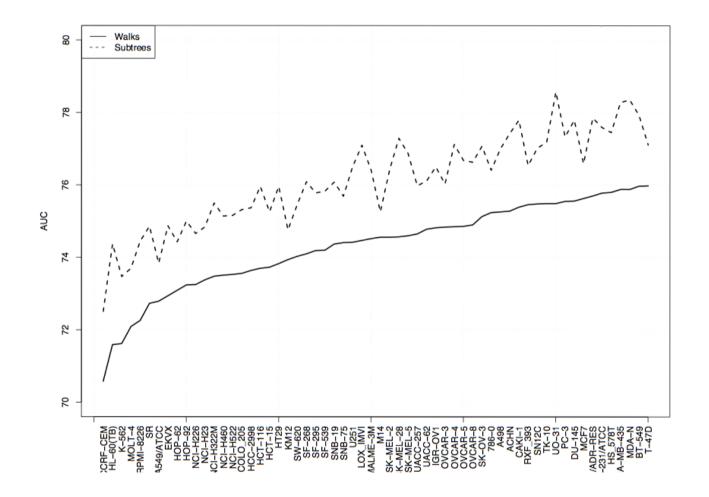
Extension: subtree patterns

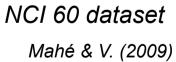


$$\mathcal{T}(\boldsymbol{v},\boldsymbol{n}+1) = \sum_{\boldsymbol{R} \subset \mathcal{N}(\boldsymbol{v})} \prod_{\boldsymbol{v}' \in \boldsymbol{R}} \lambda_t(\boldsymbol{v},\boldsymbol{v}') \mathcal{T}(\boldsymbol{v}',\boldsymbol{n})$$

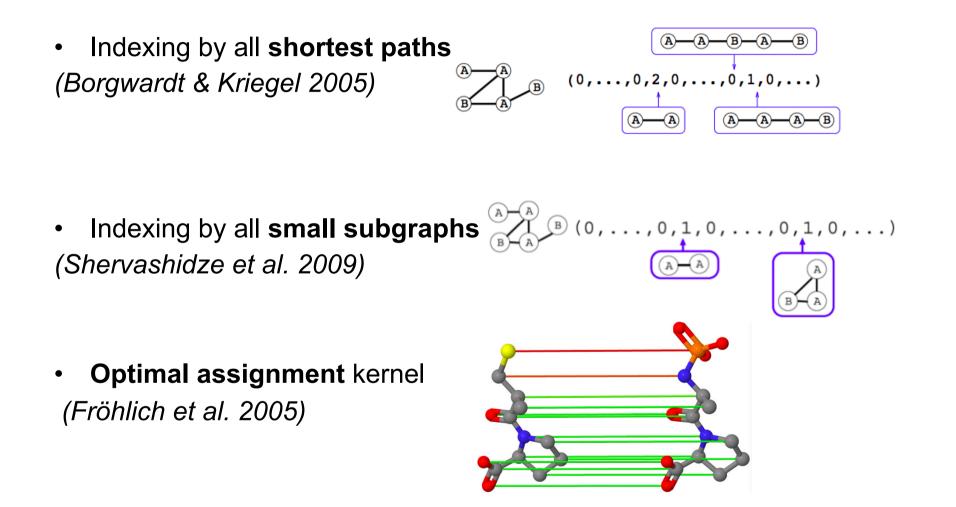
Ramon et al. (2004), Mahé & V. (2009)

2D subtree vs walk kernel

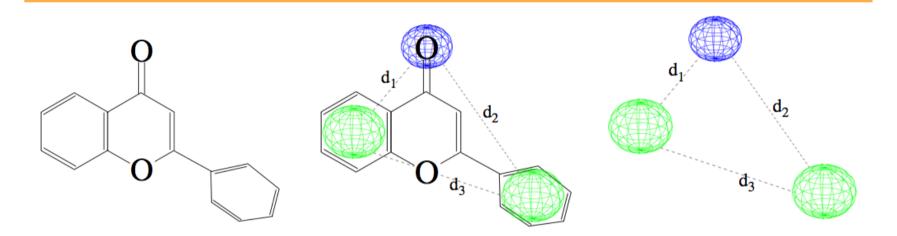




Other 2D kernels



3-point pharmacophores



A set of 3 atoms, and 3 inter-atom distances:

 $\mathcal{T} = \{((x_1, x_2, x_3), (d_1, d_2, d_3)), x_i \in \{\text{atom types}\}; d_i \in \mathbb{R}\}$

Mahé et al., J. Chem. Inf. Model., 2006.

