Machine Learning in Computational and Systems Biology

Jean-Philippe Vert

Jean-Philippe.Vert@mines-paristech.fr

Mines ParisTech / Institut Curie / Inserm

Malaysia Genome Institute, Nov 8-12, 2010.

- SVM and kernel methods
 - Machine learning in bioinformatics
 - Linear SVM
 - Nonlinear SVM and kernels
- 2 Kernels for biological sequences
 - Motivations
 - Feature space approach
 - Using generative models
 - Derive from a similarity measure
 - Application: remote homology detection

3 Kernels for graphs

- Motivation
- Explicit computation of features
- Graph kernels: the challenges
- Walk-based kernels
- Applications

- SVM and kernel methods
 - Machine learning in bioinformatics
 - Linear SVM
 - Nonlinear SVM and kernels
- 2 Kernels for biological sequences
 - Motivations
 - Feature space approach
 - Using generative models
 - Derive from a similarity measure
 - Application: remote homology detection

B) Kernels for graphs

- Motivation
- Explicit computation of features
- Graph kernels: the challenges
- Walk-based kernels
- Applications

- SVM and kernel methods
 - Machine learning in bioinformatics
 - Linear SVM
 - Nonlinear SVM and kernels
- 2 Kernels for biological sequences
 - Motivations
 - Feature space approach
 - Using generative models
 - Derive from a similarity measure
 - Application: remote homology detection

Kernels for graphs

- Motivation
- Explicit computation of features
- Graph kernels: the challenges
- Walk-based kernels
- Applications

4

Reconstruction of regulatory networks

- Introduction
- De novo reconstruction based on mutual information
- De novo reconstruction based on sparse regression
- Supervised reconstruction with one-class methods
- Supervised inference with PU learning

5 Supervised graph inference

- Introduction
- Supervised methods for pairs
- Learning with local models
- From local models to pairwise kernels
- Experiments
- 6 Expression data classification with gene networks
 - Motivation
 - Using gene networks as prior knowledge
 - Application

- 4
- Reconstruction of regulatory networks
 - Introduction
- De novo reconstruction based on mutual information
- De novo reconstruction based on sparse regression
- Supervised reconstruction with one-class methods
- Supervised inference with PU learning
- Supervised graph inference
 - Introduction
 - Supervised methods for pairs
 - Learning with local models
 - From local models to pairwise kernels
 - Experiments
- Expression data classification with gene networks
 - Motivation
 - Using gene networks as prior knowledge
 - Application

- 4
- Reconstruction of regulatory networks
 - Introduction
- De novo reconstruction based on mutual information
- De novo reconstruction based on sparse regression
- Supervised reconstruction with one-class methods
- Supervised inference with PU learning
- Supervised graph inference
 - Introduction
 - Supervised methods for pairs
 - Learning with local models
 - From local models to pairwise kernels
 - Experiments
- 6 Expression data classification with gene networks
 - Motivation
 - Using gene networks as prior knowledge
 - Application

SVM and kernel methods

- Machine learning in bioinformatics
- Linear SVM
- Nonlinear SVM and kernels
- Kernels for biological sequences
- 3 Kernels for graphs
- 4 Reconstruction of regulatory networks
- 5 Supervised graph inference

Expression data classification with gene networks

SVM and kernel methods

Machine learning in bioinformatics

- Linear SVM
- Nonlinear SVM and kernels
- Kernels for biological sequences
- 3 Kernels for graphs
- 4 Reconstruction of regulatory networks
- 5 Supervised graph inference

Expression data classification with gene networks

Proteins

A : Alanine	V : Valine	L : Leucine
F : Phenylalanine	P : Proline	M : Methionine
E : Acide glutamique	K : Lysine	R : Arginine
T : Threonine	C : Cysteine	N : Asparagine
H : Histidine	V : Thyrosine	W : Tryptophane
I : Isoleucine	S : Serine	Q : Glutamine
D : Acide aspartique	G : Glycine	

Jean-Philippe Vert (ParisTech)

Protein annotation

Data available

Secreted proteins:

MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA... MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW... MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...

• •

Non-secreted proteins:

MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG... MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG... MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP..

Problem 1

Given a newly sequenced protein, is it secreted or not?

Drug discovery

Problem 2

Given a new candidate molecule, is it likely to be active?

Jean-Philippe Vert (ParisTech)

Machine learning in systems biology

$DNA \rightarrow RNA \rightarrow protein$

Tissue profiling with DNA chips

Use in diagnosis

Problem 3

Given the expression profile of a leukemia, is it an acute lymphocytic or myeloid leukemia (ALL or AML)?

Jean-Philippe Vert (ParisTech)

Use in prognosis

Problem 4

Given the expression profile of a breast cancer, is the risk of relapse within 5 years high?

Jean-Philippe Vert (ParisTech)

Machine learning in systems biology

Gene network inference

Problem 5

Given known interactions, can we infer new ones?

Jean-Philippe Vert (ParisTech)

Machine learning in systems biology

Challenges

- High dimension
- Few samples
- Structured data
- Heterogeneous data
- Prior knowledge
- Fast and scalable implementations
- Interpretable models

Methods for pattern recognitions

Many methods!

- Logistic regression
- Nearest neighbours
- Decision trees and random forests
- Neural networks
- Support vector machines (SVM)

SVM and kernel methods

- Machine learning in bioinformatics
- Linear SVM
- Nonlinear SVM and kernels
- Kernels for biological sequences
- 3 Kernels for graphs
- 4 Reconstruction of regulatory networks
- 5 Supervised graph inference

Expression data classification with gene networks

Linear classifiers

Linear classifiers

Linear classifiers

Which one is better?

The margin of a linear classifier

The margin of a linear classifier

The margin of a linear classifier

The margin of a linear classifier

The margin of a linear classifier

Largest margin classifier (support vector machines)

• The training set is a finite set of *N* data/class pairs:

$$\mathcal{S} = \left\{ (\vec{x}_1, y_1), \dots, (\vec{x}_N, y_N) \right\} \,,$$

where $\vec{x}_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$.

We assume (for the moment) that the data are linearly separable,
 i.e., that there exists (w, b) ∈ ℝ^d × ℝ such that:

$$\begin{cases} \vec{w}.\vec{x}_i + b > 0 & \text{if } y_i = 1, \\ \vec{w}.\vec{x}_i + b < 0 & \text{if } y_i = -1 \end{cases}$$

How to find the largest separating hyperplane?

For a given linear classifier $f(x) = \vec{w} \cdot \vec{x} + b$ consider the "tube" defined by the values -1 and +1 of the decision function:

Indeed, the points \vec{x}_1 and \vec{x}_2 satisfy:

$$\begin{cases} \vec{w}.\vec{x}_1 + b = 0, \\ \vec{w}.\vec{x}_2 + b = 1. \end{cases}$$

By subtracting we get $\vec{w}.(\vec{x}_2 - \vec{x}_1) = 1$, and therefore:

$$\gamma = 2||\vec{x}_2 - \vec{x}_1|| = \frac{2}{||\vec{w}||}.$$

All training points should be on the right side of the dotted line

For positive examples $(y_i = 1)$ this means:

 $\vec{w}.\vec{x}_i + b \geq 1$

For negative examples $(y_i = -1)$ this means:

$$\vec{w}.\vec{x}_i + b \leq -1$$

Both cases are summarized by:

 $\forall i = 1, \ldots, N, \qquad y_i \left(\vec{w}. \vec{x}_i + b \right) \geq 1$

Finding the optimal hyperplane

Find (\vec{w}, b) which minimize:

$$||\vec{w}||^2$$

under the constraints:

 $\forall i = 1, \ldots, N, \qquad y_i \left(\vec{w}. \vec{x}_i + b \right) - 1 \ge 0.$

This is a classical quadratic program on \mathbb{R}^{d+1} .

Jean-Philippe Vert (ParisTech)

In order to minimize:

$$\frac{1}{2}||\vec{w}||^2$$

under the constraints:

$$\forall i=1,\ldots,N, \qquad y_i\left(\vec{w}.\vec{x}_i+b\right)-1\geq 0.$$

we introduce one dual variable α_i for each constraint, i.e., for each training point. The Lagrangian is:

$$L(\vec{w}, b, \vec{\alpha}) = \frac{1}{2} ||\vec{w}||^2 - \sum_{i=1}^{N} \alpha_i \left(y_i \left(\vec{w} \cdot \vec{x}_i + b \right) - 1 \right).$$

Find $\boldsymbol{\alpha}^* \in \mathbb{R}^{\textit{N}}$ which maximizes

$$L(\vec{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j \vec{x}_i \cdot \vec{x}_j,$$

under the (simple) constraints $\alpha_i \ge 0$ (for i = 1, ..., N), and

$$\sum_{i=1}^{N} \alpha_i \mathbf{y}_i = \mathbf{0}.$$

This is a quadratic program on \mathbb{R}^N , with "box constraints". $\vec{\alpha}^*$ can be found efficiently using dedicated optimization softwares.

Once $\vec{\alpha}^*$ is found, we recover (\vec{w}^*, b^*) corresponding to the optimal hyperplane. w^* is given by:

$$\vec{w}^* = \sum_{i=1}^N \alpha_i \vec{x}_i,$$

and the decision function is therefore:

$$f^{*}(\vec{x}) = \vec{w}^{*}.\vec{x} + b^{*}$$

= $\sum_{i=1}^{N} \alpha_{i}\vec{x}_{i}.\vec{x} + b^{*}.$ (1)

Interpretation: support vectors

Soft-margin SVM

- Find a trade-off between large margin and few errors.
- Mathematically:

$$\min_{f} \left\{ \frac{1}{margin(f)} + C \times errors(f) \right\}$$

• C is a parameter

Soft-margin SVM formulation

• The margin of a labeled point (\vec{x}, y) is

$$margin(\vec{x}, y) = y(\vec{w}.\vec{x} + b)$$

- The error is
 - 0 if $margin(\vec{x}, y) > 1$,
 - $1 margin(\vec{x}, y)$ otherwise.
- The soft margin SVM solves:

$$\min_{\vec{w},b} \left\{ ||\vec{w}||^2 + C \sum_{i=1}^{N} \max\left(0, 1 - y_i\left(\vec{w}.\vec{x}_i + b\right)\right) \right\}$$

Maximize

$$L(\vec{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j \vec{x}_i . \vec{x}_j,$$

under the constraints:

$$\begin{cases} \mathbf{0} \le \alpha_i \le \mathbf{C}, & \text{for } i = 1, \dots, N\\ \sum_{i=1}^{N} \alpha_i \mathbf{y}_i = \mathbf{0}. \end{cases}$$

Interpretation: bounded and unbounded support vectors

Outline

SVM and kernel methods

- Machine learning in bioinformatics
- Linear SVM
- Nonlinear SVM and kernels
- Kernels for biological sequences
- 3 Kernels for graphs
- 4 Reconstruction of regulatory networks
- 5 Supervised graph inference

Expression data classification with gene networks

Sometimes linear classifiers are not interesting

Solution: non-linear mapping to a feature space

Let $\vec{\Phi}(\vec{x}) = (x_1^2, x_2^2)'$, $\vec{w} = (1, 1)'$ and b = 1. Then the decision function is:

$$f(\vec{x}) = x_1^2 + x_2^2 - R^2 = \vec{w}.\vec{\Phi}(\vec{x}) + b,$$

For a given mapping Φ from the space of objects \mathcal{X} to some feature space, the kernel of two objects x and x' is the inner product of their images in the features space:

$$\forall x, x' \in \mathcal{X}, \quad \mathcal{K}(x, x') = \vec{\Phi}(x).\vec{\Phi}(x').$$

Example: if $\vec{\Phi}(\vec{x}) = (x_1^2, x_2^2)'$, then

$$K(\vec{x},\vec{x}') = \vec{\Phi}(\vec{x}).\vec{\Phi}(\vec{x}') = (x_1)^2(x_1')^2 + (x_2)^2(x_2')^2.$$

Replace each $\vec{x}.\vec{x}'$ in the SVM algorithm by $\vec{\Phi}(x).\vec{\Phi}(x') = K(x,x')$ The dual problem is to maximize

$$L(\vec{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j \frac{K(x_i, x_j)}{K(x_i, x_j)},$$

under the constraints:

$$\begin{cases} \mathbf{0} \leq \alpha_i \leq \mathbf{C}, & \text{for } i = 1, \dots, N\\ \sum_{i=1}^{N} \alpha_i \mathbf{y}_i = \mathbf{0}. \end{cases}$$

The decision function becomes:

$$f(x) = \vec{w}^* \cdot \vec{\Phi}(x) + b^*$$
$$= \sum_{i=1}^N \alpha_i \mathbf{K}(x_i, x) + b^*.$$

(2)

- The explicit computation of $\vec{\Phi}(x)$ is not necessary. The kernel K(x, x') is enough. SVM work implicitly in the feature space.
- It is sometimes possible to easily compute kernels which correspond to complex large-dimensional feature spaces.

Kernel example: polynomial kernel

For $\vec{x} = (x_1, x_2)^{\top} \in \mathbb{R}^2$, let $\vec{\Phi}(\vec{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2) \in \mathbb{R}^3$:

$$\begin{split} \mathcal{K}(\vec{x}, \vec{x}') &= x_1^2 x_1'^2 + 2 x_1 x_2 x_1' x_2' + x_2^2 x_2'^2 \\ &= \left(x_1 x_1' + x_2 x_2' \right)^2 \\ &= \left(\vec{x}. \vec{x}' \right)^2 \;. \end{split}$$

Kernel example: polynomial kernel

More generally,

$$K(\vec{x},\vec{x}') = \left(\vec{x}.\vec{x}'+1\right)^d$$

is an inner product in a feature space of all monomials of degree up to *d* (*left as exercice.*)

Which functions K(x, x') are kernels?

Definition

A function K(x, x') defined on a set \mathcal{X} is a kernel if and only if there exists a features space (Hilbert space) \mathcal{H} and a mapping

 $\Phi: \mathcal{X} \mapsto \mathcal{H} \;,$

such that, for any \mathbf{x}, \mathbf{x}' in \mathcal{X} :

 $\mathcal{K}\left(\mathbf{x},\mathbf{x}'\right) = \left\langle \Phi\left(\mathbf{x}\right),\Phi\left(\mathbf{x}'\right)
ight
angle_{\mathcal{H}}$.

Definition

A positive definite (p.d.) function on the set \mathcal{X} is a function $\mathcal{K} : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ symmetric:

$$\forall \left(\mathbf{X}, \mathbf{X}'\right) \in \mathcal{X}^2, \quad \mathbf{K}\left(\mathbf{X}, \mathbf{X}'\right) = \mathbf{K}\left(\mathbf{X}', \mathbf{X}\right),$$

and which satisfies, for all $N \in \mathbb{N}$, $(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) \in \mathcal{X}^N$ et $(a_1, a_2, \dots, a_N) \in \mathbb{R}^N$:

$$\sum_{i=1}^{N}\sum_{j=1}^{N}a_{j}a_{j}K\left(\mathbf{x}_{i},\mathbf{x}_{j}\right)\geq0.$$

Theorem (Aronszajn, 1950)

K is a kernel if and only if it is a positive definite function.

• Kernel \implies p.d. function:

•
$$\langle \Phi \left(\mathbf{x} \right), \Phi \left(\mathbf{x}' \right) \rangle_{\mathbb{R}^d} = \langle \Phi \left(\mathbf{x}' \right), \Phi \left(\mathbf{x} \right)_{\mathbb{R}^d} \rangle$$
,
• $\sum_{i=1}^N \sum_{j=1}^N a_i a_j \langle \Phi \left(\mathbf{x}_i \right), \Phi \left(\mathbf{x}_j \right) \rangle_{\mathbb{R}^d} = \| \sum_{i=1}^N a_i \Phi \left(\mathbf{x}_i \right) \|_{\mathbb{R}^d}^2 \ge 0$.

• P.d. function \implies kernel: more difficult...

