Lecture 2: Inference of missing edges in biological networks

Jean-Philippe Vert

Mines ParisTech / Curie Institute / Inserm
Paris, France
"Optimization, machine learning and bioinformatics" summer school, Erice, Sep 9-16, 2010.

Outline

(9) Introduction
(2) De novo vs supervised methods
(3) Supervised methods for pairs
(4) Learning with local models
(5) From local models to pairwise kernels
(6) Experiments
(7) Conclusion

Proteins

Network 1: protein-protein interaction

Network 2: metabolic network

Network 3: gene regulatory network

Data available

Biologists have collected a lot of data about proteins. e.g.,

- Gene expression measurements
- Phylogenetic profiles
- Location of proteins/enzymes in the cell

How to use this information "intelligently" to find a good function that predicts edges between nodes.

Our goal

More precisely

Formalization

- $\mathcal{V}=\{1, \ldots, N\}$ vertices (e.g., genes, proteins)
- $\mathcal{D}=\left(x_{1}, \ldots, x_{N}\right) \in \mathcal{H}^{N}$ data about the vertices (H Hilbert space)
- Goal: predict edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$.

"De novo" inference
 - Given data about individual genes and proteins \mathcal{D},
 - ... Infer the edges between genes and proteins \mathcal{E}

"Supervised" inference

- Given data about individual genes and proteins D
- ... and given some known interactions $\mathcal{E}_{\text {train }} \subset \mathcal{E}, \ldots$
- ... infer unknown interactions $\mathcal{E}_{\text {test }}=\mathcal{E} \backslash \mathcal{E}_{\text {train }}$

More precisely

Formalization

- $\mathcal{V}=\{1, \ldots, N\}$ vertices (e.g., genes, proteins)
- $\mathcal{D}=\left(x_{1}, \ldots, x_{N}\right) \in \mathcal{H}^{N}$ data about the vertices (H Hilbert space)
- Goal: predict edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$.
"De novo" inference
- Given data about individual genes and proteins \mathcal{D}, \ldots
- ... Infer the edges between genes and proteins \mathcal{E}

'Supervised" inference

- Given data about individual genes and proteins \mathcal{D}
- ... and given some known interactions $\mathcal{E}_{\text {train }} \subset \mathcal{E}$
- ... infer unknown interactions $\mathcal{E}_{\text {test }}=\mathcal{E} \backslash \mathcal{E}_{\text {train }}$

More precisely

Formalization

- $\mathcal{V}=\{1, \ldots, N\}$ vertices (e.g., genes, proteins)
- $\mathcal{D}=\left(x_{1}, \ldots, x_{N}\right) \in \mathcal{H}^{N}$ data about the vertices $(\mathcal{H}$ Hilbert space $)$
- Goal: predict edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$.
"De novo" inference
- Given data about individual genes and proteins \mathcal{D}, \ldots
- ... Infer the edges between genes and proteins \mathcal{E}

"Supervised" inference

- Given data about individual genes and proteins \mathcal{D}, \ldots
- ... and given some known interactions $\mathcal{E}_{\text {train }} \subset \mathcal{E}, \ldots$
- ... infer unknown interactions $\mathcal{E}_{\text {test }}=\mathcal{E} \backslash \mathcal{E}_{\text {train }}$

Outline

(1) Introduction

(2) De novo vs supervised methods
(3) Supervised methods for pairs

4 Learning with local models
(5) From local models to pairwise kernels

6 Experiments
(7) Conclusion

De novo methods

Typical strategies

- Fit a dynamical system to time series (e.g., PDE, boolean networks, state-space models)
- Detect statistical conditional independence or dependency (Bayesian netwok, mutual information networks, co-expression)

Pros

- Fxcellent approach if the
model is correct and
enough data are available
- Internretability of the model
- Inclusion of prior
knowledge

Cons

- Snecific to particular data and networks
- Needs a correct model!
- Difficult integration of heterogeneous data
- Often needs a lot of data
and long computation time

De novo methods

Typical strategies

- Fit a dynamical system to time series (e.g., PDE, boolean networks, state-space models)
- Detect statistical conditional independence or dependency (Bayesian netwok, mutual information networks, co-expression)

Pros

- Excellent approach if the model is correct and enough data are available
- Interpretability of the model
- Inclusion of prior knowledge

Cons

- Specific to particular data and networks
- Needs a correct model!
- Difficult integration of heterogeneous data
- Often needs a lot of data and long computation time

Evaluation on metabolic network reconstruction

- The known metabolic network of the yeast involves 769 proteins.
- Predict edges from distances between a variety of genomic data (expression, localization, phylogenetic profiles, interactions).

