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e Reconstruction of regulatory networks
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De novo reconstruction based on sparse regression
Supervised reconstruction with one-class methods
Supervised inference with PU learning

upervised graph inference
Introduction
Supervised methods for pairs
Learning with local models
From local models to pairwise kernels
Experiments

e Expression data classification with gene networks
@ Motivation
@ Using gene networks as prior knowledge
@ Application
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Proteins

Aming Acid

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Methionine
E : Acide glutamique K : Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine
H : Histidine V : Thyrosine W : Tryptophane
| : Isoleucine S : Serine Q : Glutamine

D : Acide aspartique G : Glycine
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Protein annotation

Data available

@ Secreted proteins:
MASKATLLLAFTLLFATCTIARHQQRQQQQONQCQLQNIEA. . .
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL. . .

@ Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG. . .
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. . .
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP. .

Problem 1

Given a newly sequenced protein, is it secreted or not?
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Drug discovery
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Problem 2

Given a new candidate molecule, is it likely to be active?
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DNA — RNA — protein
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Tissue profiling with DNA chips
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B ALL AML

Problem 3

Given the expression profile of a leukemia, is it an acute lymphocytic or
myeloid leukemia (ALL or AML)?
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Use in prognosis

A Gene-Expression Profiling B St. Gallen Criteria
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Problem 4

Given the expression profile of a breast cancer, is the risk of relapse
within 5 years high?
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Gene network inference
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Problem 5
Given known interactions, can we infer new ones?
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Pattern recognition, aka supervised classification
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Pattern recognition, aka supervised classification

Challenges

@ High dimension
Few samples

@ Structured data

@ Heterogeneous data
@ Prior knowledge
°

Fast and scalable
implementations

Interpretable models
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Methods for pattern recognitions

Many methods!

@ Logistic regression
@ Nearest neighbours
@ Decision trees and random forests
@ Neural networks
°
°

Support vector machines (SVM)
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0 SVM and kernel methods

@ Linear SVM

e Kernels for biological sequences

e Kernels for graphs

e Reconstruction of regulatory networks
e Supervised graph inference

@ Expression data classification with gene networks
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Linear classifiers
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Linear classifiers
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Linear classifiers
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Linear classifiers
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Which one is better?
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The margin of a linear classifier
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The margin of a linear classifier
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Largest margin classifier (support vector machines)
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Support vectors
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More formally

@ The training set is a finite set of N data/class pairs:

S={,y1),---,(Xn, YN}
where X; c R and y; € {—1,1}.
@ We assume (for the moment) that the data are linearly separable,
i.e., that there exists (W, b) € RY x R such that:
w.Xi+b>0 ify, =1,
{VT/.)?,‘—i-b<0 if yj=-—1.
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How to find the largest separating hyperplane?

For a given linear classifier f(x) = w.X + b consider the "tube" defined
by the values —1 and +1 of the decision function:

X+b=0
W.X N \A
\\ W.X+b > +1
\
\\ [ )
o
O
w.x+b < -1 °
o ©O
w.x+b=+1
\ /
\,
O w.x+b \ '
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The margin is 2/||w||

Indeed, the points X; and x> satisfy:

W.)_(H +b=0,

By subtracting we get w.(X» — X;) = 1, and therefore:

N
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All training points should be on the right side of the

dotted line

For positive examples (y; = 1) this means:
w.X; + b > 1
For negative examples (y; = —1) this means:
w.X +b< —1
Both cases are summarized by:

Vi=1,...,N, y,(VT/)?,—I—b)Z‘I
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Finding the optimal hyperplane

Find (w, b) which minimize:

under the constraints:

Vi=1,...,N, y(WX+b)—1>0.

This is a classical quadratic program on R9+1.
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In order to minimize:
1. 2.0
|||

2
under the constraints:

Vi=1,...,N,  y(WX+b)—1>0.

we introduce one dual variable «; for each constraint, i.e., for each
training point. The Lagrangian is:

N
L1 L
L(W, b, @) = S|IW|[* =Y _ e (yi (.5 + b) = 1).

i=1
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Dual problem

Find o* € RN which maximizes

Za, 5 Za,a- VXX,

7/ 1

under the (simple) constraints «; > 0 (fori=1,...,N), and

N
Zai}/i =0.
i—1

This is a quadratic program on RN, with "box constraints". &@* can be
found efficiently using dedicated optimization softwares.
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Recovering the optimal hyperplane

Once a* is found, we recover (w*, b*) corresponding to the optimal
hyperplane. w* is given by:

and the decision function is therefore:

f(X) = WX+ b

I
E
2
X
1
+
o
*
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Interpretation: support vectors
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What if data are not linearly separable?
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Soft-margin SVM

@ Find a trade-off between large margin and few errors.
@ Mathematically:

. 1
min {mavrgin(f) + C x errors(f)}

@ Cis a parameter
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Soft-margin SVM formulation

@ The margin of a labeled point (X, y) is
margin(X,y) = y (W.X + b)

@ The erroris

e 0if margin(X,y) > 1,

e 1 — margin(X, y) otherwise.
@ The soft margin SVM solves:

N
m|n{\w\]2+CZmax (0,1 —y; (Ww.X +b))}

i=1
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Dual formulation of soft-margin SVM

Maximize
N 1N
L(a) = Z @i =5 Z iy YiYiXi-Xj,
i=1 ij=1
under the constraints:
0<q;<C, fori=1,...,N
SN iy =0.
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Interpretation: bounded and unbounded support
vectors

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 36 /308



0 SVM and kernel methods

@ Nonlinear SVM and kernels
e Kernels for biological sequences
e Kernels for graphs
e Reconstruction of regulatory networks
e Supervised graph inference

@ Expression data classification with gene networks
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Sometimes linear classifiers are not interesting
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Solution: non-linear mapping to a feature space

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 39/308



Kernel (simple but important)

For a given mapping ¢ from the space of objects X' to some feature
space, the kernel of two objects x and x’ is the inner product of their
images in the features space:

vx,x' € X, K(x,x') = ®(x).0(x).

Example: if ®(X) = (x2,x2)/, then

K(%,X') = $(X)-B(X') = (3)*(x)% + (x2)?(xp)%.
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Training a SVM in the feature space

Replace each X.X’ in the SVM algorithm by ®(x).®(x") = K(x, x')
The dual problem is to maximize

N N
. 1
L(a) = Zai -3 Z ajayiyiK (Xi, X;),
i=1 ij=1
under the constraints:

0<q;<C, fori=1,...,N
S iy =0.
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Predicting with a SVM in the feature space

The decision function becomes:
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The kernel trick

@ The explicit computation of ®(x) is not necessary. The kernel
K(x, x") is enough. SVM work implicitly in the feature space.

@ It is sometimes possible to easily compute kernels which
correspond to complex large-dimensional feature spaces.
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Kernel example: polynomial kernel
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For X = (x1, %) € R?, let &(X) = (X2, V2x1x2, x3) € RS;

K(X, X') = Xx2x{2 + 2x1 XpX; Xb + X2 X2

(x1x] + szz)

X)?

I
?l
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Kernel example: polynomial kernel

x12
o
0©%_.0
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More generally,
K(X, %) = (x.X +1)°

is an inner product in a feature space of all monomials of degree up to
d (left as exercice.)
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Which functions K(x, x’) are kernels?

Definition
A function K(x, x’) defined on a set X is a kernel if and only if there
exists a features space (Hilbert space) H and a mapping

¢ X —H,

such that, for any x, x" in X
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Positive Definite (p.d.) functions

Definition
A positive definite (p.d.) function on the set X is a function
K: X x X — R symmetric:

V(x,x) e X%, K (x,x)=K(X,x),

and which satisfies, for all N € N, (X1, Xz, ..., Xy) € XN et
(ay, a,...,an) € RN:

Za,a, (x;,%;) > 0.
1 j=1

=
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Kernels are p.d. functions

Theorem (Aronszajn, 1950)
K is a kernel if and only if it is a positive definite function.
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@ Kernel — p.d. function:

o (®(X), P (X))ga = (P (X'), P (X)ga) ,

o T TN aa (® (%), (X)) = || Ty ad (x) 2, >0 .
@ Pd. function — kernel: more difficult...
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Kernel examples

@ Polynomial (on RY):
K(x,x") = (x.x' +1)°

@ Gaussian radial basis function (RBF) (on RY)

112
K(x,x") = exp (—HXZ_U)Z(H>
@ Laplace kernel (on R)
K(x,x") = exp (=[x — x'|)
@ Min kernel (on R)
K(x, x") = min(x, x)

Exercice: for each kernel, find a Hilbert space H and a mapping
& : X — H such that K(x, x") = (®(x), d(x))
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Example: SVM with a Gaussian kernel

@ Training:
. ||X/ - X/H2
rrelanZa, - Z QiQ YY) exp
@ i,j=1
st.0<a;<C, and Za,-y,- =0.
i=1
@ Prediction

Za,exp( _X'H >
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Example: SVM with a Gaussian kernel

x)—Za,exp( X _X’||2>

SVM classification plot
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Linear vs nonlinear SVM
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Regularity vs data fitting trade-off
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C controls the trade-off

. 1
min {margin(f) +Cx errors(f)}

e Large C: .
— makes few errors

e Small C: *le e o

— ensure a large margin Se e
 Intermediate C: %o
— finds a trade-off YA ’
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Why it is important to control the trade-off

TEST

ERROR

TRAIN

C
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How to choose C in practice

@ Split your dataset in two ("train" and "test")

@ Train SVM with different C on the "train" set

@ Compute the accuracy of the SVM on the "test" set

@ Choose the C which minimizes the "test" error

@ (you may repeat this several times = cross-validation)
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SVM summary

@ Large margin
@ Linear or nonlinear (with the kernel trick)
@ Control of the regularization / data fitting trade-off with C
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0 SVM and kernel methods

e Kernels for biological sequences
@ Motivations
@ Feature space approach
@ Using generative models
@ Derive from a similarity measure
@ Application: remote homology detection

e Kernels for graphs
e Reconstruction of regulatory networks

e Supervised graph inference
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Kernels for Biological
Sequences
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0 SVM and kernel methods

@ Kernels for biological sequences
@ Motivations

e Kernels for graphs
e Reconstruction of regulatory networks

e Supervised graph inference
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Short history of genomics

1866 : Laws of heredity (Mendel)

1909 : Morgan and the drosophilists

1944 : DNA supports heredity (Avery)

19583 : Structure of DNA (Crick and Watson)
1966 : Genetic code (Nirenberg)

1960-70 : Genetic engineering

1977 : Method for sequencing (Sanger)
1982 : Creation of Genbank

1990 : Human genome project launched
2003 : Human genome project completed
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Chromosomes

b)

Centromere

HUMAN CHROMODSOMES

XNREME XA
KK KX Y0 %0 IKK 1%

xh %% X AA XX AhD

14 15 16 17 18

XX XA XX Xx B2

19 20 21 22 xBy

(3]
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Chromosomes and DNA
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Structure of DNA

“We wish to suggest a
structure for the salt of
desoxyribose nucleic acid
(D.N.A.). This structure have
novel features which are of
considerable biological
interest” (Watson and Crick,
1953)
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The double helix

Nucleotide
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Central dogma

DNA

mRNA Transcription

Iagrpes

Transport to cyt
protein synthesis (

Proteins
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Proteins

Amino group

2
H—?—
R
R group
Amino Acid
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DNA =4 Jetters (ATCG)

Cj‘}ﬁ C:Jl %3 RNA =4 letters (AUCG)