Kernel examples

• Polynomial (on \mathbb{R}^d):

$$K(x,x')=(x.x'+1)^d$$

• Gaussian radial basis function (RBF) (on \mathbb{R}^d)

$$K(x, x') = \exp\left(-\frac{||x - x'||^2}{2\sigma^2}\right)$$

• Laplace kernel (on \mathbb{R})

$$\mathcal{K}(\mathbf{x}, \mathbf{x}') = \exp\left(-\gamma |\mathbf{x} - \mathbf{x}'|\right)$$

• Min kernel (on \mathbb{R}_+)

$$K(x,x') = \min(x,x')$$

Exercice: for each kernel, find a Hilbert space \mathcal{H} and a mapping $\Phi : \mathcal{X} \to \mathcal{H}$ such that $K(x, x') = \langle \Phi(x), \Phi(x') \rangle$

Example: SVM with a Gaussian kernel

• Training:

$$\begin{split} \min_{\alpha \in \mathbb{R}^N} \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i,j=1}^N \alpha_i \alpha_j y_i y_j \exp\left(-\frac{||\vec{x}_i - \vec{x}_j||^2}{2\sigma^2}\right) \\ \text{s.t. } 0 \leq \alpha_i \leq C, \quad \text{and } \sum_{i=1}^N \alpha_i y_i = 0. \end{split}$$

Prediction

$$f(\vec{x}) = \sum_{i=1}^{N} \alpha_i \exp\left(-\frac{||\vec{x} - \vec{x}_i||^2}{2\sigma^2}\right)$$
Example: SVM with a Gaussian kernel

$$f(\vec{x}) = \sum_{i=1}^{N} \alpha_i \exp\left(-\frac{||\vec{x} - \vec{x}_i||^2}{2\sigma^2}\right)$$

SVM classification plot

Jean-Philippe Vert (ParisTech)

Machine learning in systems biology

Linear vs nonlinear SVM

Regularity vs data fitting trade-off

C controls the trade-off

$$\min_{f} \left\{ \frac{1}{margin(f)} + C \times errors(f) \right\}$$

- Large C :
 - makes few errors
- Small C :
 - ensure a large margin
- Intermediate C:
 - finds a trade-off

Why it is important to control the trade-off

- Split your dataset in two ("train" and "test")
- Train SVM with different C on the "train" set
- Compute the accuracy of the SVM on the "test" set
- Choose the *C* which minimizes the "test" error
- (you may repeat this several times = cross-validation)

SVM summary

- Large margin
- Linear or nonlinear (with the kernel trick)
- Control of the regularization / data fitting trade-off with C

Outline

- SVM and kernel methods
- Kernels for biological sequences
 - Motivations
 - Feature space approach
 - Using generative models
 - Derive from a similarity measure
 - Application: remote homology detection
- 3 Kernels for graphs
- 4 Reconstruction of regulatory networks
- 5 Supervised graph inference

Kernels for Biological Sequences

Outline

SVM and kernel methods

Kernels for biological sequences

Motivations

- Feature space approach
- Using generative models
- Derive from a similarity measure
- Application: remote homology detection

3 Kernels for graphs

4 Reconstruction of regulatory networks

5 Supervised graph inference

Short history of genomics

1866 : Laws of heredity (Mendel)
1909 : Morgan and the drosophilists
1944 : DNA supports heredity (Avery)
1953 : Structure of DNA (Crick and Watson)
1966 : Genetic code (Nirenberg)
1960-70 : Genetic engineering
1977 : Method for sequencing (Sanger)
1982 : Creation of Genbank
1990 : Human genome project launched
2003 : Human genome project completed

Chromosomes

Machine learning in systems biology

Jean-Philippe Vert (ParisTech)

Chromosomes and DNA

"We wish to suggest a structure for the salt of desoxyribose nucleic acid (D.N.A.). This structure have novel features which are of considerable biological interest" (Watson and Crick, 1953)

The double helix

Central dogma

Human genome project

- Goal : sequence the 3,000,000,000 bases of the human genome
- Consortium with 20 labs, 6 countries
- Cost : about 3,000,000,000 USD

2003: End of genomics era

Findings

- About 25,000 genes only (representing 1.2% of the genome)
- Automatic gene finding with graphical models
- 97% of the genome is considered "junk DNA"
- Superposition of a variety of signals (many to be discovered)

Protein sequence

A : Alanine	V : Valine	L : Leucine
F : Phenylalanine	P : Proline	M : Methionine
E : Acide glutamique	K : Lysine	R : Arginine
T : Threonine	C : Cysteine	N : Asparagine
H : Histidine	V : Thyrosine	W : Tryptophane
I : Isoleucine	S : Serine	Q : Glutamine
D : Acide aspartique	G : Glycine	

Machine learning in systems biology

- A protein sequences can be seen as a variable-length sequence over the 20-letter alphabet of amino-acids, e.g., insuline: FVNQHLCGSHLVEALYLVCGERGFFYTPKA
- These sequences are produced at a fast rate (result of the sequencing programs)
- Need for algorithms to compare, classify, analyze these sequences
- Applications: classification into functional or structural classes, prediction of cellular localization and interactions, ...

Example: supervised sequence classification

Data (training)

Secreted proteins:

MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA... MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW... MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...

• • •

. . .

Non-secreted proteins:

MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG... MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG... MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP..

Goal

Build a classifier to predict whether new proteins are secreted or not.

Jean-Philippe Vert (ParisTech)

Supervised classification with vector embedding

The idea

- Map each string $x \in \mathcal{X}$ to a vector $\Phi(x) \in \mathcal{F}$.
- Train a classifier for vectors on the images Φ(x₁),...,Φ(x_n) of the training set (nearest neighbor, linear perceptron, logistic regression, support vector machine...)

- Kernel methods have been widely investigated since Jaakkola et al.'s seminal paper (1998).
- What is a good kernel?
 - it should be mathematically valid (symmetric, p.d. or c.p.d.)
 - fast to compute
 - adapted to the problem (give good performances)

Kernel engineering for protein sequences

• Define a (possibly high-dimensional) feature space of interest

- Physico-chemical kernels
- Spectrum, mismatch, substring kernels
- Pairwise, motif kernels
- Derive a kernel from a generative model
 - Fisher kernel
 - Mutual information kernel
 - Marginalized kernel
- Derive a kernel from a similarity measure
 - Local alignment kernel

Kernel engineering for protein sequences

• Define a (possibly high-dimensional) feature space of interest

- Physico-chemical kernels
- Spectrum, mismatch, substring kernels
- Pairwise, motif kernels
- Derive a kernel from a generative model
 - Fisher kernel
 - Mutual information kernel
 - Marginalized kernel
- Derive a kernel from a similarity measure
 - Local alignment kernel

Kernel engineering for protein sequences

• Define a (possibly high-dimensional) feature space of interest

- Physico-chemical kernels
- Spectrum, mismatch, substring kernels
- Pairwise, motif kernels
- Derive a kernel from a generative model
 - Fisher kernel
 - Mutual information kernel
 - Marginalized kernel
- Derive a kernel from a similarity measure
 - Local alignment kernel

Outline

SVM and kernel methods

Kernels for biological sequences

Motivations

Feature space approach

- Using generative models
- Derive from a similarity measure
- Application: remote homology detection

3 Kernels for graphs

4 Reconstruction of regulatory networks

5 Supervised graph inference

Vector embedding for strings

The idea

Represent each sequence **x** by a fixed-length numerical vector $\Phi(\mathbf{x}) \in \mathbb{R}^n$. How to perform this embedding?

Physico-chemical kernel

Extract relevant features, such as:

- In length of the sequence
- time series analysis of numerical physico-chemical properties of amino-acids along the sequence (e.g., polarity, hydrophobicity), using for example:
 - Fourier transforms (Wang et al., 2004)
 - Autocorrelation functions (Zhang et al., 2003)

$$r_j = \frac{1}{n-j} \sum_{i=1}^{n-j} h_i h_{i+j}$$

The idea

Represent each sequence **x** by a fixed-length numerical vector $\Phi(\mathbf{x}) \in \mathbb{R}^n$. How to perform this embedding?

Physico-chemical kernel

Extract relevant features, such as:

- length of the sequence
- time series analysis of numerical physico-chemical properties of amino-acids along the sequence (e.g., polarity, hydrophobicity), using for example:
 - Fourier transforms (Wang et al., 2004)
 - Autocorrelation functions (Zhang et al., 2003)

$$r_j = \frac{1}{n-j}\sum_{i=1}^{n-j}h_ih_{i+j}$$

The approach

Alternatively, index the feature space by fixed-length strings, i.e.,

$$\Phi\left(\mathbf{X}\right) = \left(\Phi_{u}\left(\mathbf{X}\right)\right)_{u \in \mathcal{A}^{k}}$$

where $\Phi_u(\mathbf{x})$ can be:

- the number of occurrences of u in x (without gaps) : spectrum kernel (Leslie et al., 2002)
- the number of occurrences of *u* in **x** up to *m* mismatches (without gaps) : mismatch kernel (Leslie et al., 2004)
- the number of occurrences of u in x allowing gaps, with a weight decaying exponentially with the number of gaps : substring kernel (Lohdi et al., 2002)

Kernel definition

• The 3-spectrum of

$$\mathbf{X} = \mathsf{CGGSLIAMMWFGV}$$

is:

(CGG,GGS,GSL,SLI,LIA,IAM,AMM,MMW,MWF,WFG,FGV) .

Let Φ_u (**x**) denote the number of occurrences of u in **x**. The k-spectrum kernel is:

$$K\left(\mathbf{x},\mathbf{x}'
ight) := \sum_{u\in\mathcal{A}^{k}} \Phi_{u}\left(\mathbf{x}
ight) \Phi_{u}\left(\mathbf{x}'
ight) \;.$$

Example: spectrum kernel (2/2)

Implementation

- The computation of the kernel is formally a sum over |A|^k terms, but at most |x| − k + 1 terms are non-zero in Φ (x) ⇒
 Computation in O(|x| + |x'|) with pre-indexation of the strings.
- Fast classification of a sequence **x** in $O(|\mathbf{x}|)$:

$$f(\mathbf{x}) = \mathbf{w} \cdot \Phi(\mathbf{x}) = \sum_{u} w_{u} \Phi_{u}(\mathbf{x}) = \sum_{i=1}^{|\mathbf{x}|-k+1} w_{x_{i}...x_{i+k-1}}.$$

Remarks

- Work with any string (natural language, time series...)
- Fast and scalable, a good default method for string classification.
- Variants allow matching of *k*-mers up to *m* mismatches.

Definition

- For 1 ≤ k ≤ n ∈ N, we denote by *I*(k, n) the set of sequences of indices i = (i₁,..., i_k), with 1 ≤ i₁ < i₂ < ... < i_k ≤ n.
- For a string $\mathbf{x} = x_1 \dots x_n \in \mathcal{X}$ of length *n*, for a sequence of indices $\mathbf{i} \in \mathcal{I}(k, n)$, we define a substring as:

$$\mathbf{x}(\mathbf{i}) := x_{i_1} x_{i_2} \dots x_{i_k}.$$

The length of the substring is:

 $I(\mathbf{i}) = i_k - i_1 + 1.$

The kernel

Let k ∈ N and λ ∈ R⁺ fixed. For all u ∈ A^k, let Φ_u : X → R be defined by:

$$\forall \mathbf{x} \in \mathcal{X}, \quad \Phi_{\mathbf{u}}\left(\mathbf{x}\right) = \sum_{\mathbf{i} \in \mathcal{I}(k, ||\mathbf{x}|): \quad \mathbf{x}(\mathbf{i}) = \mathbf{u}} \lambda^{l(\mathbf{i})}$$

• The substring kernel is the p.d. kernel defined by:

$$\forall \left(\mathbf{x}, \mathbf{x}'\right) \in \mathcal{X}^{2}, \quad \mathcal{K}_{k, \lambda}\left(\mathbf{x}, \mathbf{x}'\right) = \sum_{\mathbf{u} \in \mathcal{A}^{k}} \Phi_{\mathbf{u}}\left(\mathbf{x}\right) \Phi_{\mathbf{u}}\left(\mathbf{x}'\right) \,.$$

Example

u	ca	ct	at	ba	bt	cr	ar	br
$\Phi_u(cat)$	λ^2	λ^3	λ^2	0	0	0	0	0
$\Phi_u(car)$	λ^2	0	0	0	0	λ^3	λ^2	0
$\Phi_u(bat)$	0	0	λ^2	λ^2	λ^{3}	0	0	0
$\Phi_u(bar)$	0	0	0	λ^2	0	0	λ^2	λ^3
$egin{cases} \mathcal{K}\left(ext{cat,cat} ight) = \mathcal{K}\left(ext{car,car} ight) = 2\lambda^4 + \lambda^6 \ \mathcal{K}\left(ext{cat,car} ight) = \lambda^4 \ \mathcal{K}\left(ext{cat,bar} ight) = 0 \end{cases}$								

Kernel computation

• We need to compute, for any pair $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$, the kernel:

$$\mathcal{K}_{n,\lambda}\left(\mathbf{x},\mathbf{x}'\right) = \sum_{\mathbf{u}\in\mathcal{A}^{k}} \Phi_{\mathbf{u}}\left(\mathbf{x}\right) \Phi_{\mathbf{u}}\left(\mathbf{x}'\right)$$
$$= \sum_{\mathbf{u}\in\mathcal{A}^{k}} \sum_{\mathbf{i}:\mathbf{x}(\mathbf{i})=\mathbf{u}} \sum_{\mathbf{i}':\mathbf{x}'(\mathbf{i}')=\mathbf{u}} \lambda^{\prime(\mathbf{i})+\prime(\mathbf{i}')}$$

• Enumerating the substrings is too slow (of order $|\mathbf{x}|^{k}$).

• For $\mathbf{u} \in \mathcal{A}^k$ remember that:

$$\Phi_{\mathbf{u}}(\mathbf{x}) = \sum_{\mathbf{i}:\mathbf{x}(\mathbf{i})=\mathbf{u}} \lambda^{i_n - i_1 + 1} \,.$$

Let now:

$$\Psi_{\mathbf{u}}(\mathbf{x}) = \sum_{\mathbf{i}:\mathbf{x}(\mathbf{i})=\mathbf{u}} \lambda^{|\mathbf{x}|-i_{1}+1}$$

Let us note $\mathbf{x}(1, j) = x_1 \dots x_j$. A simple rewriting shows that, if we note $a \in \mathcal{A}$ the last letter of \mathbf{u} ($\mathbf{u} = \mathbf{v}a$):

$$\Phi_{\mathbf{v}a}(\mathbf{x}) = \sum_{j \in [1, |\mathbf{x}|]: x_j = a} \Psi_{\mathbf{v}}(\mathbf{x}(1, j-1)) \lambda,$$

and

$$\Psi_{\mathbf{v}a}(\mathbf{x}) = \sum_{j \in [1, |\mathbf{x}|]: x_j = a} \Psi_{\mathbf{v}}(\mathbf{x}(1, j-1)) \lambda^{|\mathbf{x}|-j+1}$$

Moreover we observe that if the string is of the form $\mathbf{x}a$ (i.e., the last letter is $a \in A$), then:

• If the last letter of **u** is not *a*:

$$\begin{cases} \Phi_{\mathbf{u}} (\mathbf{x} \mathbf{a}) &= \Phi_{\mathbf{u}} (\mathbf{x}) ,\\ \Psi_{\mathbf{u}} (\mathbf{x} \mathbf{a}) &= \lambda \Psi_{\mathbf{u}} (\mathbf{x}) . \end{cases}$$

• If the last letter of **u** is a (i.e., $\mathbf{u} = \mathbf{v}a$ with $\mathbf{v} \in \mathcal{A}^{n-1}$):

$$\begin{cases} \Phi_{\mathbf{v}a}(\mathbf{x}a) &= \Phi_{\mathbf{v}a}(\mathbf{x}) + \lambda \Psi_{\mathbf{v}}(\mathbf{x}) ,\\ \Psi_{\mathbf{v}a}(\mathbf{x}a) &= \lambda \Psi_{\mathbf{v}a}(\mathbf{x}) + \lambda \Psi_{\mathbf{v}}(\mathbf{x}) . \end{cases}$$

Let us now show how the function:

$$\mathcal{B}_{n}\left(\mathbf{x},\mathbf{x}'
ight):=\sum_{\mathbf{u}\in\mathcal{A}^{n}}\Psi_{\mathbf{u}}\left(\mathbf{x}
ight)\Psi_{\mathbf{u}}\left(\mathbf{x}'
ight)$$

and the kernel:

$$\mathcal{K}_{n}\left(\mathbf{x},\mathbf{x}'
ight):=\sum_{\mathbf{u}\in\mathcal{A}^{n}}\Phi_{\mathbf{u}}\left(\mathbf{x}
ight)\Phi_{\mathbf{u}}\left(\mathbf{x}'
ight)$$

can be computed recursively. We note that:

$$\begin{cases} B_0(\mathbf{x}, \mathbf{x}') = K_0(\mathbf{x}, \mathbf{x}') = 0 & \text{ for all } \mathbf{x}, \mathbf{x}' \\ B_k(\mathbf{x}, \mathbf{x}') = K_k(\mathbf{x}, \mathbf{x}') = 0 & \text{ if } \min(|\mathbf{x}|, |\mathbf{x}'|) < k \end{cases}$$

Example 2: Substring kernel (10/11)

Recursive computation of B_n

$$\begin{split} & \mathcal{B}_{n}\left(\mathbf{x}a,\mathbf{x}'\right) \\ &= \sum_{\mathbf{u}\in\mathcal{A}^{n}} \Psi_{\mathbf{u}}\left(\mathbf{x}a\right)\Psi_{\mathbf{u}}\left(\mathbf{x}'\right) \\ &= \lambda \sum_{\mathbf{u}\in\mathcal{A}^{n}} \Psi_{\mathbf{u}}\left(\mathbf{x}\right)\Psi_{\mathbf{u}}\left(\mathbf{x}'\right) + \lambda \sum_{\mathbf{v}\in\mathcal{A}^{n-1}} \Psi_{\mathbf{v}}\left(\mathbf{x}\right)\Psi_{\mathbf{v}a}\left(\mathbf{x}'\right) \\ &= \lambda B_{n}\left(\mathbf{x},\mathbf{x}'\right) + \\ &\lambda \sum_{\mathbf{v}\in\mathcal{A}^{n-1}} \Psi_{\mathbf{v}}\left(\mathbf{x}\right)\left(\sum_{j\in[1,|\mathbf{x}'|]:x_{j}'=a} \Psi_{\mathbf{v}}\left(\mathbf{x}'\left(1,j-1\right)\right)\lambda^{|\mathbf{x}'|-j+1}\right) \\ &= \lambda B_{n}\left(\mathbf{x},\mathbf{x}'\right) + \sum_{j\in[1,|\mathbf{x}'|]:x_{j}'=a} B_{n-1}\left(\mathbf{x},\mathbf{x}'\left(1,j-1\right)\right)\lambda^{|\mathbf{x}'|-j+2} \end{split}$$

Example 2: Substring kernel (10/11)

Recursive computation of K_n

$$\begin{split} & \mathcal{K}_{n} \left(\mathbf{x} a, \mathbf{x}' \right) \\ &= \sum_{\mathbf{u} \in \mathcal{A}^{n}} \Phi_{\mathbf{u}} \left(\mathbf{x} a \right) \Phi_{\mathbf{u}} \left(\mathbf{x}' \right) \\ &= \sum_{\mathbf{u} \in \mathcal{A}^{n}} \Phi_{\mathbf{u}} \left(\mathbf{x} \right) \Phi_{\mathbf{u}} \left(\mathbf{x}' \right) + \lambda \sum_{\mathbf{v} \in \mathcal{A}^{n-1}} \Psi_{\mathbf{v}} \left(\mathbf{x} \right) \Phi_{\mathbf{v} a} \left(\mathbf{x}' \right) \\ &= \mathcal{K}_{n} \left(\mathbf{x}, \mathbf{x}' \right) + \\ & \lambda \sum_{\mathbf{v} \in \mathcal{A}^{n-1}} \Psi_{\mathbf{v}} \left(\mathbf{x} \right) \left(\sum_{j \in [1, |\mathbf{x}'|]: x'_{j} = a} \Psi_{\mathbf{v}} \left(\mathbf{x}' \left(1, j - 1 \right) \right) \lambda \right) \\ &= \lambda \mathcal{K}_{n} \left(\mathbf{x}, \mathbf{x}' \right) + \lambda^{2} \sum_{j \in [1, |\mathbf{x}'|]: x'_{j} = a} \mathcal{B}_{n-1} \left(\mathbf{x}, \mathbf{x}' \left(1, j - 1 \right) \right) \end{split}$$

- Implementation in O(|x| + |x'|) in memory and time for the spectrum and mismatch kernels (with suffix trees)
- Implementation in O(|x| × |x'|) in memory and time for the substring kernels
- The feature space has high dimension (|*A*|^{*k*}), so learning requires regularized methods (such as SVM)

The approach

- Chose a dictionary of sequences $\mathcal{D} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$
- Chose a measure of similarity $s(\mathbf{x}, \mathbf{x}')$
- Define the mapping $\Phi_{\mathcal{D}}(\mathbf{x}) = (s(\mathbf{x}, \mathbf{x}_i))_{\mathbf{x}_i \in \mathcal{D}}$

Examples

This includes:

- Motif kernels (Logan et al., 2001): the dictionary is a library of motifs, the similarity function is a matching function
- Pairwise kernel (Liao & Noble, 2003): the dictionary is the training set, the similarity is a classical measure of similarity between sequences.