Evaluation on regulatory network reconstruction

Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles

Jeremiah J. Faith ${ }^{10}$, Boris Hayete ${ }^{10}$, Joshua T. Thaden ${ }^{2,3}$, Ilaria Mogno ${ }^{2,4}$, Jamey Wierzbowski ${ }^{2,5}$, Guillaume Cottarel ${ }^{2,5}$, Simon Kasif ${ }^{1,2}$, James J. Collins ${ }^{1,2}$, Timothy S. Gardner ${ }^{1,2^{*}}$

Supervised methods

Motivation

In actual applications,

- we know in advance parts of the network to be inferred
- the problem is to add/remove nodes and edges using genomic data as side information

Supervised method

- Given genomic data and the currently known network...
- Infer missing edges between current nodes and additional nodes.

Pattern recognition

- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

Pattern recognition

- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

Pattern recognition

- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

Pattern recognition

- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

Pattern recognition and graph inference

Pattern recognition

Associate a binary label Y to each data X

Graph inference

Associate a binary label Y to each pair of data $\left(X_{1}, X_{2}\right)$

Two solutions

- Consider each pair $\left(X_{1}, X_{2}\right)$ as a single data -> learning over pairs
- Reformulate the graph inference problem as a pattern recognition problem at the level of individual vertices -> local models

Pattern recognition and graph inference

Pattern recognition

Associate a binary label Y to each data X
Graph inference
Associate a binary label Y to each pair of data $\left(X_{1}, X_{2}\right)$

Two solutions

- Consider each pair $\left(X_{1}, X_{2}\right)$ as a single data -> learning over pairs
- Reformulate the graph inference problem as a pattern recognition problem at the level of individual vertices $->$ local models

Outline

(9) Introduction

(2) De novo vs supervised methods
(3) Supervised methods for pairs
(4) Learning with local models
(5) From local models to pairwise kernels
(6) Experiments
(7) Conclusion

Pattern recognition for pairs: basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!

Pattern recognition for pairs: basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!

Known graph

Genomic data

Pattern recognition for pairs: basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!

Known graph

Genomic data

Representing a pair as a vector

- Each individual protein is represented by a vector $v \in \mathbb{R}^{p}$
- Depending on the network, we are interested in ordered or unordered pairs of proteins.
- We must represent a pair of proteins (u, v) by a vector $\psi(u, v) \in \mathbb{R}^{q}$ in order to estimate a linear classifier
- Question: how build $\psi(u, v)$ from u and v, in the ordered and unordered cases?

Direct sum for ordered pairs?

- A simple idea is to concatenate the vectors u and v to obtain a $2 p$-dimensional vector of (u, v) :

$$
\psi(u, v)=u \oplus v=\binom{u}{v} .
$$

- Problem: a linear function then becomes additive...

$$
f(u, v)=w^{\top} \psi(u, v)=w_{1}^{\top} u+w^{\top} v
$$

Direct sum for ordered pairs?

- A simple idea is to concatenate the vectors u and v to obtain a $2 p$-dimensional vector of (u, v) :

$$
\psi(u, v)=u \oplus v=\binom{u}{v} .
$$

- Problem: a linear function then becomes additive...

$$
f(u, v)=w^{\top} \psi(u, v)=w_{1}^{\top} u+w^{\top} v
$$

Direct product for ordered pairs

- Alternatively, make the direct product, i.e., the p^{2}-dimensional vector whose entries are all products of entries of u by entries of v :

$$
\psi(u, v)=u \otimes v
$$

- Problem: can get really large-dimensional...
- Good news: inner product factorizes:

which is good for algorithms that use only inner products (SVM...):

Direct product for ordered pairs

- Alternatively, make the direct product, i.e., the p^{2}-dimensional vector whose entries are all products of entries of u by entries of v :

$$
\psi(u, v)=u \otimes v
$$

- Problem: can get really large-dimensional...
- Good news: inner product factorizes:

which is good for algorithms that use only inner products (SVM...):