U C A anticodon AUG
5 A G U codon . UAC  mRNA 3
2nd base in codon

U[CIA|G Protein = 20 letters (amino acids)

Phe | Ser | Tyr | O
Phe | Sor | Ty

Leu | Ser |

Leu | Ser | STOP
Leu | Pro | His | Arg

U
C| Lo |Pro | Hs | Ag
A

Leu | Pro | Gln | Arg
Leu | Pro | Gln | Arg
fle | The | Asn | Ser

1stbase in codon
uopod Ul 958q PIE

lle The | Asn | Ser
fle | Thr | Lys | Arg
Met | The | Lys | Arg
Val | Ala | Asp | Gly
G Val Ala | Asp Gly

Val | Ala | Glu | Gy
val | Ala | Glu | Gly

1 amino acid

Oroc|Orocoroc/ornc

The Genetic Code .
3 nucleotides
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Human genome project

@ Goal : sequence the 3,000,000,000 bases of the human genome
@ Consortium with 20 labs, 6 countries
@ Cost : about 3,000,000,000 USD
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2003: End of genomics era

@ About 25,000 genes only (representing 1.2% of the genome)
@ Automatic gene finding with graphical models
@ 97% of the genome is considered “junk DNA”
@ Superposition of a variety of signals (many to be discovered)
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Protein sequence

Primary protein structure
5 sequenca of a chain of aming acids

Amino Acid

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Methionine
E : Acide glutamique K : Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine
H : Histidine V : Thyrosine W : Tryptophane
| : Isoleucine S : Serine Q : Glutamine

D : Acide aspartique G : Glycine
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Challenges with protein sequences

@ A protein sequences can be seen as a variable-length sequence
over the 20-letter alphabet of amino-acids, e.g., insuline:
FVNQHLCGSHLVEALYLVCGERGFFYTPKA

@ These sequences are produced at a fast rate (result of the
seqguencing programs)

@ Need for algorithms to compare, classify, analyze these
sequences

@ Applications: classification into functional or structural classes,
prediction of cellular localization and interactions, ...
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Example: supervised sequence classification
Data (training)

@ Secreted proteins:
MASKATLLLAFTLLFATCIARHQQORQQQONQCQLONIEA. . .
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL. . .

@ Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG. . .
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. . .
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP. .

Goal

@ Build a classifier to predict whether new proteins are secreted or
not.
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Supervised classification with vector embedding

The idea
@ Map each string x € X to a vector ®(x) € F.

@ Train a classifier for vectors on the images ®(x1), ..., ®(x,) of the
training set (nearest neighbor, linear perceptron, logistic
regression, support vector machine...)
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Kernels for protein sequences

@ Kernel methods have been widely investigated since Jaakkola et
al’s seminal paper (1998).
@ What is a good kernel?
e it should be mathematically valid (symmetric, p.d. or c.p.d.)

e fast to compute
e adapted to the problem (give good performances)
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Kernel engineering for protein sequences

@ Define a (possibly high-dimensional) feature space of interest
e Physico-chemical kernels
e Spectrum, mismatch, substring kernels
o Pairwise, motif kernels
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Kernel engineering for protein sequences

@ Define a (possibly high-dimensional) feature space of interest
e Physico-chemical kernels
e Spectrum, mismatch, substring kernels
o Pairwise, motif kernels
@ Derive a kernel from a generative model
o Fisher kernel
o Mutual information kernel
e Marginalized kernel
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Kernel engineering for protein sequences

@ Define a (possibly high-dimensional) feature space of interest
e Physico-chemical kernels
e Spectrum, mismatch, substring kernels
o Pairwise, motif kernels
@ Derive a kernel from a generative model
o Fisher kernel
o Mutual information kernel
e Marginalized kernel
@ Derive a kernel from a similarity measure
@ Local alignment kernel
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0 SVM and kernel methods

@ Kernels for biological sequences

@ Feature space approach

e Kernels for graphs
e Reconstruction of regulatory networks

e Supervised graph inference
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Vector embedding for strings

The idea

Represent each sequence x by a fixed-length numerical vector
® (x) € R". How to perform this embedding?

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 80 /308



Vector embedding for strings

Represent each sequence x by a fixed-length numerical vector
® (x) € R". How to perform this embedding?

Physico-chemical kernel
Extract relevant features, such as:

@ length of the sequence

@ time series analysis of numerical physico-chemical properties of
amino-acids along the sequence (e.g., polarity, hydrophobicity),
using for example:

o Fourier transforms (Wang et al., 2004)
o Autocorrelation functions (Zhang et al., 2003)

1 M
= 7/’7—] 2 hihi+j
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Substring indexation

The approach

Alternatively, index the feature space by fixed-length strings, i.e.,

& (%) = (Pu (X)) yeax

where ¢, (x) can be:
@ the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)
@ the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)
@ the number of occurrences of u in x allowing gaps, with a weight

decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)
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Example: spectrum kernel (1/2)

Kernel definition

@ The 3-spectrum of
X = CGGSLIAMMWE GV
is:
(CGG, GGS, GSL, SLI,LIA, IAM, AMM, MMW, MWF, WEG, FGV) .

@ Let ¢, (x) denote the number of occurrences of v in x. The
k-spectrum kernel is:

K(xX) =) o, (x)d,(X) .

uc Ak
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Example: spectrum kernel (2/2)

Implementation

@ The computation of the kernel is formally a sum over |.A|¥ terms,
but at most | x| — k + 1 terms are non-zero in ¢ (Xx) =
Computation in O (| x|+ | x"|) with pre-indexation of the strings.

@ Fast classification of a sequence x in O (| x|):

| x| —k+1

FO)=W-d(X)=> wdy(X) = > W, .
u i=1

@ Work with any string (natural language, time series...)
@ Fast and scalable, a good default method for string classification.
@ Variants allow matching of k-mers up to m mismatches.
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Example 2: Substring kernel (1/11)

@ For1 < k < ne N, we denote by Z(k, n) the set of sequences of
indices i = (i1, ...,ik),with1 <ij <hb <... <l <n.

@ Forastring x = xq ... x, € X of length n, for a sequence of indices
i € Z(k, n), we define a substring as:

X(I) = Xj Xy - - - X -

@ The length of the substring is:

1) = i — iy + 1.
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Example 2: Substring kernel (2/11)

ABRACADABRA

®i=(3,4,7,8,10)
@ X (i) =RADAR
@ /(i))=10-3+1=8
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Example 2: Substring kernel (3/11)

The kernel

@ Let k e Nand )\ € R fixed. Forallu € AX, let &, : X — R be
defined by:

Vxe X, oy(x)= > pUCN
i€Z(k,|x|): x(i)=u

@ The substring kernel is the p.d. kernel defined by:

V(x,X) € X% Kix(x,X) =D oy(x)
uc Ak
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Example 2: Substring kernel (4/11)

u lca ct at ba bt cr ar br

dyfcat) [X> X¥ X2 0 0 0O 0 O
dy(car) [A2 0 0 0 0 X XN o0
dy(bat) [0 0 X2 X X 0 0 O
dybar) [ 0 0 0 X2 0 0 X

K (cat,cat) = K (car,car) = 2)\* + \®
K (cat,car) = \*
K (cat,bar) =0
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Example 2: Substring kernel (5/11)

Kernel computation

@ We need to compute, for any pair x, x’ € X, the kernel:

X) =" &y (X) by (X)

uc Ak

=2 2. 2, 2L

uc Ak ix(i)=ui’:x'(i")=u

@ Enumerating the substrings is too slow (of order | x |k).
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Example 2: Substring kernel (6/11)

Kernel computation (cont.)
@ For u € A¥ remember that:
o (X) _ Z )\in—i1+1 )
ix(i)=u

@ Let now:

\Uu(x Z )\|X| I1+1

i:xx(i)=u
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Example 2: Substring kernel (7/11)

Kernel computation (cont.)

Let us note x (1,/) = xq ... x;. A simple rewriting shows that, if we note
a € Athe last letter of u (u = va):

Sa()= S W (x(1,j- 1),

jelt Ix|l:x=a
and .
Vo (X) = Y Wy (x(1,j— 1) AXITH

Jelt | x[]:x=a
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Example 2: Substring kernel (8/11)

Kernel computation (cont.)

Moreover we observe that if the string is of the form xa (i.e., the last
letter is a € A), then:

@ If the last letter of u is not a:

oy (xa) = oy (x),
Yy (xa) =¥y (x).

@ If the last letter of u is a (i.e., u = vawith v ¢ A" 1):

bya(xa) = Dya(X) + AWy (X)
Vya(xa) = AWya(X)+ AWy (X) .
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Example 2: Substring kernel (9/11)

Kernel computation (cont.)
Let us now show how the function:

B (X, X) = ) Wy (x) Wy (X)

ueAn

and the kernel:

Kn (x,X') := Z Dy (X) Dy (X))
can be computed recursively. We note that:

By (x,X') = Ko (x,x') =0 forall x,x
B (x,X') = K (x,X') =0 if min(]x|,|x|) <k
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Example 2: Substring kernel (10/11)

Recursive computation of Bj,

B (xa,x’)
= > Wy (xa) Wy (X)

uc A"
=AY WL (X) A DT Wy (x) Wy (X)
ucAn veEAN-!
=By (x,X') +

A Wy (x) S wy (X (1, = 1)) X

veAn-1 Je[,| x! |]:x].’:a

=ABp(x,X) + D Bug (XX (1,) 1)) A2

Jell,| X [l:x/=a
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Example 2: Substring kernel (10/11)

Recursive computation of K,
Kn (xa,x’)

= by (xa) dy (X)

ueAn

= dy(x) DX D Wy (X) Pya (X))

ucA” veAn—1
= Kn (x,X) +

A Wy (x) S (X, j-1))A
veAn—1 Je,| x! |]:xj.’:a

= \K, (X,X/) + )\2 Z Bn—1 (X7X/ (1 7j - 1))

je[t,| x \]:x/.’:a
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Summary: Substring indexation

@ Implementation in O(|x| + [x’|) in memory and time for the
spectrum and mismatch kernels (with suffix trees)

@ Implementation in O(|x| x [x’|) in memory and time for the
substring kernels

@ The feature space has high dimension (|.4|%), so learning requires
regularized methods (such as SVM)
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Dictionary-based indexation

The approach
@ Chose a dictionary of sequences D = (X1, X2, ..., Xp)
@ Chose a measure of similarity s(x,x’)
@ Define the mapping ®p (X) = (S (X, X;))y.cp
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Dictionary-based indexation

The approach
@ Chose a dictionary of sequences D = (X1, X2, ..., Xp)
@ Chose a measure of similarity s(x,x’)
@ Define the mapping ®p (X) = (S (X, X;))y.cp

Examples
This includes:
@ Motif kernels (Logan et al., 2001): the dictionary is a library of
motifs, the similarity function is a matching function
@ Pairwise kernel (Liao & Noble, 2003): the dictionary is the training
set, the similarity is a classical measure of similarity between
sequences.
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0 SVM and kernel methods

@ Kernels for biological sequences

@ Using generative models

e Kernels for graphs
e Reconstruction of regulatory networks

e Supervised graph inference
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Probabilistic models for sequences

Probabilistic modeling of biological sequences is older than kernel

designs. Important models include HMM for protein sequences, SCFG
for RNA sequences.

