Multiple change-points detection in multiple signal

Kevin Bleakley and Jean-Philippe Vert

Mines ParisTech / Curie Institute / Inserm

Mathematical Statistics and Applications Workshop, Fréjus, France, Sep 2,2010.

Multiple change-points detection in 1 signal

Multiple change-points detection in 1 signal

Multiple change-points detection in many signals

Multiple change-points detection in many signals

Why we care?

- Joint segmentation should increase the statistical power
- Applications:
- multi-dimensional signals (multimedia, sensors...)
- genomic profiles

Chromosomic aberrations in cancer

Comparative Genomic Hybridization (CGH)

Jain et al. Genome research 2002 12:325-332

A collection of bladder tumours

Typical applications

- Find frequent breakpoints in a collection of tumours (fusion genes...)
- Low-dimensional summary and visualization of the set of profiles

- Detection of frequently altered regions

What we want

(1) An algorithm that scales in time and memory to

- Profiles length: $n=10^{6} \sim 10^{9}$
- Number of profiles (dimension): $p=10^{2} \sim 10^{3}$
- Number of change-points: $k=10^{2} \sim 10^{3}$
(2) A method with good statistical properties when p increases for n fixed (opposite to most existing litterature).

Segmentation by dynamic programming

- $Y \in \mathbb{R}^{n \times p}$ the signals
- Define a piecewise constant approximation $\hat{U} \in \mathbb{R}^{n \times p}$ of Y with k change-points as the solution of

$$
\min _{U \in \mathbb{R}^{n \times p}}\|Y-U\|^{2} \quad \text { such that } \quad \sum_{i=1}^{n-1} \mathbf{1}\left(U_{i+1, \bullet} \neq U_{i, \bullet}\right) \leq k
$$

- DP finds the solution in $O\left(n^{2} k p\right)$ in time and $O\left(n^{2}\right)$ in memory
- Does not scale to $n=10^{6} \sim 10^{9}$...

TV approximator for a single signal $(p=1)$

- Replace

$$
\min _{U \in \mathbb{R}^{n}}\|Y-U\|^{2} \quad \text { such that } \quad \sum_{i=1}^{n-1} \mathbf{1}\left(U_{i+1} \neq U_{i}\right) \leq k
$$

by

$$
\min _{U \in \mathbb{R}^{n}}\|Y-U\|^{2} \quad \text { such that } \quad \sum_{i=1}^{n-1}\left|U_{i+1}-U_{i}\right| \leq \mu
$$

- An instance of total variation penalty (Rudin et al., 1992)
- Convex problem, fast implementations in $O(n K)$ or $O(n \log n)$ (Friedman et al., 2007; Harchaoui and Levy-Leduc, 2008; Hoefling, 2009)

TV approximator for many signals

- Replace

$$
\min _{U \in \mathbb{R}^{n \times p}}\|Y-U\|^{2} \quad \text { such that } \quad \sum_{i=1}^{n-1} \mathbf{1}\left(U_{i+1, \bullet} \neq U_{i, \bullet}\right) \leq k
$$

by

$$
\min _{U \in \mathbb{R}^{n \times p}}\|Y-U\|^{2} \quad \text { such that } \quad \sum_{i=1}^{n-1} w_{i}\left\|U_{i+1, \bullet}-U_{i, \bullet}\right\| \leq \mu
$$

Questions

- Practice: can we solve it efficiently?
- Theory: does it benefit from increasing p (for n fixed)?

TV approximator as a group Lasso problem

- Make the change of variables:

$$
\begin{aligned}
\gamma & =U_{1, \bullet} \\
\beta_{i, \bullet} & =w_{i}\left(U_{i+1, \bullet}-U_{i, \bullet}\right) \quad \text { for } i=1, \ldots, n-1 .
\end{aligned}
$$

- TV approximator is then equivalent to the following group Lasso problem (Yuan and Lin, 2006):

$$
\min _{\beta \in \mathbb{R}^{(n-1) \times p}}\|\bar{Y}-\bar{X} \beta\|^{2}+\lambda \sum_{i=1}^{n-1}\left\|\beta_{i, \bullet}\right\|,
$$

where \bar{Y} is the centered signal matrix and \bar{X} is a particular $(n-1) \times(n-1)$ design matrix.

TV approximator implementation

$$
\min _{\beta \in \mathbb{R}^{(n-1) \times p}}\|\bar{Y}-\bar{X} \beta\|^{2}+\lambda \sum_{i=1}^{n-1}\left\|\beta_{i, \bullet}\right\|,
$$

Theorem

The TV approximator can be solved efficiently:

- approximately with the group LARS in $O(n p k)$ in time and $O(n p)$ in memory
- exactly with a block coordinate descent + active set method in $O(n p)$ in memory

Proof: computational tricks...