Direct product for ordered pairs

- Alternatively, make the direct product, i.e., the p^{2}-dimensional vector whose entries are all products of entries of u by entries of v :

$$
\psi(u, v)=u \otimes v
$$

- Problem: can get really large-dimensional...
- Good news: inner product factorizes:

$$
\left(u_{1} \otimes v_{1}\right)^{\top}\left(u_{2} \otimes v_{2}\right)=\left(u_{1}^{\top} u_{2}\right) \times\left(v_{1}^{\top} v_{2}\right)
$$

which is good for algorithms that use only inner products (SVM...):

$$
K_{P}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=\psi\left(u_{1}, v_{1}\right)^{\top} \psi\left(u_{2}, v_{2}\right)=K\left(u_{1}, u_{2}\right) K\left(v_{1}, v_{2}\right)
$$

Representing an unordered pair

- Often we want to work with unordered pairs, e.g., PPI network:

$$
\{u, v\}=\{(u, v),(v, u)\}
$$

- This suggest to symmetrize the representation of ordered pairs:

$$
\psi u^{\prime}(\{u, v\})=\psi(u, v)+\psi(v, u)
$$

- When $\psi(u, v)=u \otimes v$, this leads to the symmetric tensor product pairwise kernel (TPPK) (Ben-Hur and Noble, 2006):

Representing an unordered pair

- Often we want to work with unordered pairs, e.g., PPI network:

$$
\{u, v\}=\{(u, v),(v, u)\}
$$

- This suggest to symmetrize the representation of ordered pairs:

$$
\psi_{u}(\{u, v\})=\psi(u, v)+\psi(v, u)
$$

- When $\psi(u, v)=u \otimes v$, this leads to the symmetric tensor product pairwise kernel (TPPK) (Ben-Hur and Noble, 2006):

Representing an unordered pair

- Often we want to work with unordered pairs, e.g., PPI network:

$$
\{u, v\}=\{(u, v),(v, u)\}
$$

- This suggest to symmetrize the representation of ordered pairs:

$$
\psi_{u}(\{u, v\})=\psi(u, v)+\psi(v, u)
$$

- When $\psi(u, v)=u \otimes v$, this leads to the symmetric tensor product pairwise kernel (TPPK) (Ben-Hur and Noble, 2006):
$K_{T P P K}\left(\left\{u_{1}, v_{1}\right\},\left\{u_{2}, v_{2}\right\}\right)=K\left(u_{1}, u_{2}\right) K\left(v_{1}, v_{2}\right)+K\left(u_{1}, v_{2}\right) K\left(v_{1}, u_{2}\right)$

Another idea: metric learning

- For two vectors $u, v \in \mathcal{H}$ let the metric:

$$
d_{M}(u, v)=(u-v)^{\top} M(u-v) .
$$

- Can we learn the metric M such that, in the new metric, connected points are near each other, and non-connected points are far from each other?
- We consider the problem:

where I is a hinge loss to enforce:

Another idea: metric learning

- For two vectors $u, v \in \mathcal{H}$ let the metric:

$$
d_{M}(u, v)=(u-v)^{\top} M(u-v)
$$

- Can we learn the metric M such that, in the new metric, connected points are near each other, and non-connected points are far from each other?
- We consider the problem:

where I is a hinge loss to enforce:

Another idea: metric learning

- For two vectors $u, v \in \mathcal{H}$ let the metric:

$$
d_{M}(u, v)=(u-v)^{\top} M(u-v)
$$

- Can we learn the metric M such that, in the new metric, connected points are near each other, and non-connected points are far from each other?
- We consider the problem:

$$
\min _{M \geq 0} \sum_{i} I\left(u_{i}, v_{i}, y_{i}\right)+\lambda\|M\|_{\text {Frobenius }}^{2}
$$

where I is a hinge loss to enforce:

$$
d_{M}\left(u_{i}, v_{i}\right) \begin{cases}\leq 1-\gamma & \text { if }\left(u_{i}, v_{i}\right) \text { is connected } \\ \geq 1+\gamma & \text { otherwise }\end{cases}
$$

Link with metric learning

Theorem (V. et al., 2007)

- A SVM with the representation

$$
\psi(\{u, v\})=(u-v)^{\otimes 2}
$$

trained to discriminate connected from non-connected pairs, solves this metric learning problem without the constraint $M \geq 0$.