Parametric model
A model is a family of distribution

{Py,0 € © C R™} C M7 (X)
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Fisher kernel

@ Fix a parameter ¢y € © (e.g., by maximum likelihood over a
training set of sequences)

@ For each sequence x, compute the Fisher score vector:
CD@O (X) =Vy Iog PQ(X)‘@ZQO 5
@ Form the kernel (Jaakkola et al., 1998):

K (x,X') = @4, (x) " 1(60) " @y (X') ,

where /(6p) = Eg, [®g,(X)Pg,(x) "] is the Fisher information matrix.

v
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Fisher kernel properties

@ The Fisher score describes how each parameter contributes to
the process of generating a particular example

@ The Fisher kernel is invariant under change of parametrization of
the model

@ A kernel classifier employing the Fisher kernel derived from a
model that contains the label as a latent variable is, asymptotically,
at least as good a classifier as the MAP labelling based on the
model (Jaakkola and Haussler, 1998).

@ A variant of the Fisher kernel (called the Tangent of Posterior
kernel) can also improve over the direct posterior classification by
helping to correct the effect of estimation errors in the parameter
(Tsuda et al., 2002).
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Fisher kernel in practice

@ ®y (x) can be computed explicitly for many models (e.g., HMMs)
@ /(o) is often replaced by the identity matrix

@ Several different models (i.e., different 6y) can be trained and
combined

@ Feature vectors are explicitly computed
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Mutual information kernels

Definition
@ Chose a prior w(df) on the measurable set ©
@ Form the kernel (Seeger, 2002):

K (x,x') = Po(X)Py(x")w(d8) .
HcO
@ No explicit computation of a finite-dimensional feature vector
® K(X,X') =< ¢(X),d(X') >1,w) with

¢ (%) = (Po (X))geo -
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Example: coin toss

@ Let Py(X =1)=20and Py(X =0) =1 — 6 amodel for random
coin toss, with 6 € [0, 1].

@ Let df be the Lebesgue measure on [0, 1]
@ The mutual information kernel between x = 001 and x’ = 1010 is:

Py(x) =06(1-10)7,
Py(X') =62(1-10),
_aa_

1
K(x,x’)_/003(1—9)4d9 ST = 580 °
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Context-tree model

A context-tree model is a variable-memory Markov chain:

n
Ppo(X) = Ppo(xi-..xp) [[ Poo(ilXip.. 1)
i=D+1

@ D is a suffix tree
@ 0 € ¥P is a set of conditional probabilities (multinomials)
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Context-tree model: example

P(AABACBACC) = P(AAB)0a5(A)04(C)0c(B)0acs(A)0a(C)oc(A) .
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The context-tree kernel

Theorem (Cuturi et al., 2004)

@ For particular choices of priors, the context-tree kernel:

K (x,x') = Z/o - Pp o(X)Pp o(X")w(d6|D)m(D)
D Joe

can be computed in O(|x| + |x'|) with a variant of the Context-Tree
Weighting algorithm.

@ This is a valid mutual information kernel.

@ The similarity is related to information-theoretical measure of
mutual information between strings.
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Marginalized kernels

@ For any observed data x € X, let a latent variable y € ) be
associated probabilistically through a conditional probability
Px (dy).

@ Let Kz be a kernel for the complete data z = (x,y)

@ Then the following kernel is a valid kernel on X, called a
marginalized kernel (Kin et al., 2002):

Ky (X, X') := Ep,(dy)xP, (ay) Kz (2,2')

= [ [ Ko (xy). (0oy) Pr(a) P ()
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Marginalized kernels: proof of positive definiteness

@ Kz is p.d. on Z. Therefore there exists a Hilbert space H and
¢z : Z — H such that:

Kz(ZZ)—<¢Z ¢Z( )>H
@ Marginalizing therefore gives:
Kx (X,X) = Ep(dy) P, (ay)Kz (2.2

= EPx(dy)x (dy <(DZ ¢Z ( )>'H
= <EPx(dy (DZ( )7EPx(dy’)¢Z ( )>H ’

therefore Ky isp.d. on . O
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Example: HMM for normal/biased coin toss

@ @ Normal (N) and biased (B)
coins (not observed)

0.5 ‘3’ 0.05
0.85"'b

@ Observed output are 0/1 with probabilities:
m(0|N) =1 —=(1|N) = 0.5,
7(0|B) =1 —=(1|B) =0.8.

@ Example of realization (complete data):

NNNNNBBBBBBEBBBNNNNNNNNNNNBBBBBB
1001011101111010010111001111011
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1-spectrum kernel on complete data

@ If both x € A* and y € S* were observed, we might rather use the
1-spectrum kernel on the complete data z = (x, y):

Kz (2,2) = Z Nas (Z) Nas (2)

(a,5)eAxS

where nzs(x,y) fora= 0,1 and s = N, B is the number of
occurrences of s in y which emit ain x.

@ Example:

Z2=1001011101111010010111001111011,
Z'=0011010110011111011010111101100101,

Kz (z,2') =no(2)no () + no (2) no (Z') + ny (2) ny (Z') + ny (2) Ny (2
=7x154+49%x124+13x6+4+2x1=293.
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1-spectrum marginalized kernel on observed data

@ The marginalized kernel for observed data is:

Ke (x,X) = Y Kz((x.y),(xy)P(yx) P (yIX)

y,y' eS*
= Z ¢a7s (X) ¢a7s (X/) 5
(a,s)eAXS
with
Dys (X Z P(y|x) nas(X,y)

yes*
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Computation of the 1-spectrum marginalized kernel

Pas (X ZP (YIx) nas (X, y)
yesS*

=" P(ylx) {25()(/,3)5(}//73)}
i=1

yeS*

= Zd(x,-,a) { Z P(VX)5(yi,S)}
i=1

yesS*
n
=> 5(x,a)P(yi =s|x).
i=1

and P (y; = s|x) can be computed efficiently by forward-backward
algorithm!
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HMM example (DNA)

Gene on
forward strand

Gene on
reverse strand
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HMM example (protein)

N times
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SCFG for RNA sequences

Marginalized kernel (Kin et al., 2002)
@ Feature: number of occurrences of each (base,state) combination
@ Marginalization using classical inside/outside algorithm
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Marginalized kernels in practice

@ Spectrum kernel on the hidden states of a HMM for protein
sequences (Tsuda et al., 2002)

@ Kernels for RNA sequences based on SCFG (Kin et al., 2002)

@ Kernels for graphs based on random walks on graphs (Kashima et
al., 2004)

@ Kernels for multiple alignments based on phylogenetic models
(Vert et al., 2005)
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Marginalized kernels: example

PC2
A set of 74 human tRNA
T sequences is analyzed using
jﬁ’l a kernel for sequences (the
o o O* + second-order marginalized
o o ° kernel based on SCFG). This
P o, .
set of tRNAs contains three
%o o PC1

oo classes, called Ala-AGC

© (white circles), Asn-GTT

° (black circles) and Cys-GCA
o 3 (plus symbols) (from Tsuda
o et al., 2003).
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0 SVM and kernel methods

@ Kernels for biological sequences

@ Derive from a similarity measure

e Kernels for graphs
e Reconstruction of regulatory networks

e Supervised graph inference

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 118/308



Sequence alignment

How to compare 2 sequences?

X1 = CGGSLIAMMWEGV
Xo = CLIVMMNRLMWE GV

Find a good alignment:

CGGSLIAMM-——-WEGV

R P R R
C---LIVMMNRLMWEGV
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Alignment score

In order to quantify the relevance of an alignment 7, define:
@ a substitution matrix S € RA*A
@ a gap penalty functiong: N — R

Any alignment is then scored as follows

CGGSLIAMM-——-WEGV

I
C---LIVMMNRLMWEGV

Ss4(m) = S(C, C) + S(L, L) + S(I, 1) + S(A, V) + 25(M, M)
+ S(W, W) + S(F,F) + S(G,G) + S(V, V) — g(3) — g(4)
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Local alignment kernel

Smith-Waterman score

@ The widely-used Smith-Waterman local alignment score is defined
by:

SWs g(x,y) := ) erpj%gy) Ss,g().

@ It is symmetric, but not positive definite...
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Local alignment kernel

Smith-Waterman score

@ The widely-used Smith-Waterman local alignment score is defined
by:

SWs g(x,y) := ) Grg%}y) Ss,g().

@ It is symmetric, but not positive definite...

v

LA kernel
The local alignment kernel:

KD (x,y) = D exp(Bssg(x,y. 7)),
wen(x,y)

is symmetric positive definite.

v
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LA kernel is p.d.: proof (1/11)

Lemma

@ If K; and K, are p.d. kernels, then:

Ki + Ko,
K1 Kg, and
cKq, forc > 0,

are also p.d. kernels

@ If (Ki);~¢ is a sequence of p.d. kernels that converges pointwisely
to a function K:

v (x,x') € X%, K(x,X) = Jlim K; (x,x'),

then K is also a p.d. kernel.
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LA kernel is p.d.: proof (2/11)

Proof of lemma
Let A and B be n x n positive semidefinite matrices. By diagonalization
of A:

Aij = (D))
p=1

for some vectors fi, ..., f,. Then, for any a € R™:
n n n
> iojAiBii = aifs(i)asfa(f)Bij > 0.
ij=1 p=11ij=1

The matrix C;; = A; ;B ; is therefore p.d. Other properties are obvious
from definition. [ )
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LA kernel is p.d.: proof (3/11)

Lemma (direct sum and product of kernels)

Let X = Xy x X». Let K be a p.d. kernel on Xy, and K> be a p.d.
kernel on X>. Then the following functions are p.d. kernels on X:
@ the direct sum,

K ((x1,X2),(Y1,Y2)) = K1 (X1,¥1) + K2 (X2,¥2),

@ The direct product:

K ((X1,X%2), (Y1,Y2)) = Ki (X1, Y1) K2 (X2,¥2) -
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LA kernel is p.d.: proof (4/11)

Proof of lemma

If K is a p.d. kernel, let 4 : X7 — H be such that:
Ky (X1,¥1) = (1 (X1), P1 (Y1))3 -
Let d : Xy x Xo — H be defined by:
® ((x1,X2)) = &1 (x1).
Then for x = (x1,X2) and y = (yy,Y2) € X, we get

(®((x1,%2)), P ((y1,¥2)) 5 = K1 (X1,X2),

which shows that K (x,y) := Kj (X1,Y1) is p.d. on X7 x X>. The lemma

follows from the properties of sums and products of p.d. kernels.

O

v
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LA kernel is p.d.: proof (5/11)

Lemma: kernel for sets

Let K be a p.d. kernel on X, and let P (X') be the set of finite subsets
of X. Then the function Kp on P (X) x P (X) defined by:

VABEP(X), Kp(AB):=> > K(xy)
xcAyeB

is a p.d. kernel on P (X).
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LA kernel is p.d.: proof (6/11)

Proof of lemma
Let ® : X — H be such that

K(x,y) = (®(x),®(y))y -
Then, for A, B € P (X), we get:

Kp(A,B)=> ) (d(X),P(y))y

xXceAyeB

:<z¢<x>,z¢<y>>

XeA yeB
= (®p(A), ®p(B)) ,

with ®p(A) :=> ;4P (x). O

v
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LA kernel is p.d.: proof (7/11)

Definition: Convolution kernel (Haussler, 1999)

Let Ki and K> be two p.d. kernels for strings. The convolution of Kj
and Ko, denoted K x K>, is defined for any x, X’ € X by:

KixKa(X,y) = Y Ki(X1,¥1)Ka(X2, Y2).