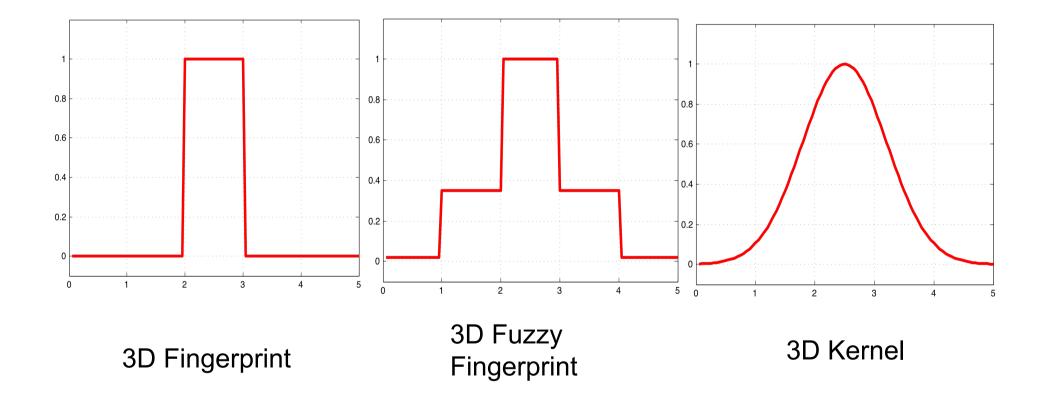
3D fingerprint kernel

- **Discretize** the space of pharmacophores \mathcal{T} (e.g., 6 atoms or groups of atoms, 6-7 distance bins) into a finite set \mathcal{T}_d
- Count the number of occurrences \(\phi_t(x)\) of each pharmacophore bin t in a given molecule x, to form a pharmacophore fingerprint.

A simple 3D kernel is the inner product of pharmacophore fingerprints:

$$\mathcal{K}(\mathbf{x},\mathbf{x}') = \sum_{t \in \mathcal{T}_d} \phi_t(\mathbf{x}) \phi_t(\mathbf{x}') \, .$$

Removing discretization artifacts



From the fingerprint kernel to the pharmacophore kernel

$$\begin{aligned} \mathcal{K}(\mathbf{x}, \mathbf{y}) &= \sum_{t \in \mathcal{T}_d} \phi_t(\mathbf{x}) \phi_t(\mathbf{y}) \\ &= \sum_{t \in \mathcal{T}_d} (\sum_{p_x \in \mathcal{P}(\mathbf{x})} \mathbf{1}(\operatorname{bin}(\mathbf{p_x}) = \mathbf{t})) (\sum_{p_y \in \mathcal{P}(y)} \mathbf{1}(\operatorname{bin}(\mathbf{p_y}) = \mathbf{t})) \underbrace{\mathbf{x}^2}_{\mathbf{x}^2} \end{aligned}$$
$$= \sum_{p_x \in \mathcal{P}(\mathbf{x})} \sum_{p_y \in \mathcal{P}(y)} \mathbf{1}(\operatorname{bin}(\mathbf{p_x}) = \operatorname{bin}(\mathbf{p_y}))$$

$$K(x, y) = \sum_{p_x \in \mathcal{P}(x)} \sum_{p_y \in \mathcal{P}(y)} \exp\left(-\gamma ||p_x - p_y||^2\right)$$

Experiments

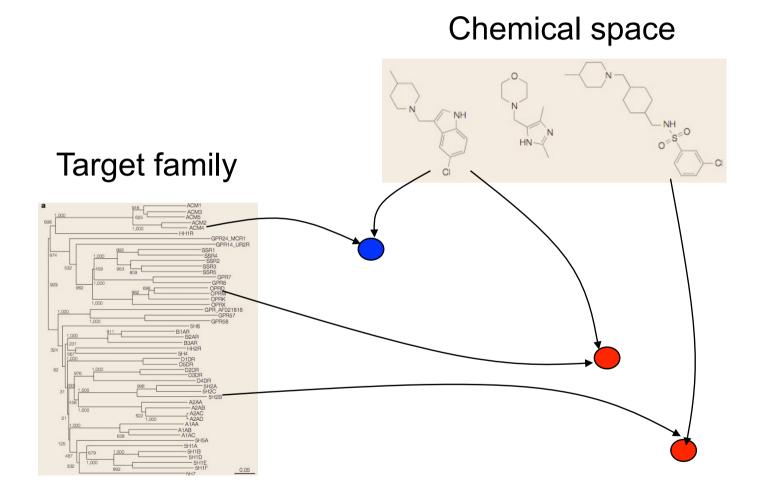
- BZR: ligands for the benzodiazepine receptor
- COX: cyclooxygenase-2 inhibitors
- DHFR: dihydrofolate reductase inhibitors
- ER: estrogen receptor ligands