The approach

- Chose a dictionary of sequences $\mathcal{D} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$
- Chose a measure of similarity $s(\mathbf{x}, \mathbf{x}')$
- Define the mapping $\Phi_{\mathcal{D}}(\mathbf{x}) = (s(\mathbf{x}, \mathbf{x}_i))_{\mathbf{x}_i \in \mathcal{D}}$

Examples

This includes:

- Motif kernels (Logan et al., 2001): the dictionary is a library of motifs, the similarity function is a matching function
- Pairwise kernel (Liao & Noble, 2003): the dictionary is the training set, the similarity is a classical measure of similarity between sequences.

Outline

SVM and kernel methods

Kernels for biological sequences

- Motivations
- Feature space approach
- Using generative models
- Derive from a similarity measure
- Application: remote homology detection

3 Kernels for graphs

4 Reconstruction of regulatory networks

5 Supervised graph inference

Probabilistic models for sequences

Probabilistic modeling of biological sequences is older than kernel designs. Important models include HMM for protein sequences, SCFG for RNA sequences.

Parametric model

A model is a family of distribution

$$\{m{ extsf{P}}_{ heta}, heta \in \Theta \subset \mathbb{R}^m\} \subset \mathcal{M}_1^+\left(\mathcal{X}
ight)$$

Jean-Philippe Vert (ParisTech)

Machine learning in systems biology

- Fix a parameter θ₀ ∈ Θ (e.g., by maximum likelihood over a training set of sequences)
- For each sequence **x**, compute the Fisher score vector:

 $\Phi_{ heta_0}(\mathbf{x}) =
abla_ heta \log P_ heta(\mathbf{x})|_{ heta= heta_0}$.

• Form the kernel (Jaakkola et al., 1998):

 $K(\mathbf{x},\mathbf{x}') = \Phi_{\theta_0}(\mathbf{x})^\top I(\theta_0)^{-1} \Phi_{\theta_0}(\mathbf{x}') ,$

where $I(\theta_0) = E_{\theta_0} \left[\Phi_{\theta_0}(\mathbf{x}) \Phi_{\theta_0}(\mathbf{x})^\top \right]$ is the Fisher information matrix.

- The Fisher score describes how each parameter contributes to the process of generating a particular example
- The Fisher kernel is invariant under change of parametrization of the model
- A kernel classifier employing the Fisher kernel derived from a model that contains the label as a latent variable is, asymptotically, at least as good a classifier as the MAP labelling based on the model (Jaakkola and Haussler, 1998).
- A variant of the Fisher kernel (called the Tangent of Posterior kernel) can also improve over the direct posterior classification by helping to correct the effect of estimation errors in the parameter (Tsuda et al., 2002).

- $\Phi_{\theta_0}(\mathbf{x})$ can be computed explicitly for many models (e.g., HMMs)
- $I(\theta_0)$ is often replaced by the identity matrix
- Several different models (i.e., different θ_0) can be trained and combined
- Feature vectors are explicitly computed

• Chose a prior $w(d\theta)$ on the measurable set Θ

• Form the kernel (Seeger, 2002):

$$\mathcal{K}\left(\mathbf{x},\mathbf{x}'
ight) = \int_{ heta\in\Theta} \mathcal{P}_{ heta}(\mathbf{x}) \mathcal{P}_{ heta}(\mathbf{x}') w(d heta) \; .$$

No explicit computation of a finite-dimensional feature vector
 K(**x**, **x**') =< φ(**x**), φ(**x**') >_{L2(w)} with

 $\phi(\mathbf{x}) = (P_{\theta}(\mathbf{x}))_{\theta \in \Theta}$.

- Let P_θ(X = 1) = θ and P_θ(X = 0) = 1 − θ a model for random coin toss, with θ ∈ [0, 1].
- Let *d*θ be the Lebesgue measure on [0, 1]
- The mutual information kernel between $\mathbf{x} = 001$ and $\mathbf{x}' = 1010$ is:

$$\begin{cases} P_{\theta} \left(\mathbf{x} \right) &= \theta \left(1 - \theta \right)^2 ,\\ P_{\theta} \left(\mathbf{x}' \right) &= \theta^2 \left(1 - \theta \right)^2 , \end{cases}$$
$$\mathcal{K} \left(\mathbf{x}, \mathbf{x}' \right) = \int_0^1 \theta^3 \left(1 - \theta \right)^4 d\theta = \frac{3!4!}{8!} = \frac{1}{280} .$$

A context-tree model is a variable-memory Markov chain:

$$P_{\mathcal{D},\theta}(\mathbf{x}) = P_{\mathcal{D},\theta}(x_1 \dots x_D) \prod_{i=D+1}^n P_{\mathcal{D},\theta}(x_i | x_{i-D} \dots x_{i-1})$$

- \mathcal{D} is a suffix tree
- $\theta \in \Sigma^{\mathcal{D}}$ is a set of conditional probabilities (multinomials)

Context-tree model: example

 $P(AABACBACC) = P(AAB)\theta_{AB}(A)\theta_{A}(C)\theta_{C}(B)\theta_{ACB}(A)\theta_{A}(C)\theta_{C}(A) .$

Theorem (Cuturi et al., 2004)

• For particular choices of priors, the context-tree kernel:

$$\mathcal{K}\left(\mathbf{x},\mathbf{x}'
ight) = \sum_{\mathcal{D}} \int_{ heta \in \Sigma^{\mathcal{D}}} \mathcal{P}_{\mathcal{D}, heta}(\mathbf{x}) \mathcal{P}_{\mathcal{D}, heta}(\mathbf{x}') w(d heta | \mathcal{D}) \pi(\mathcal{D})$$

can be computed in $O(|\mathbf{x}| + |\mathbf{x}'|)$ with a variant of the Context-Tree Weighting algorithm.

- This is a valid mutual information kernel.
- The similarity is related to information-theoretical measure of mutual information between strings.

- For any observed data x ∈ X, let a latent variable y ∈ Y be associated probabilistically through a conditional probability P_x (dy).
- Let $K_{\mathcal{Z}}$ be a kernel for the complete data $\mathbf{z} = (\mathbf{x}, \mathbf{y})$
- Then the following kernel is a valid kernel on \mathcal{X} , called a marginalized kernel (Kin et al., 2002):

$$\begin{split} \mathcal{K}_{\mathcal{X}}\left(\mathbf{x},\mathbf{x}'\right) &:= \mathcal{E}_{\mathcal{P}_{\mathbf{x}}(d\mathbf{y}) \times \mathcal{P}_{\mathbf{x}'}(d\mathbf{y}')} \mathcal{K}_{\mathcal{Z}}\left(\mathbf{z},\mathbf{z}'\right) \\ &= \int \int \mathcal{K}_{\mathcal{Z}}\left(\left(\mathbf{x},\mathbf{y}\right),\left(\mathbf{x}',\mathbf{y}'\right)\right) \mathcal{P}_{\mathbf{x}}\left(d\mathbf{y}\right) \mathcal{P}_{\mathbf{x}'}\left(d\mathbf{y}'\right) \end{split}$$

Marginalized kernels: proof of positive definiteness

• $K_{\mathcal{Z}}$ is p.d. on \mathcal{Z} . Therefore there exists a Hilbert space \mathcal{H} and $\Phi_{\mathcal{Z}} : \mathcal{Z} \to \mathcal{H}$ such that:

$$\mathcal{K}_{\mathcal{Z}}\left(\mathbf{z},\mathbf{z}'
ight)=\left\langle \Phi_{\mathcal{Z}}\left(\mathbf{z}
ight),\Phi_{\mathcal{Z}}\left(\mathbf{z}'
ight)
ight
angle _{\mathcal{H}}\;.$$

Marginalizing therefore gives:

$$\begin{split} \mathcal{K}_{\mathcal{X}}\left(\mathbf{x},\mathbf{x}'\right) &= \mathcal{E}_{\mathcal{P}_{\mathbf{x}}(d\mathbf{y}) \times \mathcal{P}_{\mathbf{x}'}(d\mathbf{y}')} \mathcal{K}_{\mathcal{Z}}\left(\mathbf{z},\mathbf{z}'\right) \\ &= \mathcal{E}_{\mathcal{P}_{\mathbf{x}}(d\mathbf{y}) \times \mathcal{P}_{\mathbf{x}'}(d\mathbf{y}')} \left\langle \Phi_{\mathcal{Z}}\left(\mathbf{z}\right), \Phi_{\mathcal{Z}}\left(\mathbf{z}'\right) \right\rangle_{\mathcal{H}} \\ &= \left\langle \mathcal{E}_{\mathcal{P}_{\mathbf{x}}(d\mathbf{y})} \Phi_{\mathcal{Z}}\left(\mathbf{z}\right), \mathcal{E}_{\mathcal{P}_{\mathbf{x}}(d\mathbf{y}')} \Phi_{\mathcal{Z}}\left(\mathbf{z}'\right) \right\rangle_{\mathcal{H}}, \end{split}$$

therefore $K_{\mathcal{X}}$ is p.d. on \mathcal{X} . \Box

Example: HMM for normal/biased coin toss

• Normal (*N*) and biased (*B*) coins (not observed)

• Observed output are 0/1 with probabilities:

$$egin{cases} \pi(0|N) = 1 - \pi(1|N) = 0.5, \ \pi(0|B) = 1 - \pi(1|B) = 0.8. \end{cases}$$

• Example of realization (complete data):

Jean-Philippe Vert (ParisTech)

Machine learning in systems biology

1-spectrum kernel on complete data

 If both x ∈ A* and y ∈ S* were observed, we might rather use the 1-spectrum kernel on the complete data z = (x, y):

$$\mathcal{K}_{\mathcal{Z}}\left(\mathbf{z},\mathbf{z}'\right) = \sum_{\left(a,s
ight)\in\mathcal{A} imes\mathcal{S}}n_{a,s}\left(\mathbf{z}
ight)n_{a,s}\left(\mathbf{z}
ight),$$

where $n_{a,s}(\mathbf{x}, \mathbf{y})$ for a = 0, 1 and s = N, B is the number of occurrences of *s* in **y** which emit *a* in **x**.

• Example:

Z =1001011101111010010111001111011, Z' =0011010110011110110101111011010101,

$$\begin{aligned} \mathcal{K}_{\mathcal{Z}}\left(\mathbf{z},\mathbf{z}'\right) &= n_{0}\left(\mathbf{z}\right)n_{0}\left(\mathbf{z}'\right) + n_{0}\left(\mathbf{z}\right)n_{0}\left(\mathbf{z}'\right) + n_{1}\left(\mathbf{z}\right)n_{1}\left(\mathbf{z}'\right) + n_{1}\left(\mathbf{z}\right)n_{1}\left(\mathbf{z}\right) \\ &= 7 \times 15 + 9 \times 12 + 13 \times 6 + 2 \times 1 = 293. \end{aligned}$$

• The marginalized kernel for observed data is:

$$\begin{split} \mathcal{K}_{\mathcal{X}}\left(\mathbf{x},\mathbf{x}'\right) &= \sum_{\mathbf{y},\mathbf{y}'\in\mathcal{S}^{*}} \mathcal{K}_{\mathcal{Z}}\left(\left(\mathbf{x},\mathbf{y}\right),\left(\mathbf{x},\mathbf{y}\right)\right) \mathcal{P}\left(\mathbf{y}|\mathbf{x}\right) \mathcal{P}\left(\mathbf{y}'|\mathbf{x}'\right) \\ &= \sum_{\left(a,s\right)\in\mathcal{A}\times\mathcal{S}} \Phi_{a,s}\left(\mathbf{x}\right) \Phi_{a,s}\left(\mathbf{x}'\right), \end{split}$$

with

$$\Phi_{a,s}\left(\mathbf{x}\right) = \sum_{\mathbf{y}\in\mathcal{S}^{*}} P\left(\mathbf{y}|\mathbf{x}\right) n_{a,s}\left(\mathbf{x},\mathbf{y}\right)$$

Computation of the 1-spectrum marginalized kernel

$$\Phi_{a,s} (\mathbf{x}) = \sum_{\mathbf{y} \in S^*} P(\mathbf{y} | \mathbf{x}) n_{a,s} (\mathbf{x}, \mathbf{y})$$

= $\sum_{\mathbf{y} \in S^*} P(\mathbf{y} | \mathbf{x}) \left\{ \sum_{i=1}^n \delta(x_i, a) \delta(y_i, s) \right\}$
= $\sum_{i=1}^n \delta(x_i, a) \left\{ \sum_{\mathbf{y} \in S^*} P(\mathbf{y} | \mathbf{x}) \delta(y_i, s) \right\}$
= $\sum_{i=1}^n \delta(x_i, a) P(y_i = s | \mathbf{x}).$

and $P(y_i = s | \mathbf{x})$ can be computed efficiently by forward-backward algorithm!

HMM example (DNA)

HMM example (protein)

SCFG for RNA sequences

Marginalized kernel (Kin et al., 2002)

- Feature: number of occurrences of each (base,state) combination
- Marginalization using classical inside/outside algorithm

Examples

- Spectrum kernel on the hidden states of a HMM for protein sequences (Tsuda et al., 2002)
- Kernels for RNA sequences based on SCFG (Kin et al., 2002)
- Kernels for graphs based on random walks on graphs (Kashima et al., 2004)
- Kernels for multiple alignments based on phylogenetic models (Vert et al., 2005)

Marginalized kernels: example

A set of 74 human tRNA sequences is analyzed using a kernel for sequences (the second-order marginalized kernel based on SCFG). This set of tRNAs contains three classes, called Ala-AGC (white circles), Asn-GTT (black circles) and Cys-GCA (plus symbols) (from Tsuda et al., 2003).

Outline

SVM and kernel methods

Kernels for biological sequences

- Motivations
- Feature space approach
- Using generative models
- Derive from a similarity measure
- Application: remote homology detection

3 Kernels for graphs

- 4 Reconstruction of regulatory networks
- 5 Supervised graph inference

Motivation

How to compare 2 sequences?

 $\mathbf{X}_1 = \text{CGGSLIAMMWFGV}$

 $X_2 = CLIVMMNRLMWFGV$

Find a good alignment:

CGGSLIAMM----WFGV |...|||||....||| C---LIVMMNRLMWFGV
In order to quantify the relevance of an alignment π , define:

- a substitution matrix $S \in \mathbb{R}^{\mathcal{A} \times \mathcal{A}}$
- a gap penalty function $g:\mathbb{N}\to\mathbb{R}$

Any alignment is then scored as follows

CGGSLIAMM----WFGV |...|||||....||| C---LIVMMNRLMWFGV

 $s_{S,g}(\pi) = S(C, C) + S(L, L) + S(I, I) + S(A, V) + 2S(M, M)$ + S(W, W) + S(F, F) + S(G, G) + S(V, V) - g(3) - g(4)

Local alignment kernel

Smith-Waterman score

 The widely-used Smith-Waterman local alignment score is defined by:

$$SW_{S,g}(\mathbf{x},\mathbf{y}) := \max_{\pi \in \Pi(\mathbf{x},\mathbf{y})} s_{S,g}(\pi).$$

• It is symmetric, but not positive definite...

LA kernel

The local alignment kernel:

$$\mathcal{K}_{\mathcal{LA}}^{\left(eta
ight)}\left(\mathbf{x},\mathbf{y}
ight)=\sum_{\pi\in\Pi\left(\mathbf{x},\mathbf{y}
ight)}\exp\left(etam{s}_{S,g}\left(\mathbf{x},\mathbf{y},\pi
ight)
ight),$$

is symmetric positive definite.

Local alignment kernel

Smith-Waterman score

 The widely-used Smith-Waterman local alignment score is defined by:

$$SW_{S,g}(\mathbf{x},\mathbf{y}) := \max_{\pi \in \Pi(\mathbf{x},\mathbf{y})} s_{S,g}(\pi).$$

• It is symmetric, but not positive definite...