X1Xo=X,y1Y2=Y

v

If Ky and K> are p.d. then Ky x K> is p.d.. \
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LA kernel is p.d.: proof (8/11)

Proof of lemma

Let X be the set of finite-length strings. For x € X, let
R(X) ={(X1,X2) € ¥ x XY : X =X1Xo} C X' X X.

We can then write

KixKo(x,y)= > > Ki(x1,¥1)Ka(X2, Y2)
(x1,X2)€R(X) (y1,y2)€R(Y)

which is a p.d. kernel by the previous lemmas. [
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LA kernel is p.d.: proof (9/11)

3 basic string kernels

@ The constant kernel:
Ko (x,y) :=1.

@ A kernel for letters:

- (o if |x|#1where |y|#1,
Ka (Xay) .—{ exp([)’S(xay)) otherwise .

@ A kernel for gaps:

K (x,y) = exp [B(g (Ix ) + g (| x]))] -

v
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LA kernel is p.d.: proof (10/11)

@ S: A% — Ris the similarity function between letters used in the
alignment score. Ka(ﬁ) is only p.d. when the matrix:

(exp (Bs(a, b))) (a,p)c 42

is positive semidefinite (this is true for all 3 when s is conditionally
p.d..

@ g is the gap penalty function used in alignment score. The gap
kernel is always p.d. (with no restriction on g) because it can be
written as:

D (x,y) = exp (Bg (| x ) x exp (Bg (| )) -
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LA kernel is p.d.: proof (11/11)

Lemma

The local alignment kernel is a (limit) of convolution kernel:
KD = ZK « (KY *K(ﬁ))( Ve kP s ko

As such it is p.d..

Proof (sketch)

@ By induction on n (simple but long to write).
@ See details in Vert et al. (2004).

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 132/308



LA kernel computation

@ We assume an affine gap penalty:

g(0) =0,
gln) =d+e(n—1)sin>1,

@ The LA kernel can then be computed by dynamic programming
by:

KE (%, y) = 1+ Xa(|X], 1y]) + Ya(Ix], [y]) + M(|x], ly]),

where M(i,j), X(i, ), Y(i,)), Xao(i,]), and Ya(i,j) for 0 < i <|x|,
and 0 < j < |y| are defined recursively.

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 133/308



LA kernel is p.d.: proof (/)

Initialization
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LA kernel is p.d.: proof (/)

Recursion

Fori=1,....|xjandj=1,....]y|:

M(ij) = exp(BS(xi, ) [1+X(i = 1,j=1)
+Y(i—1,j—1)+M(i—1,j—1)],

X(i.j) = exp(BA)M(i —1.J) + exp(Be)X(i - 1,)),

Y(ij) = exp(8d) [M(i.j — 1) + X(i,j = 1)
+exp(de)Y(i,j — 1),

Xolirf) = M(i = 1,) + Xo(i = 1.J),

Yoliof) = M(i.j— 1)+ Xa(i,j — 1) + Ya(i,j — 1).
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LA kernel in practice

@ Implementation by a finite-state transducer in O(|x| x [x'|)
0:0/1

@ In practice, values are too large (exponential scale) so taking its
logarithm is a safer choice (but not p.d. anymore!)

v
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0 SVM and kernel methods

@ Kernels for biological sequences

@ Application: remote homology detection
e Kernels for graphs
e Reconstruction of regulatory networks

e Supervised graph inference
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Remote homology

Sequence similarity

@ Homologs have common ancestors
@ Structures and functions are more conserved than sequences

@ Remote homologs can not be detected by direct sequence
comparison
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SCOP database

SCOP
/

Fold
Super family
Family \@@ Cg \OC\D OC/DED é)

Renot e honol ogs Cl ose honol ogs
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A benchmark experiment

@ Goal: recognize directly the superfamily

@ Training: for a sequence of interest, positive examples come from
the same superfamily, but different families. Negative from other
superfamilies.

@ Test: predict the superfamily.
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Difference in performance

vv T T T

SVM-LA ——
SVM-pairwise ---x---
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Performance on the SCOP superfamily recognition benchmark (from
Vert et al., 2004).
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String kernels: Summary

@ A variety of principles for string kernel design have been
proposed.

@ Good kernel design is important for each data and each task.
Performance is not the only criterion.

@ Still an art, although principled ways have started to emerge.
@ Fast implementation with string algorithms is often possible.
@ Their application goes well beyond computational biology.
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0 SVM and kernel methods
e Kernels for biological sequences

e Kernels for graphs
@ Motivation
@ Explicit computation of features
@ Graph kernels: the challenges
@ Walk-based kernels
@ Applications

e Reconstruction of regulatory networks

e Supervised graph inference
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Kernels for graphs
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0 SVM and kernel methods
e Kernels for biological sequences

e Kernels for graphs
@ Motivation

e Reconstruction of regulatory networks

e Supervised graph inference
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Virtual screening for drug discovery

active

o

inactive jeul.

NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Image retrieval and classification

/
1‘: P\
. .

From Harchaoui and Bach (2007).
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Our approach
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Our approach

@ Represent each graph x by a vector ®(x) € H, either explicitly or
implicitly through the kernel

K(x,x') = o(x)Td(x)).
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Our approach

@ Represent each graph x by a vector ®(x) € H, either explicitly or
implicitly through the kernel

K(x,x') = o(x)Td(x)).

@ Use a linear method for classification in 7.
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0 SVM and kernel methods
e Kernels for biological sequences

e Kernels for graphs

@ Explicit computation of features

e Reconstruction of regulatory networks

e Supervised graph inference
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The approach
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The approach

@ Represent explicitly each graph x by a vector of fixed dimension
d(x) € RP.
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The approach

@ Represent explicitly each graph x by a vector of fixed dimension
d(x) € RP.
© Use an algorithm for regression or pattern recognition in RP.
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2D structural keys in chemoinformatics

@ Index a molecule by a binary fingerprint defined by a limited set of
pre-defined stuctures

.\HHH»‘HHH.:‘

@ Use a machine learning algorithms such as SVM, NN, PLS,
decision tree, ...
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Challenge: which descriptors (patterns)?

AN

@ Expressiveness: they should retain as much information as
possible from the graph

@ Computation : they should be fast to compute

@ Large dimension of the vector representation: memory storage,
speed, statistical issues
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Indexing by substructures

I\HHHHHIHHHI:!

mﬁ/

@ Often we believe that the presence substructures are important
predictive patterns

@ Hence it makes sense to represent a graph by features that
indicate the presence (or the number of occurrences) of particular
substructures

@ However, detecting the presence of particular substructures may
be computationally challenging...

v
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Subgraphs

Definition

A subgraph of a graph (V, E) is a connected graph (V’, E’) with
V' cVand E' C E.

<] 23392
Lo e lode Lo
S Foedlls
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Indexing by all subgraphs?
(0,...,0,1,0,...,O,l,O,...)
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Indexing by all subgraphs?
(0,...,0,1,0,...,O,l,O,...)

®
o

Computing all subgraph occurrences is NP-hard. \
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Indexing by all subgraphs?
(O,...,O,l,O,...,O,l,O,...)

®
o

Computing all subgraph occurrences is NP-hard.

@ The linear graph of size nis a subgraph of a graph X with n
vertices iff X has an Hamiltonian path

@ The decision problem whether a graph has a Hamiltonian path is
NP-complete.

Ol

v
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Definition

@ A path of a graph (V, E) is sequence of distinct vertices
Vi,...,Vp€ V(i #] = Vv; # vj) such that (v;,vi11) € E for
i=1,....n—1.

@ Equivalently the paths are the linear subgraphs.
: | NONON
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Indexing by all paths?

B—A
(0,...,0,1,0,...,0,1,0,...)
@‘Q ® t t
(—a) (6—6e—06)
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Indexing by all paths?

B—A
(0,...,0,1,0,...,0,1,0,...)
@‘Q ® t t
(—a) (6—6e—06)

Computing all path occurrences is NP-hard. \
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Indexing by all paths?

B—A
(0,...,0,1,0,...,0,1,0,...)
@‘Q ® t t
(—a) (6—6e—06)

Computing all path occurrences is NP-hard. \

Same as for subgraphs.
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Indexing by what?

Substructure selection

We can imagine more limited sets of substuctures that lead to more
computationnally efficient indexing (non-exhaustive list)

@ substructures selected by domain knowledge (MDL fingerprint)
@ all path up to length k (Openeye fingerprint, Nicholls 2005)

@ all shortest paths (Borgwardt and Kriegel, 2005)
°

all subgraphs up to k vertices (graphlet kernel, Sherashidze et al.,
2009)

@ all frequent subgraphs in the database (Helma et al., 2004)
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Example : Indexing by all shortest paths

G—E—6E—3—0 |

[
¢
B—®
(0,...,0,2,0,...,0,1,0,...)
@‘@ ® t t
(>—®] (e—e—nr—6)
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Example : Indexing by all shortest paths

Properties (Borgwardt and Kriegel, 2005)

@ There are O(n?) shortest paths.

@ The vector of counts can be computed in O(n*) with the
Floyd-Warshall algorithm.
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Example : Indexing by all subgraphs up to k vertices

OlO 0,1,0

s

GLAAT O
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Example : Indexing by all subgraphs up to k vertices

(®(0,..., 0,1,0,..., 0,1,0 )
76 ;
(@&®) ®
D

Properties (Shervashidze et al., 2009)

@ Naive enumeration scales as O(n%).

@ Enumeration of connected graphlets in O(nd*~1) for graphs with
degree < d and k < 5.

@ Randomly sample subgraphs if enumeration is infeasible.
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@ Explicit computation of substructure occurrences can be
computationnally prohibitive (subgraph, paths)

@ Several ideas to reduce the set of substructures considered

@ In practice, NP-hardness may not be so prohibitive (e.g., graphs
with small degrees), the strategy followed should depend on the
data considered. )
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0 SVM and kernel methods
e Kernels for biological sequences

e Kernels for graphs

@ Graph kernels: the challenges

e Reconstruction of regulatory networks

e Supervised graph inference
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The idea
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@ Represent implicitly each graph x by a vector ®(x) € H through
the kernel
K(x,x") = &(x) T o(x').
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@ Represent implicitly each graph x by a vector ®(x) € H through
the kernel
K(x,x") = &(x) T o(x').

@ Use a kernel method for classification in 7.
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Expressiveness vs Complexity

Definition: Complete graph kernels
A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

VG1,GQ€X, dK(G1,GQ):O — 61262.

Equivalently, #(Gy) # ®(Gy) if Gy and G, are not isomorphic.
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Expressiveness vs Complexity

Definition: Complete graph kernels
A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

VG1,GQ€X, dK(G1,Gg):O:> 61262.

Equivalently, #(Gy) # ®(Gy) if Gy and G, are not isomorphic.

v

Expressiveness vs Complexity trade-off

@ If a graph kernel is not complete, then there is no hope to learn all
possible functions over X': the kernel is not expressive enough.

@ On the other hand, kernel computation must be tractable, i.e., no
more than polynomial (with small degree) for practical
applications.

@ Can we define tractable and expressive graph kernels?

v
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Complexity of complete kernels

Proposition (Gértner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.
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Complexity of complete kernels

Proposition (Gértner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.

v

Proof

@ For any kernel K the complexity of computing dk is the same as
the complexity of computing K, because:

dk(G1, G2)? = K(G1, Gi) + K(Gz, Go) — 2K(Gy, Go) -

@ If Kiis a complete graph kernel, then computing dx solves the
graph isomorphism problem (dk(Gy, Go2) = 0 iff Gy ~ Gp). O
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Subgraph kernel

@ Let (\g)s. 1 a setor nonnegative real-valued weights
@ For any graph G € X, let

VHe X, &uy(G)=|{G isasubgraphof G: G'~ H}|.