Kernel	BZR	COX	DHFR	ER
2D (Tanimoto)	71.2	63.0	76.9	77.1
3D fingerprint	75.4	67.0	76.9	78.6
3D not discretized	76.4	69.8	81.9	79.8

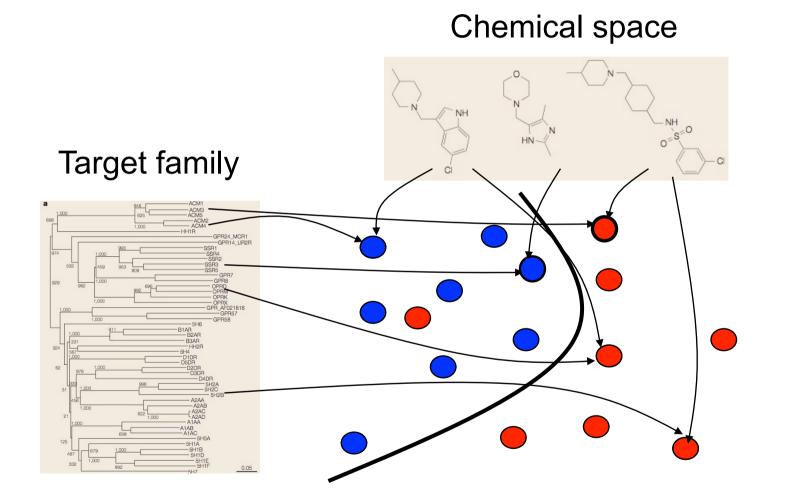
Mahé et al., J. Chem. Inf. Model., 2006.

