Including prior knowledge in shrinkage classifiers for genomic data

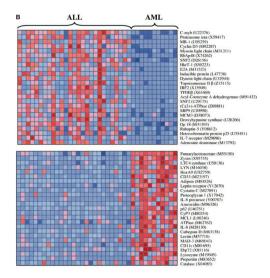
Jean-Philippe Vert

Jean-Philippe.Vert@mines-paristech.fr

Mines ParisTech / Curie Institute / Inserm

Statistical Genomics in Biomedical Research BIRS workshop, Banff, Canada, July 18-23, 2010.

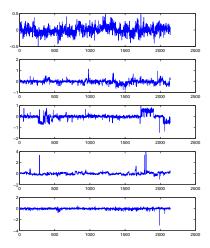
Cancer diagnosis

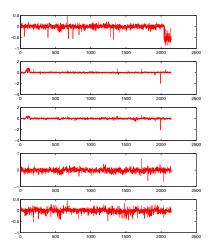


Jean-Philippe Vert (ParisTech)

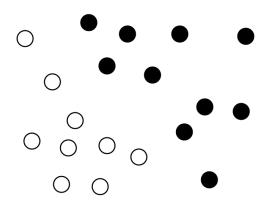
BIRS workshop, Banff 2 / 38

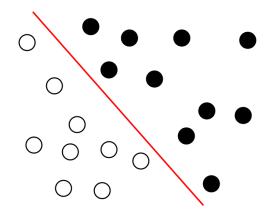
Cancer prognosis

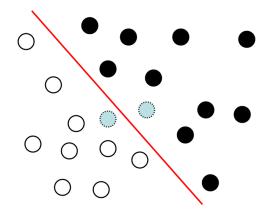


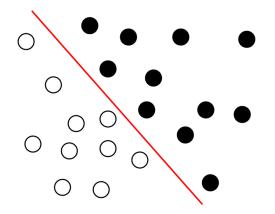


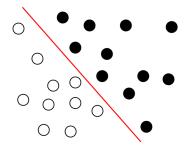
Jean-Philippe Vert (ParisTech)











Challenges

- High dimension
- Few samples
- Structured data
- Heterogeneous data
- Prior knowledge
- Fast and scalable implementations
- Interpretable models

Shrinkage estimators

The problem

- Focus on a large family of classifiers, e.g., linear predictors $f_{\beta}(x) = \beta^{\top} x$
- For any candidate β quantify how "good" the linear function f_β is on the training set with some empirical risk, e.g.:

$$R(\beta) = \frac{1}{n} \sum_{i=1}^{n} l(f_{\beta}(x_i), y_i).$$

 Choose β that achieves the minimium empirical risk, subject to some constraint:

 $\min_{\beta} R(\beta)$ subject to $\Omega(\beta) \leq C$.

$$\min_{\beta} R(\beta)$$
 subject to $\Omega(\beta) \leq C$

- $\Omega(\beta)$ constrains the solution, "increases bias and decreases variance"
- Common choices are
 - Ω(β) = Σ^p_{i=1} β²_i (ridge regression, SVM, ...)
 Ω(β) = Σ^p_{i=1} | β_i | (lasso, boosting, ...)
- How to select/design $\Omega(\beta)$ for a specific problem?
- Idea: use prior knowledge to have "good guesses" in the constraint set ("do not increase bias too much")

Cancer prognosis from DNA copy number variations

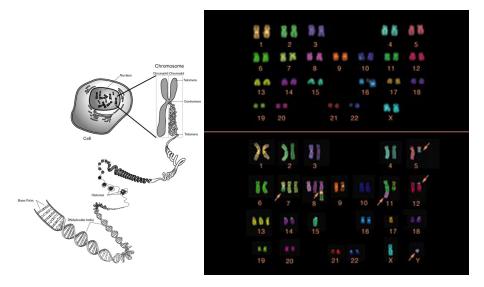
2 Diagnosis and prognosis from gene expression data

Cancer prognosis from DNA copy number variations

Diagnosis and prognosis from gene expression data

3 Conclusion

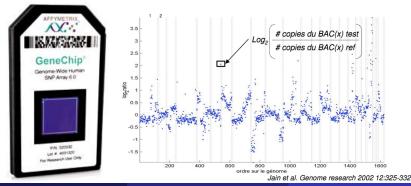
Chromosomic aberrations in cancer



Comparative Genomic Hybridization (CGH)

Motivation

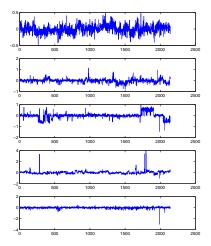
- Comparative genomic hybridization (CGH) data measure the DNA copy number along the genome
- Very useful, in particular in cancer research
- Can we classify CGH arrays for diagnosis or prognosis purpose?