LA kernel

The local alignment kernel:

$$\mathcal{K}_{\mathcal{LA}}^{\left(eta
ight)}\left(\mathbf{x},\mathbf{y}
ight) = \sum_{\pi\in\Pi\left(\mathbf{x},\mathbf{y}
ight)}\exp\left(etam{s}_{\mathcal{S},g}\left(\mathbf{x},\mathbf{y},\pi
ight)
ight),$$

is symmetric positive definite.

Lemma

• If K_1 and K_2 are p.d. kernels, then:

$$\begin{split} & \textit{K}_1 + \textit{K}_2, \\ & \textit{K}_1\textit{K}_2, \text{ and} \\ & \textit{cK}_1, \text{ for } \textit{c} \geq \textit{0}, \end{split}$$

are also p.d. kernels

 If (K_i)_{i≥1} is a sequence of p.d. kernels that converges pointwisely to a function K:

$$\forall \left(\mathbf{x}, \mathbf{x}'\right) \in \mathcal{X}^2, \quad \mathcal{K}\left(\mathbf{x}, \mathbf{x}'\right) = \lim_{n \to \infty} \mathcal{K}_i\left(\mathbf{x}, \mathbf{x}'\right),$$

then K is also a p.d. kernel.

Proof of lemma

Let *A* and *B* be $n \times n$ positive semidefinite matrices. By diagonalization of A:

$$\mathsf{A}_{i,j} = \sum_{p=1}^{n} f_p(i) f_p(j)$$

for some vectors f_1, \ldots, f_n . Then, for any $\alpha \in \mathbb{R}^n$:

$$\sum_{i,j=1}^{n} \alpha_i \alpha_j \mathbf{A}_{i,j} \mathbf{B}_{i,j} = \sum_{p=1}^{n} \sum_{i,j=1}^{n} \alpha_i f_p(i) \alpha_j f_p(j) \mathbf{B}_{i,j} \ge \mathbf{0}.$$

The matrix $C_{i,j} = A_{i,j}B_{i,j}$ is therefore p.d. Other properties are obvious from definition. \Box

Lemma (direct sum and product of kernels)

Let $\mathcal{X} = \mathcal{X}_1 \times \mathcal{X}_2$. Let K_1 be a p.d. kernel on \mathcal{X}_1 , and K_2 be a p.d. kernel on \mathcal{X}_2 . Then the following functions are p.d. kernels on \mathcal{X} :

the direct sum,

 $K((\mathbf{x}_{1},\mathbf{x}_{2}),(\mathbf{y}_{1},\mathbf{y}_{2})) = K_{1}(\mathbf{x}_{1},\mathbf{y}_{1}) + K_{2}(\mathbf{x}_{2},\mathbf{y}_{2}),$

• The direct product:

 $K((\mathbf{x}_{1}, \mathbf{x}_{2}), (\mathbf{y}_{1}, \mathbf{y}_{2})) = K_{1}(\mathbf{x}_{1}, \mathbf{y}_{1}) K_{2}(\mathbf{x}_{2}, \mathbf{y}_{2}).$

Proof of lemma

If K_1 is a p.d. kernel, let $\Phi_1 : \mathcal{X}_1 \mapsto \mathcal{H}$ be such that:

$$K_{1}\left(\mathbf{x}_{1},\mathbf{y}_{1}
ight)=\left\langle \Phi_{1}\left(\mathbf{x}_{1}
ight),\Phi_{1}\left(\mathbf{y}_{1}
ight)
ight
angle _{\mathcal{H}}.$$

Let $\Phi: \mathcal{X}_1 \times \mathcal{X}_2 \to \mathcal{H}$ be defined by:

$$\Phi\left(\left(\mathbf{X}_{1},\mathbf{X}_{2}\right)\right)=\Phi_{1}\left(\mathbf{X}_{1}\right).$$

Then for $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)$ and $\mathbf{y} = (\mathbf{y}_1, \mathbf{y}_2) \in \mathcal{X}$, we get

$$\left\langle \Phi\left(\left(\boldsymbol{x}_{1},\boldsymbol{x}_{2}
ight)
ight),\Phi\left(\left(\boldsymbol{y}_{1},\boldsymbol{y}_{2}
ight)
ight)
ight
angle _{\mathcal{H}}=\mathcal{K}_{1}\left(\boldsymbol{x}_{1},\boldsymbol{x}_{2}
ight),$$

which shows that $K(\mathbf{x}, \mathbf{y}) := K_1(\mathbf{x}_1, \mathbf{y}_1)$ is p.d. on $\mathcal{X}_1 \times \mathcal{X}_2$. The lemma follows from the properties of sums and products of p.d. kernels.

Lemma: kernel for sets

Let *K* be a p.d. kernel on \mathcal{X} , and let $\mathcal{P}(\mathcal{X})$ be the set of finite subsets of \mathcal{X} . Then the function K_P on $\mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X})$ defined by:

$$orall A,B\in\mathcal{P}\left(\mathcal{X}
ight),\quad K_{P}\left(A,B
ight):=\sum_{\mathbf{x}\in\mathcal{A}}\sum_{\mathbf{y}\in\mathcal{B}}K\left(\mathbf{x},\mathbf{y}
ight)$$

is a p.d. kernel on $\mathcal{P}(\mathcal{X})$.

LA kernel is p.d.: proof (6/11)

Proof of lemma

Let $\Phi: \mathcal{X} \mapsto \mathcal{H}$ be such that

$$\mathcal{K}\left(\mathbf{x},\mathbf{y}
ight)=\left\langle \Phi\left(\mathbf{x}
ight),\Phi\left(\mathbf{y}
ight)
ight
angle _{\mathcal{H}}.$$

Then, for $A, B \in \mathcal{P}(\mathcal{X})$, we get:

$$egin{aligned} &\mathcal{L}_{\mathcal{P}}\left(\mathcal{A},\mathcal{B}
ight) = \sum_{\mathbf{x}\in\mathcal{A}}\sum_{\mathbf{y}\in\mathcal{B}}\left\langle \Phi\left(\mathbf{x}
ight),\Phi\left(\mathbf{y}
ight)
ight
angle_{\mathcal{H}} \ &= \left\langle \left\langle \sum_{\mathbf{x}\in\mathcal{A}}\Phi\left(\mathbf{x}
ight),\sum_{\mathbf{y}\in\mathcal{B}}\Phi\left(\mathbf{y}
ight)
ight
angle_{\mathcal{H}} \ &= \left\langle \Phi_{\mathcal{P}}(\mathcal{A}),\Phi_{\mathcal{P}}(\mathcal{B})
ight
angle_{\mathcal{H}}, \end{aligned}$$

with $\Phi_P(A) := \sum_{\mathbf{x} \in A} \Phi(\mathbf{x})$. \Box

Definition: Convolution kernel (Haussler, 1999)

Let K_1 and K_2 be two p.d. kernels for strings. The convolution of K_1 and K_2 , denoted $K_1 \star K_2$, is defined for any $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$ by:

$$\mathcal{K}_1 \star \mathcal{K}_2(\mathbf{x}, \mathbf{y}) := \sum_{\mathbf{x}_1 \mathbf{x}_2 = \mathbf{x}, \mathbf{y}_1 \mathbf{y}_2 = \mathbf{y}} \mathcal{K}_1(\mathbf{x}_1, \mathbf{y}_1) \mathcal{K}_2(\mathbf{x}_2, \mathbf{y}_2).$$

Lemma

If K_1 and K_2 are p.d. then $K_1 \star K_2$ is p.d..

Proof of lemma

Let ${\mathcal X}$ be the set of finite-length strings. For ${\boldsymbol x} \in {\mathcal X},$ let

$$R(\mathbf{x}) = \{(\mathbf{x}_1, \mathbf{x}_2) \in \mathcal{X} imes \mathcal{X} : \mathbf{x} = \mathbf{x}_1 \mathbf{x}_2\} \subset \mathcal{X} imes \mathcal{X}.$$

We can then write

$$K_1 \star K_2(\mathbf{x}, \mathbf{y}) = \sum_{(\mathbf{x}_1, \mathbf{x}_2) \in R(\mathbf{x})} \sum_{(\mathbf{y}_1, \mathbf{y}_2) \in R(\mathbf{y})} K_1(\mathbf{x}_1, \mathbf{y}_1) K_2(\mathbf{x}_2, \mathbf{y}_2)$$

which is a p.d. kernel by the previous lemmas.

LA kernel is p.d.: proof (9/11)

3 basic string kernels

The constant kernel:

$$K_{0}\left(\mathbf{x},\mathbf{y}\right):=1.$$

• A kernel for letters:

 $\mathcal{K}_{a}^{\left(\beta\right)}\left(\mathbf{x},\mathbf{y}\right) := \left\{ \begin{array}{ll} 0 & \text{if } |\mathbf{x}| \neq 1 \text{ where } |\mathbf{y}| \neq 1 \text{ ,} \\ \exp\left(\beta S(\mathbf{x},\mathbf{y})\right) & \text{otherwise .} \end{array} \right.$

• A kernel for gaps:

 $\mathcal{K}_{g}^{\left(eta
ight)}\left(\mathbf{x},\mathbf{y}
ight)=\exp\left[eta\left(g\left(\left|\left.\mathbf{x}
ight|
ight)+g\left(\left|\left.\mathbf{x}
ight|
ight)
ight)
ight]$.

Remark

S: A² → ℝ is the similarity function between letters used in the alignment score. K^(β)_a is only p.d. when the matrix:

 $(\exp\left(\beta s(a,b)\right))_{(a,b)\in\mathcal{A}^2}$

is positive semidefinite (this is true for all β when *s* is conditionally p.d..

• *g* is the gap penalty function used in alignment score. The gap kernel is always p.d. (with no restriction on *g*) because it can be written as:

$$\mathcal{K}_{g}^{\left(eta
ight)}\left(\mathbf{x},\mathbf{y}
ight)=\exp\left(eta g\left(\left|\left.\mathbf{x}\left.
ight|
ight)
ight) imes\exp\left(eta g\left(\left|\left.\mathbf{y}\left.
ight|
ight)
ight)
ight)$$
 .

Lemma

The local alignment kernel is a (limit) of convolution kernel:

$$\mathcal{K}_{LA}^{(\beta)} = \sum_{n=0}^{\infty} \mathcal{K}_0 \star \left(\mathcal{K}_a^{(\beta)} \star \mathcal{K}_g^{(\beta)} \right)^{(n-1)} \star \mathcal{K}_a^{(\beta)} \star \mathcal{K}_0.$$

As such it is p.d..

Proof (sketch)

- By induction on *n* (simple but long to write).
- See details in Vert et al. (2004).

• We assume an affine gap penalty:

$$\left\{ egin{array}{ll} g(0)&=0,\ g(n)&=d+e(n-1) ext{ si } n\geq 1, \end{array}
ight.$$

 The LA kernel can then be computed by dynamic programming by:

 $\mathcal{K}_{LA}^{(\beta)}(\mathbf{x},\mathbf{y}) = 1 + X_2(|\mathbf{x}|,|\mathbf{y}|) + Y_2(|\mathbf{x}|,|\mathbf{y}|) + M(|\mathbf{x}|,|\mathbf{y}|),$

where M(i,j), X(i,j), Y(i,j), $X_2(i,j)$, and $Y_2(i,j)$ for $0 \le i \le |\mathbf{x}|$, and $0 \le j \le |\mathbf{y}|$ are defined recursively.

Initialization

$$\begin{cases} M(i,0) = M(0,j) = 0, \\ X(i,0) = X(0,j) = 0, \\ Y(i,0) = Y(0,j) = 0, \\ X_2(i,0) = X_2(0,j) = 0, \\ Y_2(i,0) = Y_2(0,j) = 0, \end{cases}$$

Recursion

For $i = 1, ..., |\mathbf{x}|$ and $j = 1, ..., |\mathbf{y}|$: $\begin{cases} M(i,j) &= \exp(\beta S(x_i, y_j)) \Big[1 + X(i-1,j-1) \\ &+ Y(i-1,j-1) + M(i-1,j-1) \Big], \\ X(i,j) &= \exp(\beta d) M(i-1,j) + \exp(\beta e) X(i-1,j), \\ Y(i,j) &= \exp(\beta d) \left[M(i,j-1) + X(i,j-1) \right] \\ &+ \exp(\beta e) Y(i,j-1), \\ X_2(i,j) &= M(i-1,j) + X_2(i-1,j), \\ Y_2(i,j) &= M(i,j-1) + X_2(i,j-1) + Y_2(i,j-1). \end{cases}$

$$Y_2(i,j) = M(i,j-1) + X_2(i,j-1) + Y_2(i,j-1).$$

LA kernel in practice

• Implementation by a finite-state transducer in $O(|\mathbf{x}| \times |\mathbf{x}'|)$

 In practice, values are too large (exponential scale) so taking its logarithm is a safer choice (but not p.d. anymore!)

Outline

SVM and kernel methods

Kernels for biological sequences

- Motivations
- Feature space approach
- Using generative models
- Derive from a similarity measure
- Application: remote homology detection
- 3 Kernels for graphs
- 4 Reconstruction of regulatory networks
- 5 Supervised graph inference

Remote homology

- Homologs have common ancestors
- Structures and functions are more conserved than sequences
- Remote homologs can not be detected by direct sequence comparison

- Goal: recognize directly the superfamily
- Training: for a sequence of interest, positive examples come from the same superfamily, but different families. Negative from other superfamilies.
- Test: predict the superfamily.

Difference in performance

Performance on the SCOP superfamily recognition benchmark (from Vert et al., 2004).

- A variety of principles for string kernel design have been proposed.
- Good kernel design is important for each data and each task. Performance is not the only criterion.
- Still an art, although principled ways have started to emerge.
- Fast implementation with string algorithms is often possible.
- Their application goes well beyond computational biology.

Outline

- SVM and kernel methods
- 2 Kernels for biological sequences

Kernels for graphs

- Motivation
- Explicit computation of features
- Graph kernels: the challenges
- Walk-based kernels
- Applications

4 Reconstruction of regulatory networks

5 Supervised graph inference

Kernels for graphs

Jean-Philippe Vert (ParisTech) Machine learning in systems biology

Outline

SVM and kernel methods

2 Kernels for biological sequences

Kernels for graphs

- Motivation
- Explicit computation of features
- Graph kernels: the challenges
- Walk-based kernels
- Applications

Reconstruction of regulatory networks

5 Supervised graph inference

Virtual screening for drug discovery

NCI AIDS screen results (from http://cactus.nci.nih.gov).

Jean-Philippe Vert (ParisTech)

Machine learning in systems biology

Image retrieval and classification

From Harchaoui and Bach (2007).

Our approach

Represent each graph x by a vector Φ(x) ∈ H, either explicitly or implicitly through the kernel

$$K(x, x') = \Phi(x)^{\top} \Phi(x')$$
.

2 Use a linear method for classification in \mathcal{H} .

Our approach

■ Represent each graph x by a vector Φ(x) ∈ H, either explicitly or implicitly through the kernel

$$K(x, x') = \Phi(x)^{\top} \Phi(x').$$

2 Use a linear method for classification in \mathcal{H} .

Our approach

■ Represent each graph x by a vector Φ(x) ∈ H, either explicitly or implicitly through the kernel

$$K(x, x') = \Phi(x)^{\top} \Phi(x')$$
.

2 Use a linear method for classification in \mathcal{H} .

Outline

- SVM and kernel methods
- 2 Kernels for biological sequences

Kernels for graphs

- Motivation
- Explicit computation of features
- Graph kernels: the challenges
- Walk-based kernels
- Applications

4 Reconstruction of regulatory networks

5 Supervised graph inference

The approach

- Represent explicitly each graph *x* by a vector of fixed dimension $\Phi(x) \in \mathbb{R}^{p}$.
- 2 Use an algorithm for regression or pattern recognition in \mathbb{R}^{p} .

The approach

• Represent explicitly each graph x by a vector of fixed dimension $\Phi(x) \in \mathbb{R}^{p}$.

Use an algorithm for regression or pattern recognition in \mathbb{R}^{p} .

The approach

Solution Represent explicitly each graph x by a vector of fixed dimension $\Phi(x) \in \mathbb{R}^{p}$.

2 Use an algorithm for regression or pattern recognition in \mathbb{R}^{p} .

2D structural keys in chemoinformatics

 Index a molecule by a binary fingerprint defined by a limited set of pre-defined stuctures

 Use a machine learning algorithms such as SVM, NN, PLS, decision tree, ...

Challenge: which descriptors (patterns)?

- Expressiveness: they should retain as much information as possible from the graph
- Computation : they should be fast to compute
- Large dimension of the vector representation: memory storage, speed, statistical issues

Indexing by substructures

- Often we believe that the presence substructures are important predictive patterns
- Hence it makes sense to represent a graph by features that indicate the presence (or the number of occurrences) of particular substructures
- However, detecting the presence of particular substructures may be computationally challenging...

Subgraphs

Definition

A subgraph of a graph (V, E) is a connected graph (V', E') with $V' \subset V$ and $E' \subset E$.

Indexing by all subgraphs?

Theorem

Computing all subgraph occurrences is NP-hard.

Proof.

- The linear graph of size *n* is a subgraph of a graph *X* with *n* vertices iff *X* has an Hamiltonian path
- The decision problem whether a graph has a Hamiltonian path is NP-complete.

Indexing by all subgraphs?

Theorem

Computing all subgraph occurrences is NP-hard.

Proof.

- The linear graph of size *n* is a subgraph of a graph *X* with *n* vertices iff *X* has an Hamiltonian path
- The decision problem whether a graph has a Hamiltonian path is NP-complete.

Indexing by all subgraphs?

Theorem

Computing all subgraph occurrences is NP-hard.

Proof.

- The linear graph of size *n* is a subgraph of a graph *X* with *n* vertices iff *X* has an Hamiltonian path
- The decision problem whether a graph has a Hamiltonian path is NP-complete.

Paths

Definition

- A path of a graph (V, E) is sequence of distinct vertices $v_1, \ldots, v_n \in V$ $(i \neq j \implies v_i \neq v_j)$ such that $(v_i, v_{i+1}) \in E$ for $i = 1, \ldots, n-1$.
- Equivalently the paths are the linear subgraphs.