@ The subgraph kernel between any two graphs G; and G, € X' is

defined by:
Ksubgraph(Git, G2) = Y An®p(Gr)op(Gz)
Hex
[? ,;)E (0,...,0,1,0,...,0,1,0,...)

A

&®
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Subgraph kernel complexity

Proposition (Géartner et al., 2003)
Computing the subgraph kernel is NP-hard.
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Subgraph kernel complexity

Proposition (Géartner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (1/2)
@ Let P, be the path graph with n vertices.
@ Subgraphs of P, are path graphs:

®(Py) = nep, +(n—1)ep, + ...+ ep,.

@ The vectors ®(Py),...,d(Py,) are linearly independent, therefore:
n
epn = Z Oc,'q)(P,') ]
i=1

where the coefficients «; can be found in polynomial time (solving
a n x ntriangular system).

v
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Subgraph kernel complexity

Proposition (Gértner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (2/2)

@ If Gis a graph with n vertices, then it has a path that visits each
node exactly once (Hamiltonian path) if and only if $(G) e, > 0,
i.e.,

¢(G)T <Z a,'d)(P,-)) = ZaiKsubgraph(G, Pi) >0.
i=1

i=1

@ The decision problem whether a graph has a Hamiltonian path is
NP-complete. O
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Path kernel

B—®
(0,...,0,1,0,...,0,1,0,...)

@‘@ = t t
(—a) (6—6e—06)

Definition
The path kernel is the subgraph kernel restricted to paths, i.e.,

Koatn(Gr, G2) = > Aq®(Gr)PH(Ge)
Hep

where P C X is the set of path graphs.
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Path kernel

@‘@ ® (0.....0,1,0,...,0,1,0...)
BF—®A ! !

The path kernel is the subgraph kernel restricted to paths, i.e.,

Koatn(Gr, G2) = > Aq®(Gr)PH(Ge)
Hep

where P C X is the set of path graphs.

Proposition (Géartner et al., 2003)
Computing the path kernel is NP-hard.
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Summary

Expressiveness vs Complexity trade-off

@ ltis intractable to compute complete graph kernels.
@ ltis intractable to compute the subgraph kernels.

@ Restricting subgraphs to be linear does not help: it is also
intractable to compute the path kernel.

@ One approach to define polynomial time computable graph kernels
is to have the feature space be made up of graphs homomorphic
to subgraphs, e.g., to consider walks instead of paths.
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0 SVM and kernel methods
e Kernels for biological sequences

e Kernels for graphs

@ Walk-based kernels

e Reconstruction of regulatory networks

e Supervised graph inference
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aks

Definition

@ A walk of a graph (V, E) is sequence of vy, ..., Vn € V such that
(Vi,Vig1) e Efori=1,..., n—1.

@ We note W,,(G) the set of walks with n vertices of the graph G,
and W(G) the set of all walks.

! 2233
Lo o dods Lo

.3..2..53@@2.43.43.55.2@
mmumum
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Walks # paths
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Walk kernel

@ Let S, denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = U,>1Sp.

@ For any graph X let a weight A\g(w) be associated to each walk
w € W(G).

@ Let the feature vector ®(G) = (®s(G))s. 5 be defined by:

= ) Ag(w)1(sis the label sequence of w) .
weW(G)

v
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Walk kernel

@ Let S, denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = U,>1Sp.

@ For any graph X let a weight A\g(w) be associated to each walk
w € W(G).

@ Let the feature vector ®(G) = (®s(G))s. 5 be defined by:

= ) Ag(w)1(sis the label sequence of w) .
weW(G)

@ A walk kernel is a graph kernel defined by:

Kuak(Gr1, G2) = Y ©5(Gy)®

ses

v
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Walk kernel examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.
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Walk kernel examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.

@ The random walk kernel is obtained with Ag(w) = Pg(w), where
Pg is a Markov random walk on G. In that case we have:

K(Gy, Go) = P(label(W;) = label(Ws)),

where W; and W, are two independant random walks on G; and
Go, respectively (Kashima et al., 2003).
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Walk kernel examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their

common walks of length n.
@ The random walk kernel is obtained with \g(w) = Pg(w), where
Pg is a Markov random walk on G. In that case we have:

K(Gy, Go) = P(label(W;) = label(Ws)),

where W; and W, are two independant random walks on G; and
Go, respectively (Kashima et al., 2003).

@ The geometric walk kernel is obtained (when it converges) with
Ag(w) = 3ength(w) for 8 > 0. In that case the feature space is of

infinite dimension (Gértner et al., 2003).

175/308
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Computation of walk kernels

Proposition

These three kernels (nth-order, random and geometric walk kernels)
can be computed efficiently in polynomial time.
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Product graph
Definition

Let G = (V4, Ey) and G = (V», E>) be two graphs with labeled
vertices. The product graph G = Gy x Gy is the graph G = (V, E) with:

Q V={(vy,) e Vix Vs
Q E=

{((vi, ), (v{,v})) € Vx V : (vy,v]) € Ey and (v, V) € Eb}.

: vy and v, have the same label} ,

1 a b 1b 2a 1d
o—O O
2 c 3c 3e
la 2b : 2d :
3 4 d e
4c 4e
Gl (€74 Gl x &
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Walk kernel and product graph

There is a bijection between:

@ The pairs of walks wy € Wp(Gy) and wa € Wy(Gz) with the same
label sequences,

@ The walks on the product graph w € Wy(Gy x Go).
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Walk kernel and product graph

There is a bijection between:

@ The pairs of walks wy € Wy(Gy) and wo € Wy(Gz) with the same
label sequences,

@ The walks on the product graph w € Wy(Gy x Go).

Corollary

Kuak(Gr, Go) = Y _ 05(Gy)®s(Gz)

SES

= > e, (W) A, (Wa)1(/(wy) = I(w2))

(w1, w2)EW(G1) xW(Gy)

= ) Agxaw).

WEW(G1 X Gz)

i
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Computation of the nth-order walk kernel

@ For the nth-order walk kernel we have Ag, «g,(w) = 1 if the length
of w is n, 0 otherwise.

@ Therefore:

Knth—order (Gh GZ) = Z 1.
WEWn(G1 X Gg)

@ Let A be the adjacency matrix of Gy x G,. Then we get:

Knth order G17 GZ Z [An],j = 1TAn1
7./

@ Computation in O(n|Gy||Gz|d;d>), where d; is the maximum
degree of G;.
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Computation of random and geometric walk kernels

@ In both cases \g(w) forawalk w = v; ... v, can be decomposed
as:

n
Aa(vi .. vn) = X(vy) [T M Vi1, ).
i=2

@ Let A; be the vector of \'(v) and A; be the matrix of A{(v, v/):

n
Kwaik(G1, Go) Z > Nw) [N (i, w)
n=1 weWn(Gi xGy) =2
= NAFT
n=0
=N (I-N) 1

@ Computation in O(|G1[3|G,[?)

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 180/308



Extensions 1: label enrichment

Atom relabebling with the Morgan index

1 2 4
1 1 2 2 4 5
1 o1l 2 o1l 4 03
No Morgan Indices  O1 Order 1 indices o1 Order 2 indices 03

@ Compromise between fingerprints and structural keys features.
@ Other relabeling schemes are possible (graph coloring).

@ Faster computation with more labels (less matches implies a
smaller product graph).
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Extension 2: Non-tottering walk kernel

Tottering walks
A tottering walk is a walk w = vy ... v, with v; = v;.» for some i.

@ (O —@ VNon-tottering
OO0 @

@ (@ rTtottering

@ Tottering walks seem irrelevant for many applications

@ Focusing on non-tottering walks is a way to get closer to the path
kernel (e.g., equivalent on trees).
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Computation of the non-tottering walk kernel (Mahé et

al., 2005)

@ Second-order Markov random walk to prevent tottering walks

@ Written as a first-order Markov random walk on an augmented
graph

@ Normal walk kernel on the augmented graph (which is always a
directed graph).

o) /@‘:_ @\
H C —_— @\ /H/@

Cl @&@\
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Example: Tree-like fragments of molecules

N— N—C—C—C
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Computation of the subtree kernel

@ Like the walk kernel, amounts to compute the (weighted) number
of subtrees in the product graph.

@ Recursion: if 7(v, n) denotes the weighted number of subtrees of
depth nrooted at the vertex v, then:

T(v.,n+1)= Y ] Mv.V)T(V,n),

RCN(v) v'eR

where N (v) is the set of neighbors of v.

@ Can be combined with the non-tottering graph transformation as
preprocessing to obtain the non-tottering subtree kernel.
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0 SVM and kernel methods
e Kernels for biological sequences

e Kernels for graphs

@ Applications
e Reconstruction of regulatory networks

e Supervised graph inference

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 187 /308



Application in chemoinformatics (Mahé et al., 2004)

MUTAG dataset

@ aromatic/hetero-aromatic compounds

@ high mutagenic activity /no mutagenic activity, assayed in
Salmonella typhimurium.

@ 188 compouunds: 125 +/ 63 -

10-fold cross-validation accuracy

Method | Accuracy
Progol1 81.4%
2D kernel | 91.2%
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Image classification (Harchaoui and Bach, 2007)

COREL14 dataset
@ 1400 natural images in 14 classes

@ Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination
(M).

Performance comparison on Corel14

- Toest irror
]
T}
H_ T}

H w ™ wTW
Kernels
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Summary: graph kernels

@ Kernels do not allow to overcome the NP-hardness of subgraph
patterns

@ They allow to work with approximate subgraphs (walks, subtrees),
in infinite dimension, thanks to the kernel trick

@ However: using kernels makes it difficult to come back to patterns
after the learning stage
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0 SVM and kernel methods
e Kernels for biological sequences
e Kernels for graphs

e Reconstruction of regulatory networks

Introduction

@ De novo reconstruction based on mutual information
@ De novo reconstruction based on sparse regression
@ Supervised reconstruction with one-class methods
@ Supervised inference with PU learning

e Supervised graph inference
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0 SVM and kernel methods
e Kernels for biological sequences
e Kernels for graphs

e Reconstruction of regulatory networks
@ Introduction

e Supervised graph inference
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Gene expression

Ribosome

Image adapted from: National Human Genome Research Institute.
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Gene expression regulation

gene requlatory sequences

',II ¢W$ w-&

spacer DNA

% general transcription

_— factors

y gene regulatory . RMN& polymerase
proteins - 7

TATA box e
| | start of

promoter transcription

upstream

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 195/308



Gene regulatory network

Protein 3
. <~ mMRNA1
§ |
+4
Gene 1
Protein 1
T T mRNA3 ==
\ protein complex
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Gene regulatory network of E. coli
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Gene expression data
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Reconstruction of gene regulatory network
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de novo or supervised

De novo inference
Given a matrix of expression data, infer regulations

Supervised inference

Given a matrix of expression data and a set of knows regulations, infer
other unknown regulations
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0 SVM and kernel methods
e Kernels for biological sequences
e Kernels for graphs

e Reconstruction of regulatory networks

@ De novo reconstruction based on mutual information

e Supervised graph inference
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If A regulates B, then we should expect some form of "correlation”
between the expression levels of A and B across different experiments.