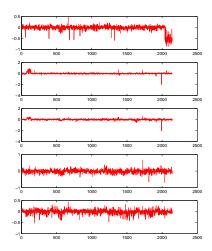


Jean-Philippe Vert (ParisTech)

Shrinkage classifiers for genomic data

Aggressive vs non-aggressive melanoma





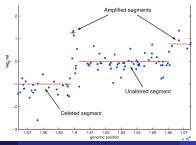
CGH array classification

Prior knowledge

• For a CGH profile $x \in \mathbb{R}^{p}$, we focus on linear classifiers, i.e., the sign of :

$$f_{\beta}(\mathbf{x}) = \beta^{\top} \mathbf{x}$$
.

- We expect β to be
 - sparse : not all positions should be discriminative
 - piecewise constant : within a selected region, all probes should contribute equally

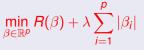


Shrinkage classifiers for genomic data

Promoting sparsity with the ℓ_1 penalty

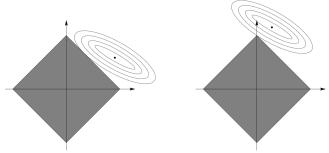
The ℓ_1 penalty (Tibshirani, 1996; Chen et al., 1998)

The solution of



is usually sparse.

Geometric interpretation with p=2



Promoting piecewise constant profiles penalty

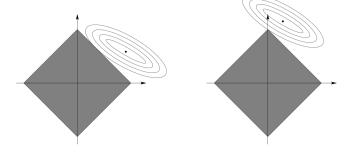
The variable fusion penalty (Land and Friedman, 1996)

The solution of

$$\min_{\beta \in \mathbb{R}^p} R(\beta) + \lambda \sum_{i=1}^{p-1} |\beta_{i+1} - \beta_i|$$

is usually piecewise constant.

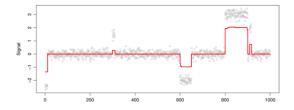
Geometric interpretation with p=2



Fused Lasso signal approximator (Tibshirani et al., 2005)

$$\min_{\beta \in \mathbb{R}^p} \sum_{i=1}^p (y_i - \beta_i)^2 + \lambda_1 \sum_{i=1}^p |\beta_i| + \lambda_2 \sum_{i=1}^{p-1} |\beta_{i+1} - \beta_i|.$$

- First term leads to sparse solutions
- Second term leads to piecewise constant solutions



Fused lasso for supervised classification (Rapaport et al., 2008)

$$\min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n \ell\left(y_i, \beta^\top x_i\right) + \lambda_1 \sum_{i=1}^p |\beta_i| + \lambda_2 \sum_{i=1}^{p-1} |\beta_{i+1} - \beta_i|.$$

where ℓ is, e.g., the hinge loss $\ell(y, t) = max(1 - yt, 0).$

Implementation

- When ℓ is the hinge loss (fused SVM), this is a linear program -> up to $p = 10^3 \sim 10^4$
- When ℓ is convex and smooth (logistic, quadratic), efficient implementation with proximal methods -> up to $p = 10^8 \sim 10^9$

Fused lasso for supervised classification (Rapaport et al., 2008)

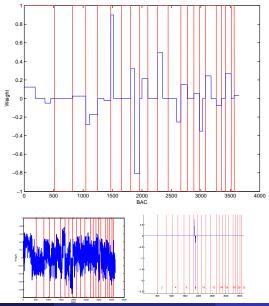
$$\min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n \ell\left(y_i, \beta^\top x_i\right) + \lambda_1 \sum_{i=1}^p |\beta_i| + \lambda_2 \sum_{i=1}^{p-1} |\beta_{i+1} - \beta_i|.$$

where ℓ is, e.g., the hinge loss $\ell(y, t) = max(1 - yt, 0).$

Implementation

- When ℓ is the hinge loss (fused SVM), this is a linear program -> up to $p = 10^3 \sim 10^4$
- When ℓ is convex and smooth (logistic, quadratic), efficient implementation with proximal methods -> up to $p = 10^8 \sim 10^9$