Indexing by all paths?

Theorem

Computing all path occurrences is NP-hard.

Proof.

Same as for subgraphs.

Indexing by all paths?

Theorem

Computing all path occurrences is NP-hard.

Proof.

Same as for subgraphs.

Jean-Philippe Vert (ParisTech)

Indexing by all paths?

Theorem

Computing all path occurrences is NP-hard.

Proof.

Same as for subgraphs.

Substructure selection

We can imagine more limited sets of substuctures that lead to more computationnally efficient indexing (non-exhaustive list)

- substructures selected by domain knowledge (MDL fingerprint)
- all path up to length k (Openeye fingerprint, Nicholls 2005)
- all shortest paths (Borgwardt and Kriegel, 2005)
- all subgraphs up to k vertices (graphlet kernel, Sherashidze et al., 2009)
- all frequent subgraphs in the database (Helma et al., 2004)

Example : Indexing by all shortest paths

Properties (Borgwardt and Kriegel, 2005)

- There are $O(n^2)$ shortest paths.
- The vector of counts can be computed in $O(n^4)$ with the Floyd-Warshall algorithm.

Example : Indexing by all shortest paths

Properties (Borgwardt and Kriegel, 2005)

- There are $O(n^2)$ shortest paths.
- The vector of counts can be computed in $O(n^4)$ with the Floyd-Warshall algorithm.

Example : Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

- Naive enumeration scales as $O(n^k)$.
- Enumeration of connected graphlets in $O(nd^{k-1})$ for graphs with degree $\leq d$ and $k \leq 5$.
- Randomly sample subgraphs if enumeration is infeasible.

Example : Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

- Naive enumeration scales as $O(n^k)$.
- Enumeration of connected graphlets in O(nd^{k-1}) for graphs with degree ≤ d and k ≤ 5.
- Randomly sample subgraphs if enumeration is infeasible.

- Explicit computation of substructure occurrences can be computationnally prohibitive (subgraph, paths)
- Several ideas to reduce the set of substructures considered
- In practice, NP-hardness may not be so prohibitive (e.g., graphs with small degrees), the strategy followed should depend on the data considered.

Outline

SVM and kernel methods

2 Kernels for biological sequences

Kernels for graphs

- Motivation
- Explicit computation of features
- Graph kernels: the challenges
- Walk-based kernels
- Applications

Reconstruction of regulatory networks

5 Supervised graph inference

The idea

■ Represent implicitly each graph *x* by a vector $\Phi(x) \in \mathcal{H}$ through the kernel

$$\mathcal{K}(x,x') = \Phi(x)^{\top} \Phi(x').$$

2 Use a kernel method for classification in \mathcal{H} .

The idea

• Represent implicitly each graph x by a vector $\Phi(x) \in \mathcal{H}$ through the kernel

$$K(x, x') = \Phi(x)^{\top} \Phi(x').$$

2 Use a kernel method for classification in \mathcal{H} .

The idea

• Represent implicitly each graph x by a vector $\Phi(x) \in \mathcal{H}$ through the kernel

$$K(x, x') = \Phi(x)^{\top} \Phi(x').$$

2 Use a kernel method for classification in \mathcal{H} .

Definition: Complete graph kernels

A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

 $\forall G_1, G_2 \in \mathcal{X}, \quad d_K(G_1, G_2) = 0 \implies G_1 \simeq G_2.$

Equivalently, $\Phi(G_1) \neq \Phi(G_1)$ if G_1 and G_2 are not isomorphic.

Expressiveness vs Complexity trade-off

- If a graph kernel is not complete, then there is no hope to learn all possible functions over \mathcal{X} : the kernel is not expressive enough.
- On the other hand, kernel computation must be tractable, i.e., no more than polynomial (with small degree) for practical applications.
- Can we define tractable and expressive graph kernels?

Definition: Complete graph kernels

A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

 $\forall G_1, G_2 \in \mathcal{X}, \quad d_K(G_1, G_2) = 0 \implies G_1 \simeq G_2.$

Equivalently, $\Phi(G_1) \neq \Phi(G_1)$ if G_1 and G_2 are not isomorphic.

Expressiveness vs Complexity trade-off

- If a graph kernel is not complete, then there is no hope to learn all possible functions over \mathcal{X} : the kernel is not expressive enough.
- On the other hand, kernel computation must be tractable, i.e., no more than polynomial (with small degree) for practical applications.
- Can we define tractable and expressive graph kernels?

Proposition (Gärtner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph isomorphism problem.

Proof

• For any kernel *K* the complexity of computing *d*_{*K*} is the same as the complexity of computing *K*, because:

 $d_K(G_1, G_2)^2 = K(G_1, G_1) + K(G_2, G_2) - 2K(G_1, G_2).$

If K is a complete graph kernel, then computing *d_K* solves the graph isomorphism problem (*d_K*(*G*₁, *G*₂) = 0 iff *G*₁ ≃ *G*₂).

Proposition (Gärtner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph isomorphism problem.

Proof

• For any kernel *K* the complexity of computing *d*_{*K*} is the same as the complexity of computing *K*, because:

$$d_{\mathcal{K}}(G_1,G_2)^2 = \mathcal{K}(G_1,G_1) + \mathcal{K}(G_2,G_2) - 2\mathcal{K}(G_1,G_2).$$

If K is a complete graph kernel, then computing *d_K* solves the graph isomorphism problem (*d_K*(*G*₁, *G*₂) = 0 iff *G*₁ ≃ *G*₂).

Subgraph kernel

Definition

- Let $(\lambda_G)_{G \in \mathcal{X}}$ a set or nonnegative real-valued weights
- For any graph $G \in \mathcal{X}$, let

 $\forall H \in \mathcal{X}, \quad \Phi_H(G) = \left| \left\{ G' \text{ is a subgraph of } G : G' \simeq H \right\} \right|.$

• The subgraph kernel between any two graphs G_1 and $G_2 \in \mathcal{X}$ is defined by:

$$\mathcal{K}_{subgraph}(G_1,G_2) = \sum_{H\in\mathcal{X}} \lambda_H \Phi_H(G_1) \Phi_H(G_2) \, .$$

$$\begin{array}{c} (a) \\ (b) \\ (b) \\ (c) \\ (c)$$

Subgraph kernel complexity

Proposition (Gärtner et al., 2003)

Computing the subgraph kernel is NP-hard.

Proof (1/2)

• Let P_n be the path graph with *n* vertices.

• Subgraphs of P_n are path graphs:

$$\Phi(P_n) = ne_{P_1} + (n-1)e_{P_2} + \ldots + e_{P_n}$$

• The vectors $\Phi(P_1), \ldots, \Phi(P_n)$ are linearly independent, therefore:

$$e_{P_n} = \sum_{i=1}^n \alpha_i \Phi(P_i) \,,$$

where the coefficients α_i can be found in polynomial time (solving a $n \times n$ triangular system).

Jean-Philippe Vert (ParisTech)

Subgraph kernel complexity

Proposition (Gärtner et al., 2003)

Computing the subgraph kernel is NP-hard.

Proof (1/2)

- Let P_n be the path graph with *n* vertices.
- Subgraphs of *P_n* are path graphs:

$$\Phi(P_n) = ne_{P_1} + (n-1)e_{P_2} + \ldots + e_{P_n}.$$

• The vectors $\Phi(P_1), \ldots, \Phi(P_n)$ are linearly independent, therefore:

$$\boldsymbol{e}_{\boldsymbol{P}_n} = \sum_{i=1}^n \alpha_i \Phi(\boldsymbol{P}_i) \,,$$

where the coefficients α_i can be found in polynomial time (solving a $n \times n$ triangular system).

Jean-Philippe Vert (ParisTech)

Proposition (Gärtner et al., 2003)

Computing the subgraph kernel is NP-hard.

Proof (2/2)

 If G is a graph with n vertices, then it has a path that visits each node exactly once (Hamiltonian path) if and only if Φ(G)^Te_n > 0, i.e.,

$$\Phi(G)^{\top}\left(\sum_{i=1}^{n}\alpha_{i}\Phi(P_{i})\right)=\sum_{i=1}^{n}\alpha_{i}K_{subgraph}(G,P_{i})>0.$$

 The decision problem whether a graph has a Hamiltonian path is NP-complete.

Definition

The path kernel is the subgraph kernel restricted to paths, i.e.,

$$K_{path}(G_1, G_2) = \sum_{H \in \mathcal{P}} \lambda_H \Phi_H(G_1) \Phi_H(G_2),$$

where $\mathcal{P} \subset \mathcal{X}$ is the set of path graphs.

Proposition (Gärtner et al., 2003)

Computing the path kernel is NP-hard.

Jean-Philippe Vert (ParisTech)

Definition

The path kernel is the subgraph kernel restricted to paths, i.e.,

$$K_{path}(G_1, G_2) = \sum_{H \in \mathcal{P}} \lambda_H \Phi_H(G_1) \Phi_H(G_2),$$

where $\mathcal{P} \subset \mathcal{X}$ is the set of path graphs.

Proposition (Gärtner et al., 2003)

Computing the path kernel is NP-hard.

Jean-Philippe Vert (ParisTech)

Expressiveness vs Complexity trade-off

- It is intractable to compute complete graph kernels.
- It is intractable to compute the subgraph kernels.
- Restricting subgraphs to be linear does not help: it is also intractable to compute the path kernel.
- One approach to define polynomial time computable graph kernels is to have the feature space be made up of graphs homomorphic to subgraphs, e.g., to consider walks instead of paths.

Outline

SVM and kernel methods

2 Kernels for biological sequences

Kernels for graphs

- Motivation
- Explicit computation of features
- Graph kernels: the challenges
- Walk-based kernels
- Applications

4 Reconstruction of regulatory networks

5 Supervised graph inference

Walks

Definition

- A walk of a graph (V, E) is sequence of $v_1, \ldots, v_n \in V$ such that $(v_i, v_{i+1}) \in E$ for $i = 1, \ldots, n-1$.
- We note W_n(G) the set of walks with n vertices of the graph G, and W(G) the set of all walks.

Walk kernel

Definition

- Let S_n denote the set of all possible label sequences of walks of length n (including vertices and edges labels), and S = ∪_{n≥1}S_n.
- For any graph X let a weight λ_G(w) be associated to each walk w ∈ W(G).
- Let the feature vector $\Phi(G) = (\Phi_s(G))_{s \in S}$ be defined by:

$$\Phi_{s}(G) = \sum_{w \in \mathcal{W}(G)} \lambda_{G}(w) \mathbf{1} (s \text{ is the label sequence of } w)$$
 .

• A walk kernel is a graph kernel defined by:

$$K_{walk}(G_1,G_2) = \sum_{s\in\mathcal{S}} \Phi_s(G_1) \Phi_s(G_2).$$
Walk kernel

Definition

- Let S_n denote the set of all possible label sequences of walks of length n (including vertices and edges labels), and S = ∪_{n≥1}S_n.
- For any graph X let a weight λ_G(w) be associated to each walk w ∈ W(G).
- Let the feature vector $\Phi(G) = (\Phi_s(G))_{s \in S}$ be defined by:

$$\Phi_s(G) = \sum_{w \in \mathcal{W}(G)} \lambda_G(w) \mathbf{1}$$
 (*s* is the label sequence of *w*).

• A walk kernel is a graph kernel defined by:

$$K_{walk}(G_1, G_2) = \sum_{s \in S} \Phi_s(G_1) \Phi_s(G_2).$$

Examples

- The *n*th-order walk kernel is the walk kernel with $\lambda_G(w) = 1$ if the length of *w* is *n*, 0 otherwise. It compares two graphs through their common walks of length *n*.
- The random walk kernel is obtained with $\lambda_G(w) = P_G(w)$, where P_G is a Markov random walk on G. In that case we have:

 $K(G_1, G_2) = P(label(W_1) = label(W_2)),$

where W_1 and W_2 are two independent random walks on G_1 and G_2 , respectively (Kashima et al., 2003).

 The geometric walk kernel is obtained (when it converges) with λ_G(w) = β^{length(w)}, for β > 0. In that case the feature space is of infinite dimension (Gärtner et al., 2003).

Examples

- The *n*th-order walk kernel is the walk kernel with $\lambda_G(w) = 1$ if the length of *w* is *n*, 0 otherwise. It compares two graphs through their common walks of length *n*.
- The random walk kernel is obtained with $\lambda_G(w) = P_G(w)$, where P_G is a Markov random walk on G. In that case we have:

 $K(G_1, G_2) = P(label(W_1) = label(W_2)),$

where W_1 and W_2 are two independent random walks on G_1 and G_2 , respectively (Kashima et al., 2003).

 The geometric walk kernel is obtained (when it converges) with λ_G(w) = β^{length(w)}, for β > 0. In that case the feature space is of infinite dimension (Gärtner et al., 2003).

Examples

- The *n*th-order walk kernel is the walk kernel with $\lambda_G(w) = 1$ if the length of *w* is *n*, 0 otherwise. It compares two graphs through their common walks of length *n*.
- The random walk kernel is obtained with $\lambda_G(w) = P_G(w)$, where P_G is a Markov random walk on G. In that case we have:

 $K(G_1, G_2) = P(label(W_1) = label(W_2)),$

where W_1 and W_2 are two independent random walks on G_1 and G_2 , respectively (Kashima et al., 2003).

• The geometric walk kernel is obtained (when it converges) with $\lambda_{G}(w) = \beta^{length(w)}$, for $\beta > 0$. In that case the feature space is of infinite dimension (Gärtner et al., 2003).

Proposition

These three kernels (*n*th-order, random and geometric walk kernels) can be computed efficiently in polynomial time.

Product graph

Definition

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs with labeled vertices. The product graph $G = G_1 \times G_2$ is the graph G = (V, E) with:

•
$$V = \{(v_1, v_2) \in V_1 \times V_2 : v_1 \text{ and } v_2 \text{ have the same label}\},\$$

• $E = \{((v_1, v_2), (v'_1, v'_2)) \in V \times V : (v_1, v'_1) \in E_1 \text{ and } (v_2, v'_2) \in E_2\}.$

Walk kernel and product graph

Lemma

There is a bijection between:

• The pairs of walks $w_1 \in W_n(G_1)$ and $w_2 \in W_n(G_2)$ with the same label sequences,

2 The walks on the product graph $w \in W_n(G_1 \times G_2)$.

Corollary

$$\begin{split} \mathcal{K}_{walk}(G_1, G_2) &= \sum_{s \in S} \Phi_s(G_1) \Phi_s(G_2) \\ &= \sum_{(w_1, w_2) \in \mathcal{W}(G_1) \times \mathcal{W}(G_1)} \lambda_{G_1}(w_1) \lambda_{G_2}(w_2) \mathbf{1}(l(w_1) = l(w_2)) \\ &= \sum_{w \in \mathcal{W}(G_1 \times G_2)} \lambda_{G_1 \times G_2}(w) \,. \end{split}$$

Walk kernel and product graph

Lemma

There is a bijection between:

• The pairs of walks $w_1 \in W_n(G_1)$ and $w_2 \in W_n(G_2)$ with the same label sequences,

2 The walks on the product graph $w \in W_n(G_1 \times G_2)$.

Corollary

$$\begin{aligned} \mathcal{K}_{walk}(G_1, G_2) &= \sum_{s \in \mathcal{S}} \Phi_s(G_1) \Phi_s(G_2) \\ &= \sum_{(w_1, w_2) \in \mathcal{W}(G_1) \times \mathcal{W}(G_1)} \lambda_{G_1}(w_1) \lambda_{G_2}(w_2) \mathbf{1}(l(w_1) = l(w_2)) \\ &= \sum_{w \in \mathcal{W}(G_1 \times G_2)} \lambda_{G_1 \times G_2}(w) \,. \end{aligned}$$

Computation of the *n*th-order walk kernel

- For the *n*th-order walk kernel we have λ_{G1×G2}(w) = 1 if the length of w is n, 0 otherwise.
- Therefore:

$$K_{nth-order}\left(G_{1},G_{2}
ight)=\sum_{w\in\mathcal{W}_{n}\left(G_{1} imes G_{2}
ight)}1$$

• Let A be the adjacency matrix of $G_1 \times G_2$. Then we get:

$$K_{nth-order}(G_1, G_2) = \sum_{i,j} [A^n]_{i,j} = \mathbf{1}^\top A^n \mathbf{1}.$$

Computation in O(n|G₁||G₂|d₁d₂), where d_i is the maximum degree of G_i.

Computation of random and geometric walk kernels

In both cases λ_G(w) for a walk w = v₁...v_n can be decomposed as:

$$\lambda_G(\mathbf{v}_1\ldots\mathbf{v}_n)=\lambda^i(\mathbf{v}_1)\prod_{i=2}^n\lambda^t(\mathbf{v}_{i-1},\mathbf{v}_i).$$

• Let Λ_i be the vector of $\lambda^i(v)$ and Λ_t be the matrix of $\lambda^t(v, v')$:

$$\mathcal{K}_{walk}(G_1, G_2) = \sum_{n=1}^{\infty} \sum_{w \in \mathcal{W}_n(G_1 \times G_2)} \lambda^i(v_1) \prod_{i=2}^n \lambda^t(v_{i-1}, v_i)$$
$$= \sum_{n=0}^{\infty} \Lambda_i \Lambda_t^n \mathbf{1}$$
$$= \Lambda_i \left(I - \Lambda_t\right)^{-1} \mathbf{1}$$

• Computation in $O(|G_1|^3|G_2|^3)$

- Compromise between fingerprints and structural keys features.
- Other relabeling schemes are possible (graph coloring).
- Faster computation with more labels (less matches implies a smaller product graph).

- Tottering walks seem irrelevant for many applications
- Focusing on non-tottering walks is a way to get closer to the path kernel (e.g., equivalent on trees).