We can therefore try to detect these correlations to infer regulation.
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Measuring dependency: correlation coefficients

@ (X1,Y1),...,(Xn, Yn) the n expression values of both genes

@ Pearson correlation:
_cov(X,Y) S X)(Yi-Y)

XIS RS- V)2

@ Spearman correlation: similar but replace X; by its rank.
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lllustration
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Limit of correlations
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Mutual information

(X:v)= //pxy)l g<pl()()p{))> axay

@ /(X;Y)>0
@ /(X;Y)=0ifandonly if X and Y are independent

1.0 0.8 0.4 0.0 —0.4 —0.8 ) -1.0
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0 SVM and kernel methods
e Kernels for biological sequences
e Kernels for graphs

e Reconstruction of regulatory networks

@ De novo reconstruction based on sparse regression

e Supervised graph inference
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@ The dynamic equation of the mRNA concentration of a gene is of
the form: X

— = [(X.R)

where R represent the set of concentrations of transcription
factors that regulate X.

@ At steady state, dX/dt =0 = f(X, R)
@ If we linearize f(X, R) = 0 we get linear relation of the form
X=> BX
icR

@ This suggests to look for sets of transcription factors whose
concentration is sufficient to explain the level of X across different
experiments.
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Predicting regulation by sparse regression

Let Y the expression of a gene, and Xj,. .., X, the expression of all
TFs. We look for a model

p
Y = Z BiXj + noise
i=1
where [ is sparse, i.e., only a few 3; are non-zero.
We can estimate the sparse regression model from a matrix of
expression data.
Non-zero §;’s correspond to predicted regulators.
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Example: sparse regression with the Lasso

2
p p
i ': n PR . JA. . <
Bn;Jle’E i=1 (Y, ,-E_1 X,,/ﬁ,) such that E |Bi| <t

i=1

@ No explicit solution, but this is just a quadratic program.

@ LARS (Efron et al., 2004) provides a fast algorithm to compute the
solution for all t’s simultaneously (regularization path)

@ When tis not too large, the solution will usually be sparse
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LASSO regression example
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Why LASSO leads to sparse solutions

Geometric interpretation with p = 2

T
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Improved feature selection with stability selection

@ Fort=1to T do

@ Bootstrap a random sample S; from the training set
e Randomly reweight each feature
o Select M features, e.g., with the Lassp

@ The score of a feature is the number of times it was selected
among the T repeats

@ Rank features by decreasing score.
@ See Meinshausen and Bihlmann (2009).
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Examples of de novo methods

OPEN @ ACCESS Freely available online PLOS sioLosy

Large-Scale Mapping and Validation of
Escherichia coli Transcriptional Regulation
from a Compendium of Expression Profiles

Jeremiah J. Faith'®, Boris Hayete'®, Joshua T. Thaden®, llaria Mogno®*, Jamey Wierzbowski>%, Guillaume Cottarel*®,
Simon Kasif'"2, James J. Collins™2, Timothy S. Gardner"?"

number of known interactions inferred

1000 64 129 193 257 322 386 450
< GLR operon
90 * CLR
* ARACNE
80 N * Relevance Networks
70| . + linear regression network
random
5 60
@
g 50
=40
30
20
10
0
0 2 4 6 8 10 12 14
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0 SVM and kernel methods
e Kernels for biological sequences
e Kernels for graphs

e Reconstruction of regulatory networks

@ Supervised reconstruction with one-class methods

e Supervised graph inference
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@ In many cases, we already know quite a few regulations.

@ Can we use them, in addition to expression data, to predict
unknown regulations?
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Using expression data for supervised inference

@ If a gene has an expression profile similar to other genes known to
be regulated by a TF, then it is likely to be regulated by the TF itself

@ Underlying hypothesis: genes regulated by the same TF have
similar expression variations

@ Note that this is very different from de novo inference, where we
compare the expression profile of the gene to that of the TF

@ This is only possible if we already have a list of known regulations.
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@ For agiven TF, let P C [1, n] be the set of genes known to be
regulated by it
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@ For agiven TF, let P C [1, n] be the set of genes known to be
regulated by it

@ From the expression profiles (X;);.p, estimate a score s(X) to
assess which expression profiles X are similar

_ _ _ 0
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@ For agiven TF, let P C [1, n] be the set of genes known to be
regulated by it

@ From the expression profiles (X;);.p, estimate a score s(X) to
assess which expression profiles X are similar

@ Then classify the genes not in P by decreasing score

_ _ _ 0
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Estimating the scoring function: examples

@ Kernel density estimation
s(X) =Y exp (=l X - X |?)
ieP
@ One-class SVM
s(X) = > arexp (= X - X |?)

ieP
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Estimating the scoring function: examples

@ Kernel density estimation
s(X) =Y exp (=l X - X |?)
ieP
@ One-class SVM
s(X) = Y ajexp (2l X = X |?)

ieP
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0 SVM and kernel methods
e Kernels for biological sequences
e Kernels for graphs

e Reconstruction of regulatory networks

@ Supervised inference with PU learning

e Supervised graph inference
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Since we know in advance all genes, can we use them instead of
relying only on genes in P to estimate the scoring function?
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Since we know in advance all genes, can we use them instead of
relying only on genes in P to estimate the scoring function?
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From one-class to PU learning

@ One class: given genes in P, estimate the function s(X)
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From one-class to PU learning

@ One class: given genes in P, estimate the function s(X)

@ PU learning: given genes in P and the set of unlabeled genes U,
estimate the scores s(X;) for j € U
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PU learning in practice

@ Train a classifier to discriminate P from U (eg, SVM or random
forest)

© Rank genes in U by decreasing training score
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Example: E. coli regulatory network

Ratio of true positives

0.8

0.6

0.4

0.2

CLR
SIRENE
0.8 SIRENE-Bias
5 0.6
2
=
o
o 04
CLR 0.2
SIRENE
SIRENE-Bias
0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
Ratio of false positives Recall

Method Recall at 60% | Recall at 80%
SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)
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Application: predicted regulatory network (E. coli)
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Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 225/308



0 SVM and kernel methods

e Kernels for biological sequences

e Kernels for graphs

e Reconstruction of regulatory networks

e Supervised graph inference

Introduction

@ Supervised methods for pairs

@ Learning with local models

@ From local models to pairwise kernels
@ Experiments
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0 SVM and kernel methods

e Kernels for biological sequences

e Kernels for graphs

e Reconstruction of regulatory networks

e Supervised graph inference
@ Introduction
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Proteins
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Network 1: protein-protein interaction
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Network 2: metabolic network

Methane
metabolism

1 3622
L-Serine ? 27174 Adenylylsulfate 31;’5110?;10&%1
) === = {4P5) 3137 |Soate
Sulfate M‘\L S
2.7.1.25
1831 18992
1821 1848
113.11.18]
Sulfur Q-4
11399~
Sulfite
- A
Acetyl-L-Serine O
ety ermne - 1812
O-Acetyl-L-
homosering

o+—1z3

Jean-Philippe Vert (ParisTech) Machine learning in systems biology

230/308



Network 3: gene regulatory network
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Data available

Biologists have collected a lot of data about proteins. e.g.,
@ Gene expression measurements
@ Phylogenetic profiles
@ Location of proteins/enzymes in the cell

How to use this information “intelligently” to find a good function that
predicts edges between nodes. ’
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@ Gene expression,

@ Protein-protein interactions,
@ Gene sequence, @ Metabolic pathways,

@ Protein localization, ... @ Signaling pathways, ...
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More precisely

Formalization

e V={1,...,N} vertices (e.g., genes, proteins)
@ D= (xq,...,xy) € HN data about the vertices (H Hilbert space)
@ Goal: predict edges £ C V x V. We focus on undirected graphs.
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More precisely

Formalization
e V={1,...,N} vertices (e.g., genes, proteins)
@ D= (xq,...,xy) € HN data about the vertices (H Hilbert space)

@ Goal: predict edges £ C V x V. We focus on undirected graphs.

v
”

“De novo” inference

@ Given data about individual genes and proteins D, ...
@ ... Infer the edges between genes and proteins £
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More precisely

Formalization
e V={1,...,N} vertices (e.g., genes, proteins)
@ D= (xy,...,xy) € H" data about the vertices (H Hilbert space)
@ Goal: predict edges £ C V x V. We focus on undirected graphs.

“De novo” inference

@ Given data about individual genes and proteins D, ...
@ ... Infer the edges between genes and proteins £

“Supervised” inference
@ Given data about individual genes and proteins D, ...

@ ... and given some known interactions Eyain C &, ...
@ ... infer unknown interactions Eiest = £\ Erain
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De novo methods

Typical strategies

@ Fit a dynamical system to time series (e.g., PDE, boolean
networks, state-space models)

@ Detect statistical conditional independence or dependency
(Bayesian netwok, mutual information networks, co-expression)
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De novo methods

Typical strategies

@ Fit a dynamical system to time series (e.g., PDE, boolean
networks, state-space models)

@ Detect statistical conditional independence or dependency
(Bayesian netwok, mutual information networks, co-expression)

@ Excellent approach if the @ Specific to particular data
model is correct and and networks
enough data are available @ Needs a correct model!
@ Interpretability of the model e Difficult integration of
@ Inclusion of prior heterogeneous data
knowledge | e Often needs a lot of data
and long computation time
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Evaluation on metabolic network reconstruction

@ The known metabolic network of the yeast involves 769 proteins.

@ Predict edges from distances between a variety of genomic data
(expression, localization, phylogenetic profiles, interactions).

o

Expression

True positive

Protein interaction
Localization
Phylogenetic profile

Integration

T T T T T
ik 0.z 04 06 0.8 1.0
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Supervised methods

In actual applications,
@ we know in advance parts of the network to be inferred

@ the problem is to add/remove nodes and edges using genomic
data as side information

Supervised method

@ Given genomic data and
the currently known
network...

@ Infer missing edges
between current nodes and
additional nodes.

vy
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Pattern recognition

O 0 0q,
O 0 o

@ Given a training set of patterns in two classes, learn to
discriminate them

@ Many algorithms (ANN, SVM, Decision tress, ...)
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Pattern recognition

© 0 04
O O

@ Given a training set of patterns in two classes, learn to
discriminate them

@ Many algorithms (ANN, SVM, Decision tress, ...)
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Pattern recognition

O 0 0q

O O

@ Given a training set of patterns in two classes, learn to
discriminate them

@ Many algorithms (ANN, SVM, Decision tress, ...)
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Pattern recognition

@ Given a training set of patterns in two classes, learn to
discriminate them

@ Many algorithms (ANN, SVM, Decision tress, ...)
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Pattern recognition and graph inference

Pattern recognition
Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (X3, X2)
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Pattern recognition and graph inference

Pattern recognition
Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (X3, X2)

Two solutions
@ Consider each pair (X1, X2) as a single data -> learning over pairs

@ Reformulate the graph inference problem as a pattern recognition
problem at the level of individual vertices -> local models
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0 SVM and kernel methods

e Kernels for biological sequences

e Kernels for graphs

e Reconstruction of regulatory networks

e Supervised graph inference

@ Supervised methods for pairs
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Pattern recognition for pairs: basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!

1 10 s
2 [
]
4 ®3
3 2@
Known graph Genomic data

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 241 /308



Pattern recognition for pairs: basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Pattern recognition for pairs: basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Known graph Genomic data ’

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 241 /308



Representing a pair as a vector

@ Each individual protein is represented by a vector v € RP

@ Depending on the network, we are interested in ordered or
unordered pairs of proteins.