- Equivalently, train the SVM over pairs with the metric learning pairwise kernel:

$$
\begin{aligned}
& K_{M L P K}\left(\left\{u_{1}, v_{1}\right\},\left\{u_{2}, v_{2}\right\}\right)=\psi\left(\left\{u_{1}, v_{1}\right\}\right)^{\top} \psi\left(\left\{u_{2}, v_{2}\right\}\right) \\
& \quad=\left[K\left(u_{1}, u_{2}\right)-K\left(u_{1}, v_{2}\right)-K\left(v_{1}, u_{2}\right)+K\left(u_{2}, v_{2}\right)\right]^{2}
\end{aligned}
$$

Outline

(9) Introduction

(2) De novo vs supervised methods
(3) Supervised methods for pairs
(4) Learning with local models
(5) From local models to pairwise kernels

6 Experiments
(7) Conclusion

The idea (Bleakley et al., 2007)

- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.

The idea (Bleakley et al., 2007)

- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.

The LOCAL model

The LOCAL model

The LOCAL model

The LOCAL model

The LOCAL model

The LOCAL model

The LOCAL model

The LOCAL model

The LOCAL model

The LOCAL model

The LOCAL model

The LOCAL model

The LOCAL model

The LOCAL model

The LOCAL model

A few remarks

- In the case of unordered interactions, we need to symmetrize the prediction, typically by averaging the predictive scores of $A \rightarrow B$ and $B \rightarrow A$ to predict the interaction $\{A, B\}$
- if A is connected to B,
- if C is similar to B,
- then A is likely to be connected to C .
- Computationally: much faster to train N local models with N training points each, than to train 1 model with N^{2} training points.
- each local model may have very few training points
- no sharing of information between different local models

A few remarks

- In the case of unordered interactions, we need to symmetrize the prediction, typically by averaging the predictive scores of $A \rightarrow B$ and $B \rightarrow A$ to predict the interaction $\{A, B\}$
- Weak hypothesis:
- if A is connected to B,
- if C is similar to B,
- then A is likely to be connected to C .
- Computationally: much faster to train N local models with N training points each, than to train 1 model with N^{2} training points.
- each local model may have very few training points
- no sharing of information between different local models

A few remarks

- In the case of unordered interactions, we need to symmetrize the prediction, typically by averaging the predictive scores of $A \rightarrow B$ and $B \rightarrow A$ to predict the interaction $\{A, B\}$
- Weak hypothesis:
- if A is connected to B,
- if C is similar to B,
- then A is likely to be connected to C .
- Computationally: much faster to train N local models with N training points each, than to train 1 model with N^{2} training points.
- each local model may have very few training points
\square

A few remarks

- In the case of unordered interactions, we need to symmetrize the prediction, typically by averaging the predictive scores of $A \rightarrow B$ and $B \rightarrow A$ to predict the interaction $\{A, B\}$
- Weak hypothesis:
- if A is connected to B,
- if C is similar to B,
- then A is likely to be connected to C .
- Computationally: much faster to train N local models with N training points each, than to train 1 model with N^{2} training points.
- Caveats:
- each local model may have very few training points
- no sharing of information between different local models

Outline

(9) Introduction

(2) De novo vs supervised methods
(3) Supervised methods for pairs
(4) Learning with local models
(5) From local models to pairwise kernels
(6) Experiments
(7) Conclusion

Motivation

In the case of unordered pairs $\{A, B\}$, pairwise kernels such as the TPPK and local models look very different:

- Local models seem to over-emphasize the asymmetry of the relationships, but symmetrize the prediction a posteriori
- Pairwise kernels symmetrize the data a priori and learn in the space or unordered pairs
Can be clarify the links between these approaches, and perhaps interpolate between them?

Notations

- \mathcal{A} the set of individual proteins, endowed with a kernel $K_{\mathcal{A}}$
- $\mathcal{X}=\mathcal{A}^{2}$ the set of ordered pairs of the form $x=(a, b)$ endowed with a kernel $K_{\mathcal{X}}$ (usually deduced from $K_{\mathcal{A}}$)
- \mathcal{P} the set of unordered pairs of the form $p=\{(a, b),(b, a)\}$
- We want to learn over \mathcal{P} from a set of labeled training pairs $\left(p_{1}, y_{1}\right), \ldots,\left(p_{n}, y_{n}\right) \in \mathcal{P} \times\{-1,1\}$