Computation of the non-tottering walk kernel (Mahé et al., 2005)

- Second-order Markov random walk to prevent tottering walks
- Written as a first-order Markov random walk on an augmented graph
- Normal walk kernel on the augmented graph (which is always a directed graph).

Extension 3: Subtree kernels

Jean-Philippe Vert (ParisTech)

Example: Tree-like fragments of molecules

- Like the walk kernel, amounts to compute the (weighted) number of subtrees in the product graph.
- Recursion: if T(v, n) denotes the weighted number of subtrees of depth n rooted at the vertex v, then:

$$\mathcal{T}(\mathbf{v},\mathbf{n}+1) = \sum_{\mathbf{R}\subset\mathcal{N}(\mathbf{v})}\prod_{\mathbf{v}'\in\mathbf{R}}\lambda_t(\mathbf{v},\mathbf{v}')\mathcal{T}(\mathbf{v}',\mathbf{n}),$$

where $\mathcal{N}(v)$ is the set of neighbors of v.

• Can be combined with the non-tottering graph transformation as preprocessing to obtain the non-tottering subtree kernel.

Outline

SVM and kernel methods

2 Kernels for biological sequences

Kernels for graphs

- Motivation
- Explicit computation of features
- Graph kernels: the challenges
- Walk-based kernels
- Applications

4 Reconstruction of regulatory networks

5 Supervised graph inference

Application in chemoinformatics (Mahé et al., 2004)

MUTAG dataset

- aromatic/hetero-aromatic compounds
- high mutagenic activity /no mutagenic activity, assayed in Salmonella typhimurium.
- 188 compounds: 125 + / 63 -

Results

10-fold cross-validation accuracy

Method	Accuracy
Progol1	81.4%
2D kernel	91.2%

Screening of inhibitors for 60 cancer cell lines.

Jean-Philippe Vert (ParisTech)

Image classification (Harchaoui and Bach, 2007)

COREL14 dataset

- 1400 natural images in 14 classes
- Compare kernel between histograms (H), walk kernel (W), subtree kernel (TW), weighted subtree kernel (wTW), and a combination (M).

What we saw

- Kernels do not allow to overcome the NP-hardness of subgraph patterns
- They allow to work with approximate subgraphs (walks, subtrees), in infinite dimension, thanks to the kernel trick
- However: using kernels makes it difficult to come back to patterns after the learning stage

Outline

- SVM and kernel methods
- 2 Kernels for biological sequences
- Kernels for graphs
- 4 Reconstruction of regulatory networks
 - Introduction
 - De novo reconstruction based on mutual information
 - De novo reconstruction based on sparse regression
 - Supervised reconstruction with one-class methods
 - Supervised inference with PU learning

Supervised graph inference

Outline

SVM and kernel methods

2 Kernels for biological sequences

Kernels for graphs

4

Reconstruction of regulatory networks

- Introduction
- De novo reconstruction based on mutual information
- De novo reconstruction based on sparse regression
- Supervised reconstruction with one-class methods
- Supervised inference with PU learning

5 Supervised graph inference

Gene expression

Image adapted from: National Human Genome Research Institute.

Gene expression regulation

Gene regulatory network

Gene regulatory network of E. coli

Gene expression data

Reconstruction of gene regulatory network

Two flavours: de novo or supervised

De novo inference

Given a matrix of expression data, infer regulations

Supervised inference

Given a matrix of expression data and a set of knows regulations, infer *other unknown* regulations

Jean-Philippe Vert (ParisTech)

Machine learning in systems biology

Outline

- SVM and kernel methods
- 2 Kernels for biological sequences
- Kernels for graphs
- Reconstruction of regulatory networks
 - Introduction
 - De novo reconstruction based on mutual information
 - De novo reconstruction based on sparse regression
 - Supervised reconstruction with one-class methods
 - Supervised inference with PU learning

5 Supervised graph inference

If A regulates B, then we should expect some form of "correlation" between the expression levels of A and B across different experiments.

We can therefore try to detect these correlations to infer regulation.

(X₁, Y₁),...,(X_n, Y_n) the *n* expression values of both genes
Pearson correlation:

$$\rho = \frac{cov(X, Y)}{\sigma_X \sigma_Y} = \frac{\sum_i (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_i (X_i - \bar{X})^2} \sqrt{\sum_i (Y_i - \bar{Y})^2}}$$

• Spearman correlation: similar but replace X_i by its rank.

Illustration

Jean-Philippe Vert (ParisTech)

Machine learning in systems biology

Limit of correlations

Mutual information

$$I(X;Y) = \int_{Y} \int_{X} p(x,y) \log \left(\frac{p(x,y)}{p(x)p(y)}\right) dxdy$$

I(*X*; *Y*) ≥ 0 *I*(*X*; *Y*) = 0 if and only if *X* and *Y* are independent

Outline

- SVM and kernel methods
- 2 Kernels for biological sequences
- Kernels for graphs
 - Reconstruction of regulatory networks
 - Introduction
 - De novo reconstruction based on mutual information
 - De novo reconstruction based on sparse regression
 - Supervised reconstruction with one-class methods
 - Supervised inference with PU learning

5 Supervised graph inference

• The dynamic equation of the mRNA concentration of a gene is of the form:

$$\frac{dX}{dt} = f(X, R)$$

where R represent the set of concentrations of transcription factors that regulate X.

- At steady state, dX/dt = 0 = f(X, R)
- If we linearize f(X, R) = 0 we get linear relation of the form

$$X = \sum_{i \in R} \beta_i X_i$$

• This suggests to look for sets of transcription factors whose concentration is sufficient to explain the level of *X* across different experiments.

Let *Y* the expression of a gene, and X_1, \ldots, X_p the expression of all TFs. We look for a model

$$Y = \sum_{i=1}^{p} \beta_i X_i + \text{noise}$$

where β is sparse, i.e., only a few β_i are non-zero.

We can estimate the sparse regression model from a matrix of expression data.

Non-zero β_i 's correspond to predicted regulators.

Example: sparse regression with the Lasso

$$\min_{\beta \in \mathbb{R}^p} \sum_{i=1}^{n} \left(Y_i - \sum_{j=1}^{p} X_i, j\beta_j \right)^2 \text{ such that } \sum_{i=1}^{p} |\beta_i| \le t$$

- No explicit solution, but this is just a quadratic program.
- LARS (Efron et al., 2004) provides a fast algorithm to compute the solution for all t's simultaneously (regularization path)
- When *t* is not too large, the solution will usually be sparse

LASSO regression example

Why LASSO leads to sparse solutions

Geometric interpretation with p = 2

- For *t* = 1 to *T* do
 - Bootstrap a random sample S_t from the training set
 - Randomly reweight each feature
 - Select *M* features, e.g., with the Lassp
- The score of a feature is the number of times it was selected among the *T* repeats
- Rank features by decreasing score.
- See Meinshausen and Bühlmann (2009).

Large-Scale Mapping and Validation of *Escherichia coli* Transcriptional Regulation from a Compendium of Expression Profiles

Jeremiah J. Faith¹⁰, Boris Hayete¹⁰, Joshua T. Thaden^{2,3}, Ilaria Mogno^{2,4}, Jamey Wierzbowski^{2,5}, Guillaume Cottarel^{2,5}, Simon Kasif^{1,2}, James J. Collins^{1,2}, Timothy S. Gardner^{1,2*}

Outline

- SVM and kernel methods
- 2 Kernels for biological sequences
- Kernels for graphs
- Reconstruction of regulatory networks
 - Introduction
 - De novo reconstruction based on mutual information
 - De novo reconstruction based on sparse regression
 - Supervised reconstruction with one-class methods
 - Supervised inference with PU learning

5 Supervised graph inference

- In many cases, we already know quite a few regulations.
- Can we use them, in addition to expression data, to *predict unknown regulations*?

Using expression data for supervised inference

- If a gene has an expression profile similar to other genes known to be regulated by a TF, then it is likely to be regulated by the TF itself
- Underlying hypothesis: genes regulated by the same TF have similar expression variations
- Note that this is very different from *de novo* inference, where we compare the expression profile of the gene to that of the TF
- This is only possible if we already have a list of known regulations.

- For a given TF, let P ⊂ [1, n] be the set of genes known to be regulated by it
- From the expression profiles (X_i)_{i∈P}, estimate a score s(X) to assess which expression profiles X are similar
- Then classify the genes not in P by decreasing score

- For a given TF, let P ⊂ [1, n] be the set of genes known to be regulated by it
- From the expression profiles (X_i)_{i∈P}, estimate a score s(X) to assess which expression profiles X are similar
- Then classify the genes not in P by decreasing score

- For a given TF, let P ⊂ [1, n] be the set of genes known to be regulated by it
- From the expression profiles (X_i)_{i∈P}, estimate a score s(X) to assess which expression profiles X are similar
- Then classify the genes not in P by decreasing score

Estimating the scoring function: examples

Kernel density estimation

$$s(X) = \sum_{i \in P} \exp\left(-\gamma \|X - X_i\|^2\right)$$

One-class SVM

$$s(X) = \sum_{i \in P} \alpha_i \exp\left(-\gamma \|X - X_i\|^2\right)$$

Estimating the scoring function: examples

Kernel density estimation

$$s(X) = \sum_{i \in P} \exp\left(-\gamma \|X - X_i\|^2\right)$$

One-class SVM

$$s(X) = \sum_{i \in P} \alpha_i \exp\left(-\gamma \|X - X_i\|^2\right)$$

Outline

SVM and kernel methods

2 Kernels for biological sequences

Kernels for graphs

- Introduction
- De novo reconstruction based on mutual information
- De novo reconstruction based on sparse regression
- Supervised reconstruction with one-class methods
- Supervised inference with PU learning

Supervised graph inference

Since we know in advance all genes, can we use them instead of relying only on genes in *P* to estimate the scoring function?

Since we know in advance all genes, can we use them instead of relying only on genes in *P* to estimate the scoring function?

From one-class to PU learning

• One class: given genes in *P*, estimate the function s(X)

PU learning: given genes in *P* and the set of unlabeled genes *U*, estimate the scores *s*(*X_i*) for *j* ∈ *U*

From one-class to PU learning

- One class: given genes in P, estimate the function s(X)
- PU learning: given genes in *P* and the set of unlabeled genes *U*, estimate the scores *s*(*X_j*) for *j* ∈ *U*

PU learning in practice

- Train a classifier to discriminate P from U (eg, SVM or random forest)
- Rank genes in U by decreasing training score

Example: E. coli regulatory network

Method	Recall at 60%	Recall at 80%
SIRENE	44.5%	17.6%
CLR	7.5%	5.5%
Relevance networks	4.7%	3.3%
ARACNe	1%	0%
Bayesian network	1%	0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)

Jean-Philippe Vert (ParisTech)

Application: predicted regulatory network (E. coli)

Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).

Outline

- SVM and kernel methods
- 2 Kernels for biological sequences
- 3 Kernels for graphs
- Reconstruction of regulatory networks
- 5

Supervised graph inference

- Introduction
- Supervised methods for pairs
- Learning with local models
- From local models to pairwise kernels
- Experiments

Outline

- SVM and kernel methods
- 2 Kernels for biological sequences
- 3 Kernels for graphs
- Reconstruction of regulatory networks
- 5

Supervised graph inference Introduction

- Introduction
- Supervised methods for pairs
- Learning with local models
- From local models to pairwise kernels
- Experiments

Network 1: protein-protein interaction

Network 2: metabolic network

Network 3: gene regulatory network

Data available

Biologists have collected a lot of data about proteins. e.g.,

- Gene expression measurements
- Phylogenetic profiles
- Location of proteins/enzymes in the cell

How to use this information "intelligently" to find a good function that predicts edges between nodes.

Jean-Philippe Vert (ParisTech)

Our goal

Data

• Gene expression,

- Gene sequence,
- Protein localization, ...

Graph

- Protein-protein interactions,
- Metabolic pathways,
- Signaling pathways, ...

Jean-Philippe Vert (ParisTech)

Formalization

- $\mathcal{V} = \{1, \dots, N\}$ vertices (*e.g., genes, proteins*)
- $\mathcal{D} = (x_1, \dots, x_N) \in \mathcal{H}^N$ data about the vertices (\mathcal{H} Hilbert space)
- Goal: predict edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$. We focus on undirected graphs.

'De novo" inference

- Given data about individual genes and proteins \mathcal{D}, \dots
- $\bullet \ \ldots$ Infer the edges between genes and proteins ${\cal E}$

"Supervised" inference

- $\bullet\,$ Given data about individual genes and proteins $\mathcal{D},\,...$
- ... and given some known interactions $\mathcal{E}_{train} \subset \mathcal{E}$, ...
- ... infer unknown interactions $\mathcal{E}_{test} = \mathcal{E} \setminus \mathcal{E}_{train}$

Formalization

- $\mathcal{V} = \{1, \dots, N\}$ vertices (*e.g., genes, proteins*)
- $\mathcal{D} = (x_1, \dots, x_N) \in \mathcal{H}^N$ data about the vertices (\mathcal{H} Hilbert space)
- Goal: predict edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$. We focus on undirected graphs.

"De novo" inference

- $\bullet\,$ Given data about individual genes and proteins $\mathcal{D},\,...$
- \bullet ... Infer the edges between genes and proteins ${\cal E}$

"Supervised" inference

- $\bullet\,$ Given data about individual genes and proteins $\mathcal{D},\,...$
- ... and given some known interactions $\mathcal{E}_{train} \subset \mathcal{E}, ...$
- ... infer unknown interactions $\mathcal{E}_{test} = \mathcal{E} \setminus \mathcal{E}_{train}$

Formalization

- $\mathcal{V} = \{1, \dots, N\}$ vertices (*e.g., genes, proteins*)
- $\mathcal{D} = (x_1, \dots, x_N) \in \mathcal{H}^N$ data about the vertices (\mathcal{H} Hilbert space)
- Goal: predict edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$. We focus on undirected graphs.

"De novo" inference

- Given data about individual genes and proteins \mathcal{D}, \dots
- \bullet ... Infer the edges between genes and proteins ${\cal E}$

"Supervised" inference

- $\bullet\,$ Given data about individual genes and proteins $\mathcal{D},\,...$
- ... and given some known interactions $\mathcal{E}_{\textit{train}} \subset \mathcal{E}, ...$
- ... infer unknown interactions $\mathcal{E}_{test} = \mathcal{E} \setminus \mathcal{E}_{train}$

De novo methods

Typical strategies

- Fit a dynamical system to time series (e.g., PDE, boolean networks, state-space models)
- Detect statistical conditional independence or dependency (Bayesian netwok, mutual information networks, co-expression)

Pros

- Excellent approach if the model is correct and enough data are available
- Interpretability of the model
- Inclusion of prior knowledge

Cons

- Specific to particular data and networks
- Needs a correct model!
- Difficult integration of heterogeneous data
- Often needs a lot of data and long computation time
De novo methods

Typical strategies

- Fit a dynamical system to time series (e.g., PDE, boolean networks, state-space models)
- Detect statistical conditional independence or dependency (Bayesian netwok, mutual information networks, co-expression)

Pros

- Excellent approach if the model is correct and enough data are available
- Interpretability of the model
- Inclusion of prior knowledge

Cons

- Specific to particular data and networks
- Needs a correct model!
- Difficult integration of heterogeneous data
- Often needs a lot of data and long computation time

Evaluation on metabolic network reconstruction

- The known metabolic network of the yeast involves 769 proteins.
- Predict edges from distances between a variety of genomic data (expression, localization, phylogenetic profiles, interactions).

Supervised methods

Motivation

In actual applications,

- we know in advance parts of the network to be inferred
- the problem is to add/remove nodes and edges using genomic data as side information

Supervised method

- Given genomic data and the currently known network...
- Infer missing edges between current nodes and additional nodes.

 Given a training set of patterns in two classes, learn to discriminate them

• Many algorithms (ANN, SVM, Decision tress, ...)

Jean-Philippe Vert (ParisTech)

- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

Jean-Philippe Vert (ParisTech)

- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

Jean-Philippe Vert (ParisTech)

- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

Jean-Philippe Vert (ParisTech)

Associate a binary label Y to each data X

Graph inference

Associate a binary label Y to each pair of data (X_1, X_2)

Two solutions

- Consider each pair (X_1, X_2) as a single data -> learning over pairs
- Reformulate the graph inference problem as a pattern recognition problem at the level of individual vertices -> local models

Associate a binary label Y to each data X

Graph inference

Associate a binary label Y to each pair of data (X_1, X_2)

Two solutions

- Consider each pair (X_1, X_2) as a single data -> learning over pairs
- Reformulate the graph inference problem as a pattern recognition problem at the level of individual vertices -> local models

Outline

- SVM and kernel methods
- 2 Kernels for biological sequences
- 3 Kernels for graphs
 - Reconstruction of regulatory networks
- 5

Supervised graph inference

- Introduction
- Supervised methods for pairs
- Learning with local models
- From local models to pairwise kernels
- Experiments

Pattern recognition for pairs: basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!

Pattern recognition for pairs: basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!

Pattern recognition for pairs: basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!

- Each individual protein is represented by a vector $v \in \mathbb{R}^{p}$
- Depending on the network, we are interested in ordered or unordered pairs of proteins.
- We must represent a pair of proteins (u, v) by a vector ψ(u, v) ∈ ℝ^q in order to estimate a linear classifier
- Question: how build ψ(u, v) from u and v, in the ordered and unordered cases?