@ We must represent a pair of proteins (u, v) by a vector
¥(u,v) € RY9in order to estimate a linear classifier

@ Question: how build ¢ (u, v) from u and v, in the ordered and
unordered cases?
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Direct sum for ordered pairs?

@ A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

zb(u,v):u@v:(g).
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Direct sum for ordered pairs?

@ A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

zb(u,v):u@v:(g).

@ Problem: a linear function then becomes additive...

fluv)=w'y(u,v)=wju+w'v.
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Direct product for ordered pairs

@ Alternatively, make the direct product, i.e., the p?>-dimensional
vector whose entries are all products of entries of u by entries of
v:

v(u,v)=uv
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Direct product for ordered pairs

@ Alternatively, make the direct product, i.e., the p?>-dimensional
vector whose entries are all products of entries of u by entries of
v:

v(u,v)=uv

@ Problem: can get really large-dimensional...
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Direct product for ordered pairs

@ Alternatively, make the direct product, i.e., the p?>-dimensional

vector whose entries are all products of entries of u by entries of
v:

v(u,v)=uv

@ Problem: can get really large-dimensional...
@ Good news: inner product factorizes:

(ur @ vi)" (U @ W) = <UIU2) X (vﬁv2> ,
which is good for algorithms that use only inner products (SVM...):

Kp ((U17 V1)7 (Ug, V2)) = ’l/)(U17 V1 )Tw(UQ, V2) = K(U1 s U2)K(V1, V2)
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Representing an unordered pair

@ Often we want to work with unordered pairs, e.g., PPI network:

{U7 V} = {(U, V): (V, U)}
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Representing an unordered pair

@ Often we want to work with unordered pairs, e.g., PPI network:

{U7 V} = {(U, V): (V, U)}

@ This suggest to symmetrize the representation of ordered pairs:

wU({uv V}) - 17/}(“7 V) + ¢(V7 U)
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Representing an unordered pair

@ Often we want to work with unordered pairs, e.g., PPI network:

{U7 V} = {(U, V): (V, U)}

@ This suggest to symmetrize the representation of ordered pairs:

wU({uv V}) - 17/}(“7 V) + ¢(V7 U)

@ When ¢(u, v) = u® v, this leads to the symmetric tensor product
pairwise kernel (TPPK) (Ben-Hur and Noble, 2006):

Krppk ({uq, i}, {uz, va}) = K(uy, u2) K(vq, Vo) +K(uy, v2)K(vy, Uo)
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Another idea: metric learning

@ For two vectors u, v € H let the metric:

du(u,v) = (u—v) Mu—v).
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Another idea: metric learning

@ For two vectors u, v € H let the metric:

du(u,v) = (u—v) Mu—v).

@ Can we learn the metric M such that, in the new metric, connected
points are near each other, and non-connected points are far from
each other?
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Another idea: metric learning

@ For two vectors u, v € H let the metric:

du(u,v) = (u—v) Mu—v).

@ Can we learn the metric M such that, in the new metric, connected
points are near each other, and non-connected points are far from
each other?

@ We consider the problem:
min /(UivViayi)+)‘||M|‘%robeniusv

M>0 &
1

where [ is a hinge loss to enforce:

<1 -7~ if(y;, v;)is connected,
>1+~ otherwise.

dm(ui, vi) {
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Link with metric learning

Theorem (V. et al., 2007)
@ A SVM with the representation

Y({u,v}) = (u—-v)*

trained to discriminate connected from non-connected pairs,
solves this metric learning problem without the constraint M > 0.

@ Equivalently, train the SVM over pairs with the metric learning
pairwise kernel:

Kuek ({ur, v}, {uz, v2}) = ({us, vi}) "o ({ue, v2})
= [K(ur, tp) — K(us, v2) — K (w1, ) + K(uz, v2)]? .
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0 SVM and kernel methods

e Kernels for biological sequences

e Kernels for graphs

e Reconstruction of regulatory networks

e Supervised graph inference

@ Learning with local models
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The idea (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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The idea (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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The LOCAL model

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 250/ 308



The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model
+1 O

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 250/ 308



The LOCAL model
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The LOCAL model




The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 250/ 308



@ In the case of unordered interactions, we need to symmetrize the
prediction, typically by averaging the predictive scores of A — B
and B — Ato predict the interaction {A, B}
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@ In the case of unordered interactions, we need to symmetrize the
prediction, typically by averaging the predictive scores of A — B
and B — Ato predict the interaction {A, B}

@ Weak hypothesis:

e if Ais connected to B,
e if C is similar to B,
o then A is likely to be connected to C.
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@ In the case of unordered interactions, we need to symmetrize the
prediction, typically by averaging the predictive scores of A — B
and B — Ato predict the interaction {A, B}

@ Weak hypothesis:

e if Ais connected to B,
o if Cis similar to B,
o then A is likely to be connected to C.

@ Computationally: much faster to train N local models with N
training points each, than to train 1 model with N training points.
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@ In the case of unordered interactions, we need to symmetrize the
prediction, typically by averaging the predictive scores of A — B
and B — Ato predict the interaction {A, B}

@ Weak hypothesis:

e if Ais connected to B,
e if Cis similar to B,
o then A is likely to be connected to C.

@ Computationally: much faster to train N local models with N
training points each, than to train 1 model with N? training points.

@ Caveats:

e each local model may have very few training points
e no sharing of information between different local models
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0 SVM and kernel methods

e Kernels for biological sequences

e Kernels for graphs

e Reconstruction of regulatory networks

e Supervised graph inference

@ From local models to pairwise kernels
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In the case of unordered pairs {A, B}, pairwise kernels such as the
TPPK and local models look very different:

@ Local models seem to over-emphasize the asymmetry of the
relationships, but symmetrize the prediction a posteriori

@ Pairwise kernels symmetrize the data a priori and learn in the
space or unordered pairs

Can be clarify the links between these approaches, and perhaps
interpolate between them?
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@ A the set of individual proteins, endowed with a kernel K4

@ X = A2 the set of ordered pairs of the form x = (a, b) endowed
with a kernel Ky (usually deduced from K4)

@ P the set of unordered pairs of the form p = {(a, b), (b, a)}

@ We want to learn over P from a set of labeled training pairs

(p1aY1)a---a(PnaYn) €P % {_171}
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Two strategies to learn over P

Strategy 1: Inference over P with a pair kernel

@ Define a kernel Kp over P by convolution of Ky :

Kp(p, p') > Ka(x, X))
p xepx’ep

@ Train a classifier over P e.g., a SVM, using the kernel Kp
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Two strategies to learn over P

Strategy 1: Inference over P with a pair kernel

@ Define a kernel Kp over P by convolution of Ky :

Ko(pp) = —— 3 Ky(x,x).

=
Pl 1P| e

@ Train a classifier over P e.g., a SVM, using the kernel Kp

v

Strategy 2: Inference over X with a pair duplication

@ Duplicate each training pair p = {a, b} into 2 ordered paired
© Train a classifier over X, e.g., a SVM, using the kernel Ky
© The classifier over P is then the a posteriori average:

o (p) = 17 - ()

XEp

v
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The TPPK kernel

Krppi ({37 b} ) {07 d}) = KA(a7 C)KA(b7 d) + K.A(av d)KA(b7 C) :

Theorem
Let X = A2 be endowed with the p.d. kernel:

Kx ((a,b), (¢, d)) = 2Ka(a, c)Ka(b. d) @)

Then the TPPK approach is equivalent to both Strategy 1 and Strategy
2.

v

Remarks: Equivalence with Strategy 1 is obvious, equivalence with
Strategy 2 is not, see proof in Hue and V. (ICML 2010).
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The local models

Let X = A2 be endowed with the p.d. kernel:

Kx ((a7 b)7 (07 d)) - 5(37 C)KA(b7 d) )

where ¢ is the Kronecker kernel (6(a,c) = 1 if a = ¢, 0 otherwise).
Then the local approach is equivalent to Strategy 2.

Remarks: Strategies 1 and 2 are not equivalent with this kernel. In
general, they are equivalent up to a modification in the loss function of
the learning algorithm, see details in Hue and V. (ICML 2010)..
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Interpolation between local model and TPPK

Strategy 1: pair kernel | Strategy 2: duplication
Ky = Ka® Ka TPPK TPPK
Ky =00 Ky new Local model
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Interpolation between local model and TPPK

Strategy 1: pair kernel | Strategy 2: duplication
Ky = Ka® Ka TPPK TPPK
Ky =00 Ky new Local model

Interpolation:
Ky =((1=MNK4s+ X)) @ Ky

for A € [0, 1]
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0 SVM and kernel methods

e Kernels for biological sequences

e Kernels for graphs

e Reconstruction of regulatory networks

e Supervised graph inference

@ Experiments
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Results: protein-protein interaction (yeast)

1
1
—Direct
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2 08 —KCCA
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—local
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% 02 04 06 08 1 0 02 04 06 08 1
Ratio of false positives Recall

(from Bleakley et al., 2007)
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Results: metabolic gene network (yeast)

1,
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Ratio of false positives

(from Bleakley et al., 2007)
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Interpolation kernel

Table: Strategy and kernel realizing the maximum mean AUC for nine

metabolic and protein-protein interaction networks experiments, with the
kernel K* for A € [0, 1].

benchmark best kernel
interaction, exp Duplicate, A = 0.7
interaction, loc Pair kernel, A = 0.6
interaction, phy Duplicate, A = 0.8
interaction, y2h Duplicate / Pair kernel, A =0
interaction, integrated Duplicate / Pair kernel, A = 0
metabolic, exp Pair kernel, A = 0.6
metabolic, loc Pair kernel, A = 1
metabolic, phy Pair kernel, A = 0.6

metabolic, integrated  Duplicate / Pair kernel, A = 0
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Interpolation kernel

0.78 0.90
~ = ]
—— Duplicate 080 —— Duplicate
0.77 |
0.88
076 0.87
g - 3
2 2
0.86
0.75
0.85
0.84
074
0.0 0.2 0.4 06 0.8 10 0835 02 0.4 0.6 0.8 1o
lambda lambda

Metabolic networks with localization data (left); PPl network with
expression data (right)
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Applications: missing enzyme prediction

£FEBS

Journal

Prediction of missing enzyme genes in a bacterial
metabolic network

Reconstruction of the lysine-degradation pathway of Pseudomonas
aeruginosa

Yoshihiro Yamanishi®, Hisaaki Miharaz, Motoharu Osakiz, Hisashi Muramatsuaj Nobuyoshi Esakiz,
Tetsuya Sato’, Yoshiyuki Hizukuri', Susumu Goto' and Minoru Kanehisa'

1 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan
2 Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Japan
3 Department of Biology, Graduate School of Sciencs, Osaka University, Japan

Gene Location
Predicted Gene Network

+
Phylogenetic Profile

Gene1(101000101110)
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Gene3(101000101110)
Gene4 (101000101110)
Gene5(000000101110)
Gene6(111111111110)
Gene7(101001111111)
Gene8(101000000010)
Gene9(101000000010) PATHWAY Database
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Applications: missing enzyme prediction
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Applications: missing enzyme prediction

900 DOI 10.1002/pmic.200600862 Proteomics 2007, 7, 900-909

RESEARCH ARTICLE

Prediction of nitrogen metabolism-related genes in
Anabaena by kernel-based network analysis

Shinobu Okamoto’*, Yoshihiro Yamanishi', Shigeki Ehira?, Shuichi Kawashima®,
Koichiro Tonomura’** and Minoru Kanehisa'

' Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
2 Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
3 Human Genome Center, Institute of Medical Science, University of Tokyo, Meguro, Japan
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Applications: function annotation

Determination of the role of the bacterial peptidase PepF by statistical
inference and further experimental validation

Liliana LOPEZ KLEINE'?, Alain TRUBUIL', Véronique MONNET*

'Unité de Mathématiques et Informatiques Appliquées. INRA Jouy en Josas 78352, France.
2Unité de Biochimie Bactérienne. INRA J ouy en Josas 78352, France.
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Conclusion

@ When the network is known in part, supervised methods are more
adapted than unsupervised ones.