Towards in silico chemogenomics

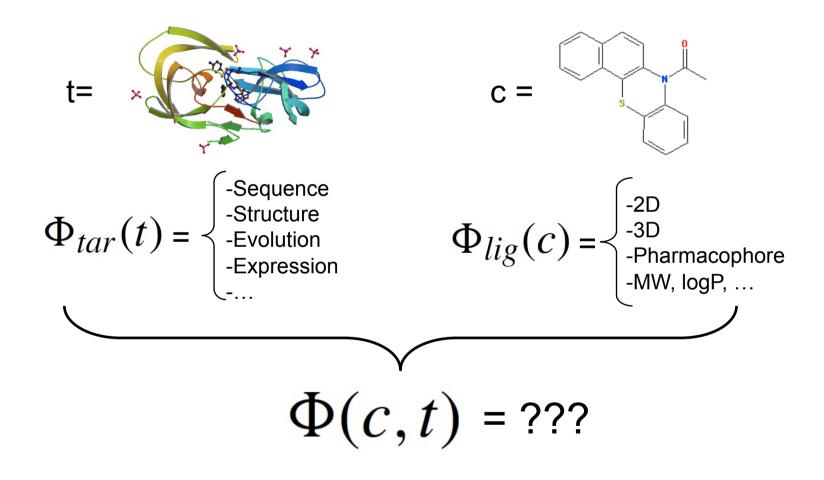
Chemogenomics



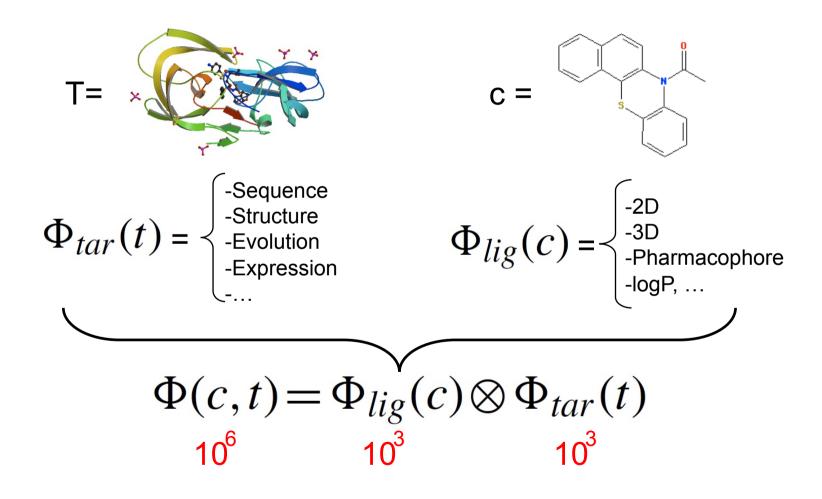
In silico Chemogenomics



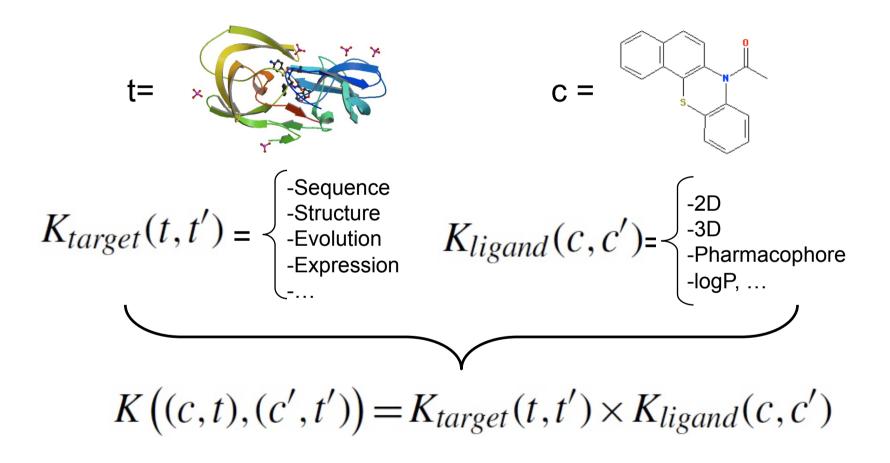
Fingerprint for a (target, molecule) pair?



Fingerprint for a (target, molecule) pair?



Similarity for (target, molecule) pairs



Summary: SVM for chemogenomics

- 1. Choose a kernel (similarity) for targets
- 2. Choose a kernel (similarity) for ligands
- 3. Train a SVM model with the product kernel for (target/ligand) pairs

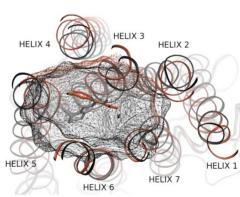
Application: virtual screening of GPCR

Data: GLIDA database filtered for drug-like compounds

- 2446 ligands
- 80 GPCR
- 4051 interactions
- 4051 negative interactions generated randomly

Ligand similarity

-2D Tanimoto-3D pharmacophore



Target similarities

- -0/1 Dirac (no similarity)
- -Multitask (uniform similarity)
- -GLIDA's hierarchy similarity
- -Binding pocket similarity (31 AA)

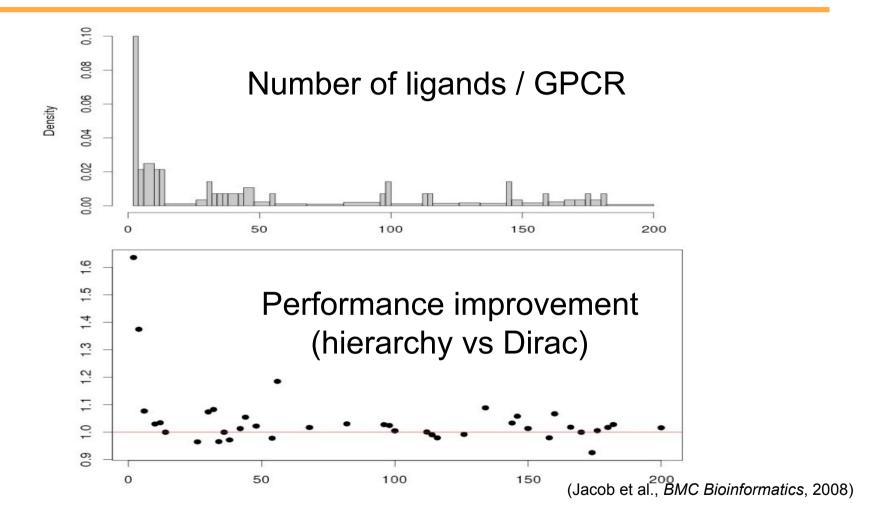
(Jacob et al., BMC Bioinformatics, 2008)

Results (mean accuracy over GPCRs)

	K _{tar} \K _{lig}	2D Tanimoto	3D pharmacophore
5-fold cross-validation	Dirac	86.2 ± 1.9	84.4 ± 2.0
	multitask	88.8 ± 1.9	85.0 ± 2.3
	hierarchy	93.1 ± 1.3	88.5 ± 2.0
	binding pocket	90.3 ± 1.9	87.1 ± 2.3
	K _{tar} \K _{lig}	2D Tanimoto	3D pharmacophore
Orphan GPCRs setup	Dirac	50.0 ± 0.0	50.0 ± 0.0
	multitask	56.8 ± 2.5	58.2 ± 2.2
	hierarchy	77.4 ± 2.4	76.2 ± 2.2
	binding pocket	78.1 ± 2.3	76.6 ± 2.2