• A simple idea is to concatenate the vectors *u* and *v* to obtain a 2*p*-dimensional vector of (*u*, *v*):

$$\psi(\boldsymbol{u},\boldsymbol{v}) = \boldsymbol{u} \oplus \boldsymbol{v} = \left(egin{array}{c} \boldsymbol{u} \\ \boldsymbol{v} \end{array}
ight) \,.$$

• Problem: a linear function then becomes additive...

$$f(u,v) = w^{\top}\psi(u,v) = w_1^{\top}u + w^{\top}v.$$

• A simple idea is to concatenate the vectors *u* and *v* to obtain a 2*p*-dimensional vector of (*u*, *v*):

$$\psi(\boldsymbol{u},\boldsymbol{v}) = \boldsymbol{u} \oplus \boldsymbol{v} = \left(\begin{array}{c} \boldsymbol{u} \\ \boldsymbol{v} \end{array}\right)$$

• Problem: a linear function then becomes additive...

$$f(u, v) = w^{\top} \psi(u, v) = w_1^{\top} u + w^{\top} v.$$

Direct product for ordered pairs

Alternatively, make the direct product, i.e., the p²-dimensional vector whose entries are all products of entries of u by entries of V:

 $\psi(\mathbf{U},\mathbf{V})=\mathbf{U}\otimes\mathbf{V}$

- Problem: can get really large-dimensional...
- Good news: inner product factorizes:

$$(u_1 \otimes v_1)^{\top} (u_2 \otimes v_2) = \left(u_1^{\top} u_2\right) \times \left(v_1^{\top} v_2\right),$$

which is good for algorithms that use only inner products (SVM...):

 $K_P((u_1, v_1), (u_2, v_2)) = \psi(u_1, v_1)^\top \psi(u_2, v_2) = K(u_1, u_2)K(v_1, v_2)$

Direct product for ordered pairs

 Alternatively, make the direct product, i.e., the p²-dimensional vector whose entries are all products of entries of u by entries of v:

 $\psi(\mathbf{U},\mathbf{V})=\mathbf{U}\otimes\mathbf{V}$

- Problem: can get really large-dimensional...
- Good news: inner product factorizes:

$$(u_1 \otimes v_1)^{\top} (u_2 \otimes v_2) = \left(u_1^{\top} u_2\right) \times \left(v_1^{\top} v_2\right),$$

which is good for algorithms that use only inner products (SVM...):

 $K_P((u_1, v_1), (u_2, v_2)) = \psi(u_1, v_1)^\top \psi(u_2, v_2) = K(u_1, u_2)K(v_1, v_2)$

Direct product for ordered pairs

 Alternatively, make the direct product, i.e., the p²-dimensional vector whose entries are all products of entries of u by entries of v:

 $\psi(\mathbf{U},\mathbf{V})=\mathbf{U}\otimes\mathbf{V}$

- Problem: can get really large-dimensional...
- Good news: inner product factorizes:

$$(u_1 \otimes v_1)^{\top} (u_2 \otimes v_2) = (u_1^{\top} u_2) \times (v_1^{\top} v_2)$$

which is good for algorithms that use only inner products (SVM...):

 $K_P((u_1, v_1), (u_2, v_2)) = \psi(u_1, v_1)^\top \psi(u_2, v_2) = K(u_1, u_2)K(v_1, v_2)$

Representing an unordered pair

• Often we want to work with unordered pairs, e.g., PPI network:

$$\{u, v\} = \{(u, v), (v, u)\}$$

• This suggest to symmetrize the representation of ordered pairs:

$$\psi_U(\{u,v\}) = \psi(u,v) + \psi(v,u)$$

 When ψ(u, v) = u ⊗ v, this leads to the symmetric tensor product pairwise kernel (TPPK) (Ben-Hur and Noble, 2006):

 $K_{TPPK}(\{u_1, v_1\}, \{u_2, v_2\}) = K(u_1, u_2)K(v_1, v_2) + K(u_1, v_2)K(v_1, u_2)$

Representing an unordered pair

• Often we want to work with unordered pairs, e.g., PPI network:

$$\{u, v\} = \{(u, v), (v, u)\}$$

• This suggest to symmetrize the representation of ordered pairs:

$$\psi_U(\{u,v\}) = \psi(u,v) + \psi(v,u)$$

 When ψ(u, v) = u ⊗ v, this leads to the symmetric tensor product pairwise kernel (TPPK) (Ben-Hur and Noble, 2006):

 $K_{TPPK}(\{u_1, v_1\}, \{u_2, v_2\}) = K(u_1, u_2)K(v_1, v_2) + K(u_1, v_2)K(v_1, u_2)$

Representing an unordered pair

• Often we want to work with unordered pairs, e.g., PPI network:

$$\{u, v\} = \{(u, v), (v, u)\}$$

• This suggest to symmetrize the representation of ordered pairs:

$$\psi_U(\{u,v\}) = \psi(u,v) + \psi(v,u)$$

 When ψ(u, v) = u ⊗ v, this leads to the symmetric tensor product pairwise kernel (TPPK) (Ben-Hur and Noble, 2006):

 $K_{TPPK}(\{u_1, v_1\}, \{u_2, v_2\}) = K(u_1, u_2)K(v_1, v_2) + K(u_1, v_2)K(v_1, u_2)$

Another idea: metric learning

• For two vectors $u, v \in \mathcal{H}$ let the metric:

$$d_M(u,v) = (u-v)^\top M(u-v).$$

- Can we learn the metric *M* such that, in the new metric, connected points are near each other, and non-connected points are far from each other?
- We consider the problem:

$$\min_{M\geq 0}\sum_{i} I(u_i, v_i, y_i) + \lambda ||M||_{Frobenius}^2,$$

where *I* is a *hinge loss* to enforce:

$$d_M(u_i, v_i) egin{cases} \leq 1 - \gamma & ext{if}(u_i, v_i) ext{is connected} \,, \ \geq 1 + \gamma & ext{otherwise}. \end{cases}$$

Another idea: metric learning

• For two vectors $u, v \in \mathcal{H}$ let the metric:

$$d_M(u,v) = (u-v)^\top M(u-v).$$

- Can we learn the metric *M* such that, in the new metric, connected points are near each other, and non-connected points are far from each other?
- We consider the problem:

$$\min_{M\geq 0}\sum_{i} I(u_i, v_i, y_i) + \lambda ||M||^2_{Frobenius},$$

where *I* is a *hinge loss* to enforce:

$$d_M(u_i, v_i) \begin{cases} \leq 1 - \gamma & ext{if}(u_i, v_i) ext{is connected}, \\ \geq 1 + \gamma & ext{otherwise}. \end{cases}$$

Another idea: metric learning

• For two vectors $u, v \in \mathcal{H}$ let the metric:

$$d_M(u,v) = (u-v)^\top M(u-v).$$

- Can we learn the metric *M* such that, in the new metric, connected points are near each other, and non-connected points are far from each other?
- We consider the problem:

$$\min_{M\geq 0}\sum_{i} I(u_i, v_i, y_i) + \lambda ||M||^2_{Frobenius},$$

where I is a hinge loss to enforce:

$$d_{\mathcal{M}}(u_i, v_i) egin{cases} \leq 1 - \gamma & ext{if}(u_i, v_i) ext{is connected} \,, \ \geq 1 + \gamma & ext{otherwise.} \end{cases}$$

Theorem (V. et al., 2007)

A SVM with the representation

$$\psi(\{u,v\}) = (u-v)^{\otimes 2}$$

trained to discriminate connected from non-connected pairs, solves this metric learning problem without the constraint $M \ge 0$.

• Equivalently, train the SVM over pairs with the metric learning pairwise kernel:

$$K_{MLPK}(\{u_1, v_1\}, \{u_2, v_2\}) = \psi(\{u_1, v_1\})^\top \psi(\{u_2, v_2\})$$
$$= [K(u_1, u_2) - K(u_1, v_2) - K(v_1, u_2) + K(u_2, v_2)]^2$$

Outline

- SVM and kernel methods
- 2 Kernels for biological sequences
- 3 Kernels for graphs
 - Reconstruction of regulatory networks
- 5

Supervised graph inference

- Introduction
- Supervised methods for pairs
- Learning with local models
- From local models to pairwise kernels
- Experiments

The idea (Bleakley et al., 2007)

- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.

The idea (Bleakley et al., 2007)

- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.

- In the case of unordered interactions, we need to symmetrize the prediction, typically by averaging the predictive scores of A → B and B → A to predict the interaction {A, B}
- Weak hypothesis:
 - if A is connected to B,
 - if C is similar to B,
 - then A is likely to be connected to C.
- Computationally: much faster to train N local models with N training points each, than to train 1 model with N² training points.
- Caveats:
 - each local model may have very few training points
 - no sharing of information between different local models

- In the case of unordered interactions, we need to symmetrize the prediction, typically by averaging the predictive scores of A → B and B → A to predict the interaction {A, B}
- Weak hypothesis:
 - if A is connected to B,
 - if C is similar to B,
 - then A is likely to be connected to C.
- Computationally: much faster to train N local models with N training points each, than to train 1 model with N² training points.
- Caveats:
 - each local model may have very few training points
 - no sharing of information between different local models

- In the case of unordered interactions, we need to symmetrize the prediction, typically by averaging the predictive scores of A → B and B → A to predict the interaction {A, B}
- Weak hypothesis:
 - if A is connected to B,
 - if C is similar to B,
 - then A is likely to be connected to C.
- Computationally: much faster to train N local models with N training points each, than to train 1 model with N² training points.

Caveats:

- each local model may have very few training points
- no sharing of information between different local models

- In the case of unordered interactions, we need to symmetrize the prediction, typically by averaging the predictive scores of A → B and B → A to predict the interaction {A, B}
- Weak hypothesis:
 - if A is connected to B,
 - if C is similar to B,
 - then A is likely to be connected to C.
- Computationally: much faster to train N local models with N training points each, than to train 1 model with N² training points.
- Caveats:
 - each local model may have very few training points
 - no sharing of information between different local models

Outline

- SVM and kernel methods
- 2 Kernels for biological sequences
- 3 Kernels for graphs
 - Reconstruction of regulatory networks
- 5

Supervised graph inference

- Introduction
- Supervised methods for pairs
- Learning with local models
- From local models to pairwise kernels
- Experiments

In the case of unordered pairs $\{A, B\}$, pairwise kernels such as the TPPK and local models look very different:

- Local models seem to over-emphasize the asymmetry of the relationships, but symmetrize the prediction *a posteriori*
- Pairwise kernels symmetrize the data *a priori* and learn in the space or unordered pairs
- Can be clarify the links between these approaches, and perhaps interpolate between them?

Notations

- A the set of individual proteins, endowed with a kernel K_A
- \$\mathcal{X} = \mathcal{A}^2\$ the set of ordered pairs of the form \$x = (a, b)\$ endowed with a kernel \$K_{\mathcal{X}}\$ (usually deduced from \$K_{\mathcal{A}}\$)
- \mathcal{P} the set of unordered pairs of the form $p = \{(a, b), (b, a)\}$
- We want to learn over \mathcal{P} from a set of labeled training pairs $(p_1, y_1), \ldots, (p_n, y_n) \in \mathcal{P} \times \{-1, 1\}$

Two strategies to learn over ${\cal P}$

Strategy 1: Inference over \mathcal{P} with a pair kernel

• Define a kernel $K_{\mathcal{P}}$ over \mathcal{P} by convolution of $K_{\mathcal{X}}$:

$$\mathcal{K}_{\mathcal{P}}(\boldsymbol{\rho}, \boldsymbol{\rho}') = rac{1}{|\boldsymbol{\rho}| \cdot |\boldsymbol{\rho}'|} \sum_{x \in \boldsymbol{\rho}, x' \in \boldsymbol{\rho}'} \mathcal{K}_{\mathcal{X}}(x, x').$$

② Train a classifier over \mathcal{P} e.g., a SVM, using the kernel $K_{\mathcal{P}}$

Strategy 2: Inference over \mathcal{X} with a pair duplication

- **()** Duplicate each training pair $p = \{a, b\}$ into 2 ordered paired
- ② Train a classifier over \mathcal{X} , e.g., a SVM, using the kernel $K_{\mathcal{X}}$
- 3 The classifier over \mathcal{P} is then the *a posteriori* average:

$$f_{\mathcal{P}}(p) = \frac{1}{|p|} \sum_{x \in p} f_{\mathcal{X}}(x)$$

Two strategies to learn over ${\cal P}$

Strategy 1: Inference over \mathcal{P} with a pair kernel

• Define a kernel $K_{\mathcal{P}}$ over \mathcal{P} by convolution of $K_{\mathcal{X}}$:

$$\mathcal{K}_{\mathcal{P}}(\boldsymbol{\rho}, \boldsymbol{\rho}') = rac{1}{|\boldsymbol{\rho}| \cdot |\boldsymbol{\rho}'|} \sum_{x \in \boldsymbol{\rho}, x' \in \boldsymbol{\rho}'} \mathcal{K}_{\mathcal{X}}(x, x').$$

② Train a classifier over \mathcal{P} e.g., a SVM, using the kernel $K_{\mathcal{P}}$

Strategy 2: Inference over \mathcal{X} with a pair duplication

- **()** Duplicate each training pair $p = \{a, b\}$ into 2 ordered paired
- 2 Train a classifier over \mathcal{X} , e.g., a SVM, using the kernel $K_{\mathcal{X}}$
- **③** The classifier over \mathcal{P} is then the *a posteriori* average:

$$f_{\mathcal{P}}(\boldsymbol{p}) = rac{1}{|\boldsymbol{p}|} \sum_{x \in \boldsymbol{p}} f_{\mathcal{X}}(x)$$

$\mathcal{K}_{TPPK}\left(\left\{a,b ight\},\left\{c,d ight\} ight)=\mathcal{K}_{\mathcal{A}}(a,c)\mathcal{K}_{\mathcal{A}}(b,d)+\mathcal{K}_{\mathcal{A}}(a,d)\mathcal{K}_{\mathcal{A}}(b,c)\,.$

Theorem

Let $\mathcal{X} = \mathcal{A}^2$ be endowed with the p.d. kernel:

$$K_{\mathcal{X}}\left((a,b),(c,d)\right) = 2K_{\mathcal{A}}(a,c)K_{\mathcal{A}}(b,d).$$
(3)

Then the TPPK approach is equivalent to both Strategy 1 and Strategy 2.

Remarks: Equivalence with Strategy 1 is obvious, equivalence with Strategy 2 is not, see proof in Hue and V. (ICML 2010).

The local models

Theorem

Let $\mathcal{X} = \mathcal{A}^2$ be endowed with the p.d. kernel:

 $\mathcal{K}_{\mathcal{X}}\left((a,b),(c,d)\right) = \delta(a,c)\mathcal{K}_{\mathcal{A}}(b,d),$

where δ is the Kronecker kernel ($\delta(a, c) = 1$ if a = c, 0 otherwise). Then the local approach is equivalent to Strategy 2.

Remarks: Strategies 1 and 2 are not equivalent with this kernel. In general, they are equivalent up to a modification in the loss function of the learning algorithm, see details in Hue and V. (ICML 2010)..

Jean-Philippe Vert (ParisTech)

	Strategy 1: pair kernel	Strategy 2: duplication
$K_{\mathcal{X}} = K_{\mathcal{A}} \otimes K_{\mathcal{A}}$	TPPK	TPPK
$K_{\mathcal{X}} = \delta \otimes K_{\mathcal{A}}$	new	Local model

Interpolation:

$K_{\mathcal{X}} = ((1 - \lambda)K_{\mathcal{A}} + \lambda\delta) \otimes K_{\mathcal{A}}$

for $\lambda \in [0, 1]$

	Strategy 1: pair kernel	Strategy 2: duplication
$K_{\mathcal{X}} = K_{\mathcal{A}} \otimes K_{\mathcal{A}}$	TPPK	TPPK
$K_{\mathcal{X}} = \delta \otimes K_{\mathcal{A}}$	new	Local model

Interpolation:

$$K_{\mathcal{X}} = ((1 - \lambda)K_{\mathcal{A}} + \lambda\delta) \otimes K_{\mathcal{A}}$$

for $\lambda \in [0, 1]$

Outline

- SVM and kernel methods
- 2 Kernels for biological sequences
- 3 Kernels for graphs
- Reconstruction of regulatory networks
- 5

Supervised graph inference

- Introduction
- Supervised methods for pairs
- Learning with local models
- From local models to pairwise kernels
- Experiments

Results: protein-protein interaction (yeast)

(from Bleakley et al., 2007)

Results: metabolic gene network (yeast)

(from Bleakley et al., 2007)

Table: Strategy and kernel realizing the maximum mean AUC for nine metabolic and protein-protein interaction networks experiments, with the kernel K^{λ} for $\lambda \in [0, 1]$.

benchmark	best kernel
interaction, exp	Duplicate, $\lambda = 0.7$
interaction, loc	Pair kernel, $\lambda = 0.6$
interaction, phy	Duplicate, $\lambda = 0.8$
interaction, y2h	Duplicate / Pair kernel, $\lambda = 0$
interaction, integrated	Duplicate / Pair kernel, $\lambda = 0$
metabolic, exp	Pair kernel, $\lambda = 0.6$
metabolic, loc	Pair kernel, $\lambda = 1$
metabolic, phy	Pair kernel, $\lambda = 0.6$
metabolic, integrated	Duplicate / Pair kernel, $\lambda = 0$

Interpolation kernel

Metabolic networks with localization data (left); PPI network with expression data (right)

Applications: missing enzyme prediction

Prediction of missing enzyme genes in a bacterial metabolic network

Reconstruction of the lysine-degradation pathway of *Pseudomonas* aeruginosa

Yoshihiro Yamanishi¹, Hisaaki Mihara², Motoharu Osaki², Hisashi Muramatsu³, Nobuyoshi Esaki², Tetsuya Sato¹, Yoshiyuki Hizukuri¹, Susumu Goto¹ and Minoru Kanehisa¹

1 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan

2 Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Japan

3 Department of Biology, Graduate School of Science, Osaka University, Japan

Applications: missing enzyme prediction

900

DOI 10.1002/pmic.200600862

Proteomics 2007, 7, 900-909

RESEARCH ARTICLE

Prediction of nitrogen metabolism-related genes in *Anabaena* by kernel-based network analysis

Shinobu Okamoto¹*, Yoshihiro Yamanishi¹, Shigeki Ehira², Shuichi Kawashima³, Koichiro Tonomura¹** and Minoru Kanehisa¹

¹ Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
 ² Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
 ³ Human Genome Center, Institute of Medical Science, University of Tokyo, Meguro, Japan

Determination of the role of the bacterial peptidase PepF by statistical inference and further experimental validation

Liliana LOPEZ KLEINE^{1,2}, Alain TRUBUIL¹, Véronique MONNET²

¹Unité de Mathématiques et Informatiques Appliquées. INRA Jouy en Josas 78352, France. ²Unité de Biochimie Bactérienne. INRA Jouy en Josas 78352, France.