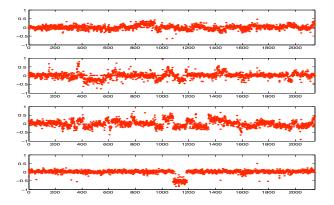
Example: predicting metastasis in melanoma



Jean-Philippe Vert (ParisTech)

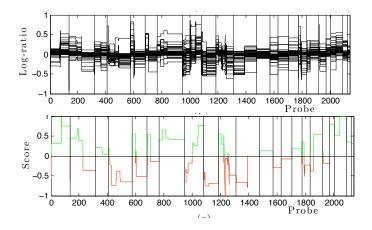
Shrinkage classifiers for genomic data

Extension: joint segmentation of many profiles



Fused group Lasso signal approximator

$$\min_{\beta \in \mathbb{R}^{n \times p}} \| \mathbf{Y} - \beta \|^2 + \lambda \sum_{i=1}^{p-1} \| \beta_{i+1} - \beta_i \|$$

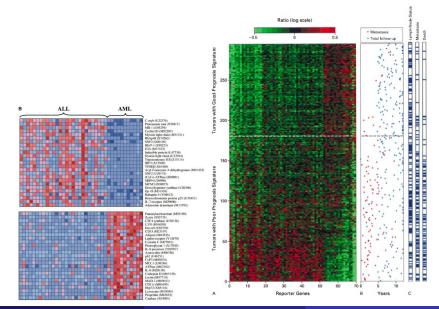


Cancer prognosis from DNA copy number variations

2 Diagnosis and prognosis from gene expression data

3 Conclusion

Molecular diagnosis / prognosis / theragnosis



Jean-Philippe Vert (ParisTech)

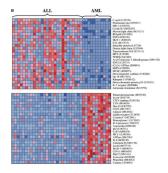
Shrinkage classifiers for genomic data

The idea

- We look for a limited set of genes that are sufficient for prediction.
- Equivalently, the linear classifier will be sparse

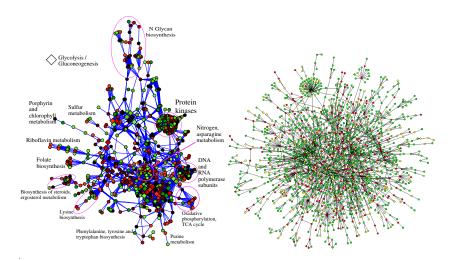
Why?

- Bet on sparsity: we believe the "true" model is sparse.
- Interpretation: we will get a biological interpretation more easily by looking at the selected genes.
- Satistics: this is one way to constrain the solution and reduce the complexity to allow learning.



Challenging the idea of gene signature

- We often observe little stability in the genes selected...
- Is gene selection the most biologically relevant hypothesis?
- What about thinking instead of "pathways" or "modules" signatures?



Prior hypothesis

Genes near each other on the graph should have similar weigths.

Two solutions (Rapaport et al., 2007, 2008)

$$egin{aligned} \Omega_{ extsf{spectral}}(eta) &= \sum_{i \sim j} (eta_i - eta_j)^2 \ , \ \Omega_{ extsf{graphfusion}}(eta) &= \sum_{i \sim j} |eta_i - eta_j| + \sum_i |eta_i| \end{aligned}$$

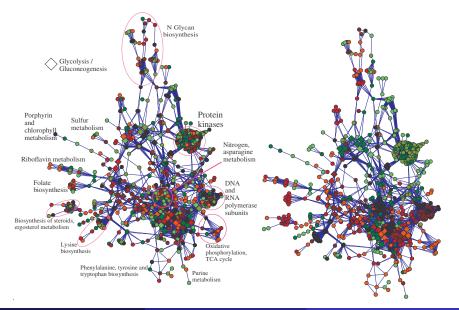
Prior hypothesis

Genes near each other on the graph should have similar weigths.

Two solutions (Rapaport et al., 2007, 2008)

$$egin{aligned} \Omega_{ extsf{spectral}}(eta) &= \sum_{i \sim j} (eta_i - eta_j)^2 \,, \ \Omega_{ extsf{graphfusion}}(eta) &= \sum_{i \sim j} |eta_i - eta_j| + \sum_i |eta_i| \,. \end{aligned}$$

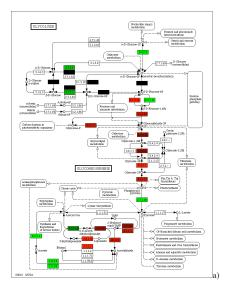
Classifiers

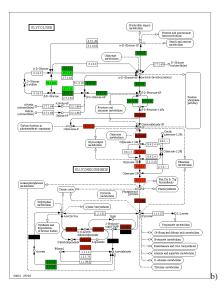


Jean-Philippe Vert (ParisTech)