(Jacob et al., BMC Bioinformatics, 2008)

Influence of the number of known ligands



Screening of enzymes, GPCRs, ion channels

Data: KEGG BRITE database, redundancy removed

Enzymes

-675 targets -524 molecules -1218 interactions -1218 negatives

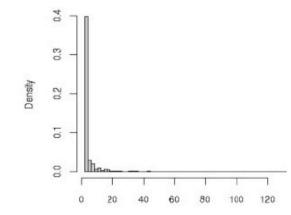
GPCRs

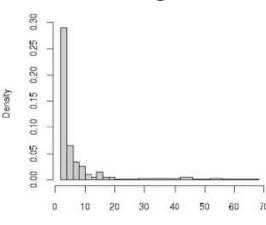
- -100 targets
- -219 molecules
- -399 interactions
 - -399 negatives

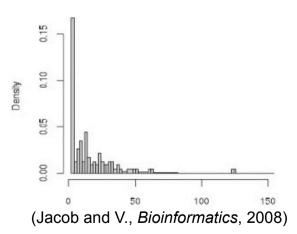
Ion channels

-114 targets

- -462 molecules
- -1165 interactions
- -1165 negatives





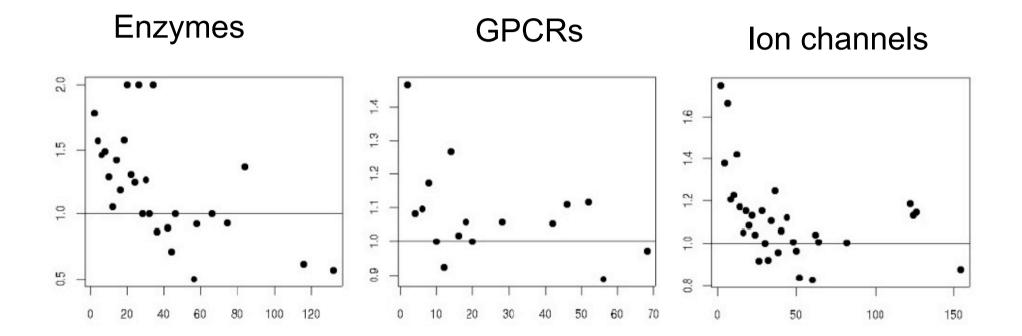


Results (mean AUC)

	$K_{tar} \setminus \text{Target}$	Enzymes	GPCR	Channels
10-fold CV	Dirac	0.646 ± 0.009	0.750 ± 0.023	0.770 ± 0.020
	Multitask	0.931 ± 0.006	0.749 ± 0.022	0.873 ± 0.015
	Hierarchy	0.955 ± 0.005	0.926 ± 0.015	0.925 ± 0.012
	Mismatch	0.725 ± 0.009	0.805 ± 0.023	0.875 ± 0.015
	Local alignment	0.676 ± 0.009	0.824 ± 0.021	0.901 ± 0.013
	$K_{tar} \setminus \text{Target}$	Enzymes	GPCR	Channels
	5 <u>11</u>			
	Dirac	0.500 ± 0.000	0.500 ± 0.000	0.500±0.000
Orphan setting	Dirac Multitask	0.500 ± 0.000 0.902 ± 0.008	0.500 ± 0.000 0.576 ± 0.026	
Orphan setting				0.500 ± 0.000
Orphan setting	Multitask	0.902 ± 0.008	0.576 ± 0.026	0.500 ± 0.000 0.704 ± 0.026

(Jacob and V., Bioinformatics, 2008)

Influence of the number of known ligands



Relative improvement : hierarchy vs Dirac

(Jacob and V., Bioinformatics, 2008)

Conclusion

- SVM offer state-of-the-art performance in many chemo- and bio-informatics applications
- The kernel trick is useful to
 - Work implicitly with many features without computing them (2D fragment kernels)
 - Work with similarity measures that cannot be derived from descriptors (optimal alignment kernel)
 - Relax the need for **discretization** (3D pharmacophore kernel)
 - Work in a **product space** (*chemogenomics*)
- Promising direction:
 - More kernels / Multiple kernel learning
 - Collaborative filtering in product space

Thank you !

Collaborators: P. Mahé, L. Jacob, V. Stoven, B. Hoffmann

References: http://cbio.ensmp.fr/~jvert

Open-source kernels for chemoinformatics: http://chemcpp.sourceforge.net