Although \bar{X} is $(n-1) \times(n-1)$:

- For any $R \in \mathbb{R}^{n \times p}$, we can compute $C=\bar{X}^{\top} R$ in $O(n p)$ operations and memory
- For any two subset of indices $A=\left(a_{1}, \ldots, a_{|A|}\right)$ and $B=\left(b_{1}, \ldots, b_{|B|}\right)$ in $[1, n-1]$, we can compute $\bar{X}_{\bullet, A}^{\top} \bar{X}_{\bullet, B}$ in $O(|A||B|)$ in time and memory
- For any $A=\left(a_{1}, \ldots, a_{|A|}\right)$, set of distinct indices with $1 \leq a_{1}<\ldots<a_{|A|} \leq n-1$, and for any $|A| \times p$ matrix R, we can compute $C=\left(\bar{X}_{\bullet, A}^{\top} \bar{X}_{\bullet, A}\right)^{-1} R$ in $O(|A| p)$ in time and memory

Consistency for a single change-point

Suppose a single change-point:

- at position $u=\alpha n$
- with increments $\left(\beta_{i}\right)_{i=1, \ldots, p}$ s.t. $\bar{\beta}^{2}=\lim _{k \rightarrow \infty} \frac{1}{p} \sum_{i=1}^{k} \beta_{i}^{2}$
- corrupted by i.i.d. Gaussian noise of variance σ^{2}

Does the TV approximator correctly estimate the first change-point as p increases?

Consistency of the unweighted TV approximator

$$
\min _{U \in \mathbb{R}^{n \times p}}\|Y-U\|^{2} \quad \text { such that } \sum_{i=1}^{n-1}\left\|U_{i+1, \bullet}-U_{i, \bullet}\right\| \leq \mu
$$

Theorem

The unweighted TV approximator finds the correct change-point with probability tending to 1 (resp. 0) as $p \rightarrow+\infty$ if $\sigma^{2}<\tilde{\sigma}_{\alpha}^{2}$ (resp. $\sigma^{2}>\tilde{\sigma}_{\alpha}^{2}$), where

$$
\tilde{\sigma}_{\alpha}^{2}=n \bar{\beta}^{2} \frac{(1-\alpha)^{2}\left(\alpha-\frac{1}{2 n}\right)}{\alpha-\frac{1}{2}-\frac{1}{2 n}}
$$

- correct estimation on $[n \epsilon, n(1-\epsilon)]$ with $\epsilon=\sqrt{\frac{\sigma^{2}}{2 n \bar{\beta}^{2}}}+O\left(n^{-1 / 2}\right)$.
- wrong estimation near the boundaries

Consistency of the weighted TV approximator

$$
\min _{U \in \mathbb{R}^{n \times p}}\|Y-U\|^{2} \quad \text { such that } \quad \sum_{i=1}^{n-1} w_{i}\left\|U_{i+1, \bullet}-U_{i, \bullet}\right\| \leq \mu
$$

Theorem

The weighted TV approximator with weights

$$
\forall i \in[1, n-1], \quad w_{i}=\sqrt{\frac{i(n-i)}{n}}
$$

correctly finds the first change-point with probability tending to 1 as $p \rightarrow+\infty$.

- we see the benefit of increasing p
- we see the benefit of adding weights to the TV penalty

Proof sketch

- The first change-point \hat{i} found by TV approximator maximizes $F_{i}=\left\|\hat{c}_{i, \bullet}\right\|^{2}$, where

$$
\hat{c}=\bar{X}^{\top} \bar{Y}=\bar{X}^{\top} \bar{X} \beta^{*}+\bar{X}^{\top} W .
$$

- \hat{c} is Gaussian, and F_{i} is follows a non-central χ^{2} distribution with

$$
G_{i}=\frac{E F_{i}}{p}=\frac{i(n-i)}{n w_{i}^{2}} \sigma^{2}+\frac{\bar{\beta}^{2}}{w_{i}^{2} w_{u}^{2} n^{2}} \times \begin{cases}i^{2}(n-u)^{2} & \text { if } i \leq u \\ u^{2}(n-i)^{2} & \text { otherwise }\end{cases}
$$

- We then just check when $G_{u}=\max _{i} G_{i}$

Consistent estimation of more change-points?

$n=100, k=10, \bar{\beta}^{2}=1, \sigma^{2} \in\{0.05 ; 0.2 ; 1\}$

Conclusion

- A new convex formulation for multiple change-point detection in multiple signals
- Better estimation with more signals
- Importance of weights
- Efficient approximate (gLARS) and exact (gLASSO) implementations; GLASSO more expensive but more accurate
- Consistency for the first $K>1$ change-points observed experimentally but technically tricky to prove.