Two strategies to learn over \mathcal{P}

Strategy 1: Inference over \mathcal{P} with a pair kernel

(1) Define a kernel $K_{\mathcal{P}}$ over \mathcal{P} by convolution of $K_{\mathcal{X}}$:

$$
K_{\mathcal{P}}\left(p, p^{\prime}\right)=\frac{1}{|p| \cdot\left|p^{\prime}\right|} \sum_{x \in p, x^{\prime} \in p^{\prime}} K_{\mathcal{X}}\left(x, x^{\prime}\right) .
$$

(2) Train a classifier over \mathcal{P} e.g., a SVM, using the kernel $K_{\mathcal{P}}$

Strategy 2: Inference over γ with a pair duplication
 (1) Duplicate each training pair $p=\{a, b\}$ into 2 ordered paired
 (2) Train a classifier over \mathcal{X}, e.g., a SVM, using the kernel $K_{\mathcal{X}}$
 (3) The classifier over \mathcal{P} is then the a posteriori average:

Two strategies to learn over \mathcal{P}

Strategy 1: Inference over \mathcal{P} with a pair kernel

(1) Define a kernel $K_{\mathcal{P}}$ over \mathcal{P} by convolution of $K_{\mathcal{X}}$:

$$
K_{\mathcal{P}}\left(p, p^{\prime}\right)=\frac{1}{|p| \cdot\left|p^{\prime}\right|} \sum_{x \in p, x^{\prime} \in p^{\prime}} K_{\mathcal{X}}\left(x, x^{\prime}\right) .
$$

(2) Train a classifier over \mathcal{P} e.g., a SVM, using the kernel $K_{\mathcal{P}}$

Strategy 2: Inference over \mathcal{X} with a pair duplication

(1) Duplicate each training pair $p=\{a, b\}$ into 2 ordered paired
(2) Train a classifier over \mathcal{X}, e.g., a SVM, using the kernel $K_{\mathcal{X}}$
(3) The classifier over \mathcal{P} is then the a posteriori average:

$$
f_{\mathcal{P}}(p)=\frac{1}{|p|} \sum_{x \in p} f_{\mathcal{X}}(x)
$$

The TPPK kernel

$$
K_{T P P K}(\{a, b\},\{c, d\})=K_{\mathcal{A}}(a, c) K_{\mathcal{A}}(b, d)+K_{\mathcal{A}}(a, d) K_{\mathcal{A}}(b, c) .
$$

Theorem

Let $\mathcal{X}=\mathcal{A}^{2}$ be endowed with the p.d. kernel:

$$
\begin{equation*}
K_{\mathcal{X}}((a, b),(c, d))=2 K_{\mathcal{A}}(a, c) K_{\mathcal{A}}(b, d) \tag{1}
\end{equation*}
$$

Then the TPPK approach is equivalent to both Strategy 1 and Strategy 2.

Remarks: Equivalence with Strategy 1 is obvious, equivalence with Strategy 2 is not, see proof in Hue and V. (ICML 2010).

The local models

Theorem

Let $\mathcal{X}=\mathcal{A}^{2}$ be endowed with the p.d. kernel:

$$
K_{\mathcal{X}}((a, b),(c, d))=\delta(a, c) K_{\mathcal{A}}(b, d)
$$

where δ is the Kronecker kernel $(\delta(a, c)=1$ if $a=c, 0$ otherwise). Then the local approach is equivalent to Strategy 2.

Remarks: Strategies 1 and 2 are not equivalent with this kernel. In general, they are equivalent up to a modification in the loss function of the learning algorithm, see details in Hue and V. (ICML 2010)..

Interpolation between local model and TPPK

	Strategy 1: pair kernel	Strategy 2: duplication
$K_{\mathcal{X}}=K_{\mathcal{A}} \otimes K_{\mathcal{A}}$	TPPK	TPPK
$K_{\mathcal{X}}=\delta \otimes K_{\mathcal{A}}$	new	Local model

Interpolation between local model and TPPK

	Strategy 1: pair kernel	Strategy 2: duplication
$K_{\mathcal{X}}=K_{\mathcal{A}} \otimes K_{\mathcal{A}}$	TPPK	TPPK
$K_{\mathcal{X}}=\delta \otimes K_{\mathcal{A}}$	new	Local model

Interpolation:

$$
K_{\mathcal{X}}=\left((1-\lambda) K_{\mathcal{A}}+\lambda \delta\right) \otimes K_{\mathcal{A}}
$$

for $\lambda \in[0,1]$

Outline

(9) Introduction

(2) De novo vs supervised methods
(3) Supervised methods for pairs
(4) Learning with local models
(5) From local models to pairwise kernels
(6) Experiments
(7) Conclusion