@ A variety of methods have been investigated recently (metric
learning, matrix completion, pattern recognition).

e work for any network

e work with any data

e can integrate heterogeneous data, which strongly improves
performance

@ Promising topic: infer edges simultaneously with global
constraints on the graph?
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0 SVM and kernel methods

e Kernels for biological sequences

e Kernels for graphs

e Reconstruction of regulatory networks
e Supervised graph inference

@ Expression data classification with gene networks
@ Motivation
@ Using gene networks as prior knowledge
@ Application
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0 SVM and kernel methods

e Kernels for biological sequences

e Kernels for graphs

e Reconstruction of regulatory networks
e Supervised graph inference

@ Expression data classification with gene networks
@ Motivation

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 270/308



Tissue profiling with DNA chips

Prepare ¢cDNA'Probe’ Prepare'Microarray/

@ Gene expression measures for more than 10k genes

@ Measured typically on less than 100 samples of two (or more)
different classes (e.g., different tumors)
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Tissue classification from microarray data

C-myb (U22376)
Trocasome ol (X55417)
MB-1 ¢
Cyclin D3 92287y
Myosin light chain (M31211)
RbAPS (X74262)

INF2 (D26150

Goal

e @ Design a classifier to

Acyl-Cocnzyme A dehydrogenase (M91432)
SNF2 (U29175)

;:.:::U"Jg;;.;z"m” automatically assign a

otk class to future samples

Hete mthmmullll ortein 25 (U35451)
1L7 e

SR o from their expression
profile

@ Interpret biologically the

differences between the
classes
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Linear classifiers

The approach

@ Each sample is represented by a vector x = (xy, ..., Xp) where
p > 10° is the number of probes

@ Classification: given the set of labeled sample, learn a linear
decision function:

o
f3(x) =Y Bixi+ Bo
i=1

that is positive for one class, negative for the other

@ Interpretation: the weight ; quantifies the influence of gene i for
the classification
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Linear classifiers estimation

Empirical risk minimization
Estimate the weights g; by minimizing an empirical error on the training
set:

BeRP+1 N

-
min — > " I(f3(x), ¥i)
i—

where I(y, f(x)) is a loss function.
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Linear classifiers estimation
Empirical risk minimization

Estimate the weights g; by minimizing an empirical error on the training
set:

BeRP+1 N

-
min — > " I(f3(x), ¥i)
i—

where I(y, f(x)) is a loss function.

Pitfalls

@ Statistics does not apply (?): 100 samples in 10° dimensions!

@ Itis necessary to reduce the complexity of the problem with prior
knowledge.
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Example : Norm Constraints

The approach

A common method in statistics to learn with few samples in high
dimension is to constrain the Euclidean norm of

p
1818 =Y 5%,
i=1

(ridge regression, support vector machines...)

@ Good performance in

@ Limited interpretation
classification

(small weights)
@ No prior biological
knowledge
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Example : Feature Selection

The approach

Constrain most weights to be 0, i.e., select a few genes (< 100) whose
expression are enough for classification. Interpretation is then about
the selected genes. Examples:

@ Greedy feature selection (T-tests, ...)

@ Contrain the norm of 3: LASSO penalty (|| 3 [l1 = >-5_; | 8i]),
elastic net penalty (|| 811 + || B12), --- )

Cons

@ The gene selection
process is usually not

@ Good performance in
classification

@ Biomarker selection robust
@ Interpretability @ No use of prior biological
knowledge

<

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 276 /308



Gene networks
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Gene networks

Protein
Kinases

Assuming you give me a reliable gene network as prior knowledge,
can it be helpful for the classification problem?
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0 SVM and kernel methods

e Kernels for biological sequences

e Kernels for graphs

e Reconstruction of regulatory networks
e Supervised graph inference

@ Expression data classification with gene networks

@ Using gene networks as prior knowledge
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Gene network interpretation

@ Basic biological functions usually involve the coordinated action of
several proteins:
e Formation of protein complexes
e Activation of metabolic, signalling or regulatory pathways

@ Many pathways and protein-protein interactions are already known

@ Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge
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microarray smooth component high-frequency component

@ Use the gene network to extract the “important information” in
gene expression profiles by Fourier analysis on the graph

@ Learn a linear classifier on the smooth components
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Graph Laplacian

Definition

The Laplacian of the graph is the matrix L = D — A.

1
3 5
4
2
1. 0 -1 0 0
0 1 -1 0 0
L=D-A=| -1 -1 3 -1 0
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Properties of the Laplacian

Lemma

Let L = D — A be the Laplacian of the graph:
@ Foranyf: X — R,

e =" (F(x) — £ (x;))?

in~f

@ L is a symmetric positive semi-definite matrix

@ 0 is an eigenvalue with multiplicity equal to the number of
connected components.
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Proof: link between Q(f) and L

> () = £ (x)) = D7 (FO)? + 7 (%)% = 2F (x) 7 (x;) )

i~f i~f
m
= D ()2 =2 f (%) f (x))
i=1 i~
— ' Df — fTAf
= fILf
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Proof: eigenstructure of L

@ L is symmetric because A and D are symmetric.
@ Forany f e R™, fTLf > 0, therefore the (real-valued) eigenvalues
of Lare > 0 : L is therefore positive semi-definite.

@ fis an eigenvector associated to eigenvalue 0
iff FTLF=0 )
iff > (F(xi) = f(x))" =0,
iff £(x;) = f (x;) when i ~ j,
iff f is constant (because the graph is connected).
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Fourier basis

@ The eigenvectors ey, ..., e, of L with eigenvalues
0=\ <...< \,form a basis called Fourier basis

@ Forany f: V — R, the Fourier transform of f is the vector feRrn
defined by: A
f=f'e, i=1,...,n

@ Obviously the inverse Fourier formula holds:

n
f= Z?,-e,-.
i=1
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Fourier basis

=0 A=-0.5 =1

A=-2.3 A=-42
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Smoothing operator

@ Let ¢ : Rt — R™ be non-increasing.
@ A smoothing operator Sy transform a function f : V — R into a
smoothed version:

Ss(f) =>_Tis(\)ei.
i=1
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Smoothing operators

@ Identity operator (S,(f) = f):

p(N) =1, VA

v
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Smoothing operators

@ Identity operator (S,(f) = f):

@ Low-pass filter:

¢(A):{1 if A< \*,

0 otherwise.

v
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Smoothing operators
@ Identity operator (S,(f) = f):

p(N) =1, VA

@ Low-pass filter:

¢(A):{1 if A< \*,

0 otherwise.

@ Attenuation of high frequencies:

6()) = exp(—BA).

v
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Supervised classification and regression

Working with smoothed profiles

@ Classical methods for linear classification and regression with a
ridge penalty solve:

min Z 1(B7Hyi) +A875.

BERP N

@ Applying these algorithms on the smooth profiles means solving:

min — Z I (6T8¢ y,-) +2373.

BERP N
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Smooth solution

Lemma

This is equivalent to:

NS () S
Qh@n; (V) + ;qﬁ(m’

hence the linear classifier v is smooth.
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Smooth solution

Lemma

This is equivalent to:

NS () S
\Q%Ln; (vTtin) + ;qﬁ(x,)’

hence the linear classifier v is smooth.

@ Letv=>",0(\)ee 3, then

n

BTSs(f)=p8" Z?ﬂb()\i)ei =flv.

i=1

o A Ta_yn _¥
@ Then v, =¢(\)Biand 3" =>4 O

v

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 294 /308



Kernel methods

Smoothing kernel

Kernel methods (SVM, kernel ridge regression..) only need the inner
product between smooth profiles:

K(f,g) = Ss(f)" S4(9)

n
= " fgis(\)
i=1

n
=fT (Z ¢()\,-)2e,-e,-T> g
i=1
=TKyg,
with

n
K(/) = Z gb()\,')Ze,'e,-T -
i=1
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@ For ¢(X\) = exp(—t\), we recover the diffusion kernel:

K, = expy(—2tL) .
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@ For ¢(X\) = exp(—t\), we recover the diffusion kernel:

K, = expy(—2tL) .

@ For ¢(\) = 1/+/1+ A, we obtain
Ko=(L+N7",

and the penalization is:

n ~D
Vi
E _v L+Nv=]v +§ Vi — V)

INj
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0 SVM and kernel methods

e Kernels for biological sequences

e Kernels for graphs

e Reconstruction of regulatory networks
e Supervised graph inference

@ Expression data classification with gene networks

@ Application
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Expression

@ Study the effect of low irradiation doses on the yeast
@ 12 non irradiated vs 6 irradiated

@ Which pathways are involved in the response at the transcriptomic
level?

o KEGG database of metabolic pathways

@ Two genes are connected is they code for enzymes that catalyze
successive reactions in a pathway (metabolic gene network).

@ 737 genes, 4694 vertices.
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Classification performance
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Classifier
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Classifier
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@ Given a gene network, spectral graph analysis (Fourier analysis)
is helpful to analyze signals over the network, e.g., gene
expression data

@ We can smooth profiles with frequency filters or attenuation

@ Combined with a SVM through spectral graph kernels, we can
detect discriminant pathways or protein complexes.

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 302 /308



@ SVM and kernel methods

e Kernels for biological sequences

e Kernels for graphs

e Reconstruction of regulatory networks

e Supervised graph inference

@ Expression data classification with gene networks

e Conclusion
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Machine learning in computational and systems

biology

@ Biology faces a flood of data following the development of
high-throughput technologies (sequencing, DNA chips, ...)
@ Many problems can be formalized in the framework of machine
learning, e.g.:
e Protein annotation
e Drug discovery, virtual screening
e Gene network inference
@ These data have often complex structures (strings, graphs,
high-dimensional vectors) and often require dedicated algorithms.
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Support vector machines (SVM)

@ A general-purpose algorithm for pattern recognition

@ Based on the principle of large margin ("séparateur a vaste
marge")

@ Linear or nonlinear with the kernel trick

@ Control of the regularization / data fitting trade-off with the C
parameter

@ State-of-the-art performance on many applications
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Kernels

@ A central ingredient of SVM

@ Allows nonlinearity

@ Allows to work implicitly in a high-dimensional feature space
@ Allows to work with structured data (e.g., graphs)
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Gene network inference

@ Ab initio reconstruction of regulatory network can be formulated as
feature selection, and solved, e.g., by the Lasso or random forests

@ Supervised reconstruction is more powerful when edges (e.g.,
regulations) are already known

@ PU learning is more powerful than one-class learning in this
setting, and can be solved by SVM

@ Predicting edges requires learning over pairs with specific kernels
in the case of SVM
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Using gene networks

@ Gene networks can be used as prior knowledge to analyze gene
expression data

@ Spectral graph analysis and graph kernels are useful tools

@ It allows to capture pathways or protein complexes instead of
individual genes
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