Shrinkage classifiers for genomic data

Classifier



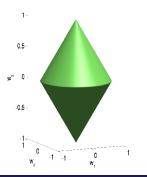


Selecting pre-defined groups of variables

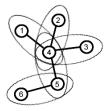
Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the ℓ_1/ℓ_2 -norm induces sparse solutions *at the group level*:

$$\Omega_{group}(w) = \sum_{g} \|w_g\|_2$$



$$\Omega(w_1, w_2, w_3) = \|(w_1, w_2)\|_2 + \|w_3\|_2$$

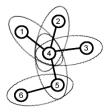


• Hypothesis: selected genes should form connected components on the graph

• Two solutions (Jacob et al., 2009):

$$\Omega_{group}(\beta) = \sum_{i \sim j} \sqrt{\beta_i^2 + \beta_j^2} ,$$

Shrinkage classifiers for genomic data



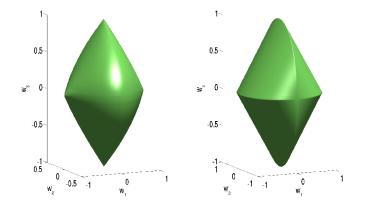
- Hypothesis: selected genes should form connected components on the graph
- Two solutions (Jacob et al., 2009):

C

$$\Omega_{group}(\beta) = \sum_{i \sim j} \sqrt{\beta_i^2 + \beta_j^2} ,$$

$$P_{overlap}(\beta) = \sup_{\alpha \in \mathbb{R}^p: \forall i \sim j, ||\alpha_i^2 + \alpha_i^2|| \le 1} \alpha^\top \beta$$

Overlap and group unity balls



Balls for $\Omega_{\text{group}}^{\mathcal{G}}(\cdot)$ (middle) and $\Omega_{\text{overlap}}^{\mathcal{G}}(\cdot)$ (right) for the groups $\mathcal{G} = \{\{1, 2\}, \{2, 3\}\}$ where w_2 is represented as the vertical coordinate.

• Graph lasso:

$$\Omega_{ ext{graph lasso}}(extbf{w}) = \sum_{i \sim j} \sqrt{ extbf{w}_i^2 + extbf{w}_j^2} \,.$$

constrains the sparsity, not the values

Graph kernel

$$\Omega_{ ext{graph kernel}}(extbf{w}) = \sum_{i \sim j} (extbf{w}_i - extbf{w}_j)^2 \,.$$

constrains the values (smoothness), not the sparsity

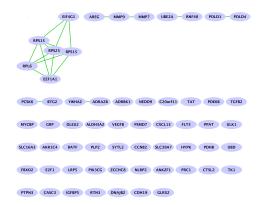
Breast cancer data

- Gene expression data for 8, 141 genes in 295 breast cancer tumors.
- Canonical pathways from MSigDB containing 639 groups of genes, 637 of which involve genes from our study.

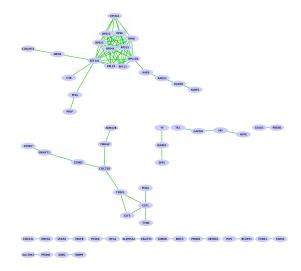
Метнор	ℓ_1	$\Omega_{\text{overlap}}^{\mathcal{G}}\left(. ight)$
Error	$\textbf{0.38} \pm \textbf{0.04}$	$\textbf{0.36} \pm \textbf{0.03}$
Mean ♯ path.	130	30

• Graph on the genes.

Метнор	ℓ_1	$\Omega_{graph}(.)$
Error	0.39 ± 0.04	0.36 ± 0.01
AV. SIZE C.C.	1.03	1.30



Graph Lasso signature



Cancer prognosis from DNA copy number variations

Diagnosis and prognosis from gene expression data

- Modern machine learning methods for regression / classification lend themselves well to the integration of prior knowledge in the penalization / regularization function.
- Several computationally efficient approaches (structured LASSO, kernels...)
- Tight collaborations with domain experts can help develop specific learning machines for specific data
- Natural extensions for data integration

People I need to thank

Franck Rapaport (now MSKCC), Emmanuel Barillot, Andrei Zynoviev Kevin Bleakley, Anne-Claire Haury(Institut Curie / ParisTech), Laurent Jacob (UC Berkeley) Guillaume Obozinski (INRIA)