- When the network is known in part, supervised methods are more adapted than unsupervised ones.
- A variety of methods have been investigated recently (metric learning, matrix completion, pattern recognition).
 - work for any network
 - work with any data
 - can integrate heterogeneous data, which strongly improves performance
- Promising topic: infer edges simultaneously with global constraints on the graph?

Outline

- SVM and kernel methods
- 2 Kernels for biological sequences
- 3 Kernels for graphs
- Reconstruction of regulatory networks
- 5 Supervised graph inference
- Expression data classification with gene networks
 - Motivation
 - Using gene networks as prior knowledge
 - Application

Outline

- SVM and kernel methods
- 2 Kernels for biological sequences
- 3 Kernels for graphs
- Reconstruction of regulatory networks
- 5 Supervised graph inference
 - Expression data classification with gene networks
 Motivation
 - Using gene networks as prior knowledge
 - Application

Tissue profiling with DNA chips

Data

- Gene expression measures for more than 10k genes
- Measured typically on less than 100 samples of two (or more) different classes (e.g., different tumors)

Tissue classification from microarray data

Proteasome jota (X59417) Cyclin D3 (M92287) Myosin light chain (M31211) RhAp48 (X74262) Inducible protein (L47738 Dynein light chain (U32944) Topoisomerase II B (Z15115) AcvI-Coenzyme A dehydrogenase (M91432) (Ca2+)-ATPase (Z69881) Deoxyhypusine synthase (U26266) Rabaptin-5 (Y08612) Heterochromatin protein p25 (U35451) IL-7 receptor (M29696) Adenosine deaminase (M13792) umarylacetoacetate (M55150)

Goal

- Design a classifier to automatically assign a class to future samples from their expression profile
- Interpret biologically the differences between the classes

The approach

- Each sample is represented by a vector $x = (x_1, ..., x_p)$ where $p > 10^5$ is the number of probes
- Classification: given the set of labeled sample, learn a linear decision function:

$$f_{\beta}(x) = \sum_{i=1}^{p} \beta_i x_i + \beta_0 ,$$

that is positive for one class, negative for the other

• Interpretation: the weight β_i quantifies the influence of gene *i* for the classification
Empirical risk minimization

Estimate the weights β_i by minimizing an empirical error on the training set:

$$\min_{\beta\in\mathbb{R}^{p+1}}\frac{1}{n}\sum_{i=1}^n I(f_\beta(x_i),y_i),$$

where l(y, f(x)) is a loss function.

Pitfalls

- Statistics does not apply (?): 100 samples in 10⁵ dimensions!
- It is necessary to reduce the complexity of the problem with prior knowledge.

Empirical risk minimization

Estimate the weights β_i by minimizing an empirical error on the training set:

$$\min_{\beta\in\mathbb{R}^{p+1}}\frac{1}{n}\sum_{i=1}^n l(f_\beta(x_i),y_i),$$

where l(y, f(x)) is a loss function.

Pitfalls

- Statistics does not apply (?): 100 samples in 10⁵ dimensions!
- It is necessary to reduce the complexity of the problem with prior knowledge.

Example : Norm Constraints

The approach

A common method in statistics to learn with few samples in high dimension is to constrain the Euclidean norm of β

$$\|\beta\|_2^2 = \sum_{i=1}^p \beta_i^2,$$

(ridge regression, support vector machines...)

Cons

- Limited interpretation (small weights)
- No prior biological knowledge

Example : Feature Selection

The approach

Constrain most weights to be 0, i.e., select a few genes (< 100) whose expression are enough for classification. Interpretation is then about the selected genes. Examples:

- Greedy feature selection (T-tests, ...)
- Contrain the norm of β : LASSO penalty ($\|\beta\|_1 = \sum_{i=1}^{p} |\beta_i|$), elastic net penalty ($\|\beta\|_1 + \|\beta\|_2$), ...)

Pros

- Good performance in classification
- Biomarker selection
- Interpretability

Cons

- The gene selection process is usually not robust
- No use of prior biological knowledge

Gene networks

Assuming you give me a reliable gene network as prior knowledge, can it be helpful for the classification problem?

Outline

- SVM and kernel methods
- 2 Kernels for biological sequences
- 3 Kernels for graphs
- Reconstruction of regulatory networks
- 5 Supervised graph inference
- Expression data classification with gene networks
 Motivation
 - Using gene networks as prior knowledge
 - Application

Motivation

- Basic biological functions usually involve the coordinated action of several proteins:
 - Formation of protein complexes
 - Activation of metabolic, signalling or regulatory pathways
- Many pathways and protein-protein interactions are already known
- Hypothesis: the weights of the classifier should be "coherent" with respect to this prior knowledge

BMC Bioinformatics

Research article

BioMed Centra

Classification of microarray data using gene networks

Franck Rapaport^{*1,2}, Andrei Zinovyev¹, Marie Dutreix³, Emmanuel Barillot¹ and Jean-Philippe Vert²

Address: 'Institut Curie, Service de Bioinformatique, 26 rue d'Ulm, F-75248 Paris Cedex 05, France, ²Ecole des Mines de Paris, Centre for Computational Biology, 35 rue Saint-Honoré, 77300 Fontainebleau, France and ³Institut Curie, CNRS-UMR 2027, Bâtiment 110, Centre Universitaire, F-91405 Orsay, France

Email: Franck Rapapont* - franck.rapaport@curie.fr; Andrei Zinovyev - andrei.zinovyev@curie.fr; Marie Dutreix - marie.dutreix@curie.fr; Emmanuel Barillot - emmanuel.barillot@curie.fr; Jean-Philippe Vert - jean-philippe.vert@mines.org

* Corresponding author

Published: | February 2007

Received: 30 July 2006 Accepted: I February 2007

BMC Bioinformatics 2007, 8:35 doi:10.1186/1471-2105-8-35

This article is available from: http://www.biomedcentral.com/1471-2105/8/35

Machine learning in systems biology

Definition

The Laplacian of the graph is the matrix L = D - A.

Lemma

Let L = D - A be the Laplacian of the graph:

• For any $f : \mathcal{X} \to \mathbb{R}$,

$$f^{\top}Lf = \sum_{i \sim j} \left(f(\mathbf{x}_i) - f(\mathbf{x}_j) \right)^2$$

- L is a symmetric positive semi-definite matrix
- 0 is an eigenvalue with multiplicity equal to the number of connected components.

$$\sum_{i \sim j} \left(f\left(\mathbf{x}_{i}\right) - f\left(\mathbf{x}_{j}\right) \right)^{2} = \sum_{i \sim j} \left(f\left(\mathbf{x}_{i}\right)^{2} + f\left(\mathbf{x}_{j}\right)^{2} - 2f\left(\mathbf{x}_{i}\right) f\left(\mathbf{x}_{j}\right) \right)$$
$$= \sum_{i=1}^{m} D_{i,i} f\left(\mathbf{x}_{i}\right)^{2} - 2\sum_{i \sim j} f\left(\mathbf{x}_{i}\right) f\left(\mathbf{x}_{j}\right)$$
$$= f^{\top} D f - f^{\top} A f$$
$$= f^{\top} L f$$

- L is symmetric because A and D are symmetric.
- For any *f* ∈ ℝ^m, *f*^T*Lf* ≥ 0, therefore the (real-valued) eigenvalues of *L* are ≥ 0 : *L* is therefore positive semi-definite.
- *f* is an eigenvector associated to eigenvalue 0 iff $f^{\top}Lf = 0$ iff $\sum_{i \sim j} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2 = 0$, iff $f(\mathbf{x}_i) = f(\mathbf{x}_j)$ when $i \sim j$, iff *f* is constant (because the graph is connected).

Definition

- The eigenvectors e_1, \ldots, e_n of *L* with eigenvalues $0 = \lambda_1 < \ldots \leq \lambda_n$ form a basis called Fourier basis
- For any $f: V \to \mathbb{R}$, the Fourier transform of f is the vector $\hat{f} \in \mathbb{R}^n$ defined by:

 $\hat{f}_i = f^\top \boldsymbol{e}_i, \quad i = 1, \ldots, n.$

• Obviously the inverse Fourier formula holds:

$$f=\sum_{i=1}^n \hat{f}_i \boldsymbol{e}_i.$$

Fourier basis

Definition

- Let $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ be non-increasing.
- A smoothing operator S_φ transform a function f : V → ℝ into a smoothed version:

$$\mathcal{S}_{\phi}(f) = \sum_{i=1}^{n} \hat{f}_{i} \phi(\lambda_{i}) \boldsymbol{e}_{i} \,.$$

Smoothing operators

Examples

• Identity operator ($S_{\phi}(f) = f$):

 $\phi(\lambda) = \mathbf{1}, \quad \forall \lambda$

• Low-pass filter:

$$\phi(\lambda) = egin{cases} 1 & ext{if } \lambda \leq \lambda^*\,, \ 0 & ext{otherwise}. \end{cases}$$

• Attenuation of high frequencies:

 $\phi(\lambda) = \exp(-\beta\lambda).$

Smoothing operators

Examples

• Identity operator ($S_{\phi}(f) = f$):

$$\phi(\lambda) = \mathbf{1}, \quad \forall \lambda$$

• Low-pass filter:

$$\phi(\lambda) = egin{cases} 1 & ext{if } \lambda \leq \lambda^*\,, \ 0 & ext{otherwise.} \end{cases}$$

• Attenuation of high frequencies:

 $\phi(\lambda) = \exp(-\beta\lambda).$

Smoothing operators

Examples

• Identity operator ($S_{\phi}(f) = f$):

$$\phi(\lambda) = \mathbf{1} \,, \quad \forall \lambda$$

• Low-pass filter:

$$\phi(\lambda) = egin{cases} 1 & ext{if } \lambda \leq \lambda^* \,, \ 0 & ext{otherwise.} \end{cases}$$

• Attenuation of high frequencies:

$$\phi(\lambda) = \exp(-\beta\lambda).$$

Working with smoothed profiles

 Classical methods for linear classification and regression with a ridge penalty solve:

$$\min_{\beta\in\mathbb{R}^p}\frac{1}{n}\sum_{i=1}^n I\left(\beta^{\top}f_i, \mathbf{y}_i\right) + \lambda\beta^{\top}\beta.$$

• Applying these algorithms on the smooth profiles means solving:

$$\min_{\beta \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} I\left(\beta^{\top} S_{\phi}(f_{i}), y_{i}\right) + \lambda \beta^{\top} \beta.$$

Smooth solution

Lemma

This is equivalent to:

$$\min_{\boldsymbol{v}\in\mathbb{R}^p}\frac{1}{n}\sum_{i=1}^n l\left(\boldsymbol{v}^{\top}f_i,\boldsymbol{y}_i\right) + \lambda\sum_{i=1}^p\frac{\hat{v}_i^2}{\phi(\lambda_i)},$$

hence the linear classifier v is smooth.

Proof

• Let
$$\mathbf{v} = \sum_{i=1}^{n} \phi(\lambda_i) \mathbf{e}_i \mathbf{e}_i^{\top} \beta$$
, then

$$\beta^{\top} S_{\phi}(f_i) = \beta^{\top} \sum_{i=1}^n \hat{f}_i \phi(\lambda_i) e_i = f^{\top} v.$$

• Then $\hat{v}_i = \phi(\lambda_i)\hat{\beta}_i$ and $\beta^{\top}\beta = \sum_{i=1}^n \frac{\hat{v}_i^2}{\phi(\lambda_i)^2}$.

Smooth solution

Lemma

This is equivalent to:

$$\min_{\boldsymbol{v}\in\mathbb{R}^p}\frac{1}{n}\sum_{i=1}^n I\left(\boldsymbol{v}^{\top}\boldsymbol{f}_i,\boldsymbol{y}_i\right) + \lambda\sum_{i=1}^p\frac{\hat{v}_i^2}{\phi(\lambda_i)}\,,$$

hence the linear classifier v is smooth.

Proof

• Let
$$\mathbf{v} = \sum_{i=1}^{n} \phi(\lambda_i) \mathbf{e}_i \mathbf{e}_i^{\top} \beta$$
, then

$$\beta^{\top} S_{\phi}(f_i) = \beta^{\top} \sum_{i=1}^{n} \hat{f}_i \phi(\lambda_i) \boldsymbol{e}_i = \boldsymbol{f}^{\top} \boldsymbol{v}.$$

• Then
$$\hat{v}_i = \phi(\lambda_i)\hat{\beta}_i$$
 and $\beta^\top \beta = \sum_{i=1}^n \frac{\hat{v}_i^2}{\phi(\lambda_i)^2}$.

Kernel methods

Smoothing kernel

K(

Kernel methods (SVM, kernel ridge regression..) only need the inner product between smooth profiles:

$$egin{aligned} f,g) &= S_{\phi}(f)^{ op}S_{\phi}(g) \ &= \sum_{i=1}^n \hat{f}_i \hat{g}_i \phi(\lambda_i)^2 \ &= f^{ op}\left(\sum_{i=1}^n \phi(\lambda_i)^2 e_i e_i^{ op}
ight) g \ &= f^{ op} K_{\phi} g \,, \end{aligned}$$

with

$$K_{\phi} = \sum_{i=1}^{n} \phi(\lambda_i)^2 \boldsymbol{e}_i \boldsymbol{e}_i^{\top}.$$

Jean-Philippe Vert (ParisTech)

(4)

Examples

• For $\phi(\lambda) = \exp(-t\lambda)$, we recover the diffusion kernel:

 $K_{\phi} = \exp_{M}(-2tL).$

• For $\phi(\lambda) = 1/\sqrt{1+\lambda}$, we obtain

$$K_{\phi} = (L+I)^{-1} ,$$

and the penalization is:

$$\sum_{i=1}^n \frac{\hat{v}_i^2}{\phi(\lambda_i)} = \boldsymbol{v}^\top \left(\boldsymbol{L} + \boldsymbol{l} \right) \boldsymbol{v} = \| \boldsymbol{v} \|_2^2 + \sum_{i \sim j} (\boldsymbol{v}_i - \boldsymbol{v}_j)^2 \,.$$

Examples

• For $\phi(\lambda) = \exp(-t\lambda)$, we recover the diffusion kernel:

 $K_{\phi} = \exp_{M}(-2tL).$

• For $\phi(\lambda) = 1/\sqrt{1+\lambda}$, we obtain

$$K_{\phi}=(L+I)^{-1} ,$$

and the penalization is:

$$\sum_{i=1}^{n} \frac{\hat{v}_{i}^{2}}{\phi(\lambda_{i})} = v^{\top} (L+I) v = ||v||_{2}^{2} + \sum_{i \sim j} (v_{i} - v_{j})^{2}.$$

Outline

- SVM and kernel methods
- 2 Kernels for biological sequences
- 3 Kernels for graphs
- Reconstruction of regulatory networks
- 5 Supervised graph inference
 - Expression data classification with gene networks
 - Motivation
 - Using gene networks as prior knowledge
 - Application

Expression

- Study the effect of low irradiation doses on the yeast
- 12 non irradiated vs 6 irradiated
- Which pathways are involved in the response at the transcriptomic level?

Graph

- KEGG database of metabolic pathways
- Two genes are connected is they code for enzymes that catalyze successive reactions in a pathway (metabolic gene network).
- 737 genes, 4694 vertices.

Classification performance

Classifier

Classifier

Summary

- Given a gene network, spectral graph analysis (Fourier analysis) is helpful to analyze signals over the network, e.g., gene expression data
- We can smooth profiles with frequency filters or attenuation
- Combined with a SVM through spectral graph kernels, we can detect discriminant pathways or protein complexes.

Outline

- SVM and kernel methods
- 2 Kernels for biological sequences
 - 3 Kernels for graphs
 - Reconstruction of regulatory networks
- 5 Supervised graph inference
- 6 Expression data classification with gene networks

Conclusion

Machine learning in computational and systems biology

- Biology faces a flood of data following the development of high-throughput technologies (sequencing, DNA chips, ...)
- Many problems can be formalized in the framework of machine learning, e.g.:
 - Protein annotation
 - Drug discovery, virtual screening
 - Gene network inference
- These data have often complex structures (strings, graphs, high-dimensional vectors) and often require dedicated algorithms.

Support vector machines (SVM)

- A general-purpose algorithm for pattern recognition
- Based on the principle of large margin ("séparateur à vaste marge")
- Linear or nonlinear with the kernel trick
- Control of the regularization / data fitting trade-off with the *C* parameter
- State-of-the-art performance on many applications

Kernels

- A central ingredient of SVM
- Allows nonlinearity
- Allows to work implicitly in a high-dimensional feature space
- Allows to work with structured data (e.g., graphs)

Gene network inference

- Ab initio reconstruction of regulatory network can be formulated as feature selection, and solved, e.g., by the Lasso or random forests
- Supervised reconstruction is more powerful when edges (e.g., regulations) are already known
- PU learning is more powerful than one-class learning in this setting, and can be solved by SVM
- Predicting edges requires learning over pairs with specific kernels in the case of SVM

Using gene networks

- Gene networks can be used as prior knowledge to analyze gene expression data
- Spectral graph analysis and graph kernels are useful tools
- It allows to capture pathways or protein complexes instead of individual genes