Results: protein-protein interaction (yeast)

(from Bleakley et al., 2007)

Results: metabolic gene network (yeast)

(from Bleakley et al., 2007)

Results: regulatory network (E. coli)

Method	Recall at 60\%	Recall at 80\%
SIRENE	$\mathbf{4 4 . 5 \%}$	$\mathbf{1 7 . 6 \%}$
CLR	7.5%	5.5%
Relevance networks	4.7%	3.3%
ARACNe	1%	0%
Bayesian network	1%	0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)

Interpolation kernel

Table: Strategy and kernel realizing the maximum mean AUC for nine metabolic and protein-protein interaction networks experiments, with the kernel K^{λ} for $\lambda \in[0,1]$.

benchmark	best kernel
interaction, exp	Duplicate, $\lambda=0.7$
interaction, loc	Pair kernel, $\lambda=0.6$
interaction, phy	Duplicate, $\lambda=0.8$
interaction, y2h	Duplicate / Pair kernel, $\lambda=0$
interaction, integrated	Duplicate / Pair kernel, $\lambda=0$
metabolic, exp	Pair kernel, $\lambda=0.6$
metabolic, loc	Pair kernel, $\lambda=1$
metabolic, phy	Pair kernel, $\lambda=0.6$
metabolic, integrated	Duplicate / Pair kernel, $\lambda=0$

Interpolation kernel

Metabolic networks with localization data (left); PPI network with expression data (right)

Applications: missing enzyme prediction

Prediction of missing enzyme genes in a bacterial metabolic network

Reconstruction of the lysine-degradation pathway of Pseudomonas aeruginosa

Yoshihiro Yamanishi ${ }^{1}$, Hisaaki Mihara ${ }^{2}$, Motoharu Osaki ${ }^{2}$, Hisashi Muramatsu ${ }^{3}$, Nobuyoshi Esaki ${ }^{2}$, Tetsuya Sato ${ }^{1}$, Yoshiyuki Hizukuri ${ }^{1}$, Susumu Goto ${ }^{1}$ and Minoru Kanehisa ${ }^{1}$

1 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan
2 Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Japan
3 Department of Biology, Graduate School of Science, Osaka University, Japan

Applications: missing enzyme prediction

Applications: missing enzyme prediction

Research Article

Prediction of nitrogen metabolism-related genes in Anabaena by kernel-based network analysis

Shinobu Okamoto ${ }^{\text {* }}$, Yoshihiro Yamanishi ${ }^{1}$, Shigeki Ehira ${ }^{2}$, Shuichi Kawashima ${ }^{3}$, Koichiro Tonomura ${ }^{1 * *}$ and Minoru Kanehisa ${ }^{1}$
${ }^{1}$ Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
${ }^{2}$ Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
${ }^{3}$ Human Genome Center, Institute of Medical Science, University of Tokyo, Meguro, Japan

Applications: function annotation

Determination of the role of the bacterial peptidase PepF by statistical inference and further experimental validation

$$
\text { Liliana LOPEZ KLEINE }{ }^{1,2} \text {, Alain TRUBUIL }{ }^{1} \text {, Véronique MONNET }{ }^{2}
$$

${ }^{1}$ Unité de Mathématiques et Informatiques Appliquées. INRA Jouy en Josas 78352, France.
${ }^{2}$ Unité de Biochimie Bactérienne. INRA Jouy en Josas 78352, France.

Application: predicted regulatory network (E. coli)

Prediction at 60\% precision, restricted to transcription factors (from Mordelet and V., 2008).

Outline

(9) Introduction

(2) De novo vs supervised methods
(3) Supervised methods for pairs
(4) Learning with local models
(5) From local models to pairwise kernels
(6) Experiments
(7) Conclusion

Conclusion

- When the network is known in part, supervised methods are more adapted than unsupervised ones.
- A variety of methods have been investigated recently (metric learning, matrix completion, pattern recognition).
- work for any network
- work with any data
- can integrate heterogeneous data, which strongly improves performance
- Promising topic: infer edges simultaneously with global constraints on the graph?

People I need to thank

Yoshihiro Yamanishi, Minoru Kanehisa (Univ. Kyoto) Jian Qian, Bill Noble (Univ. Washington), Kevin Bleakley, Gerard Biau (Univ. Montpellier), Fantine Mordelet, Martial Hue (ParisTech)

