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Proteins

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Methionine

E : Acide glutamique K : Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine

H : Histidine V : Thyrosine W : Tryptophane

I : Isoleucine S : Serine Q : Glutamine

D : Acide aspartique G : Glycine
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Protein annotation

Data available
Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA...
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW...
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...
...

Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG...
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG...
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP..
...

Problem 1
Given a newly sequenced protein, is it secreted or not?
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Drug discovery

inactive
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active
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inactive

Problem 2
Given a new candidate molecule, is it likely to be active?
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DNA→ RNA→ protein
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Tissue profiling with DNA chips
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Use in diagnosis

Problem 3
Given the expression profile of a leukemia, is it an acute lymphocytic or
myeloid leukemia (ALL or AML)?
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Use in prognosis

Problem 4
Given the expression profile of a breast cancer, is the risk of relapse
within 5 years high?
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Gene network inference

Problem 5
Given known interactions, can we infer new ones?
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Pattern recognition, aka supervised classification
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Pattern recognition, aka supervised classification

Challenges
High dimension
Few samples
Structured data
Heterogeneous data
Prior knowledge
Fast and scalable
implementations
Interpretable models
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Methods for pattern recognitions

Many methods!
Logistic regression
Nearest neighbours
Decision trees and random forests
Neural networks
Support vector machines (SVM)
...
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Linear classifiers
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Linear classifiers
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Which one is better?
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The margin of a linear classifier
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The margin of a linear classifier
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Largest margin classifier (support vector machines)
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Support vectors
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More formally

The training set is a finite set of N data/class pairs:

S =
{

(~x1, y1), . . . , (~xN , yN)
}
,

where ~xi ∈ Rd and yi ∈ {−1,1}.
We assume (for the moment) that the data are linearly separable,
i.e., that there exists (~w ,b) ∈ Rd × R such that:{

~w .~xi + b > 0 if yi = 1 ,
~w .~xi + b < 0 if yi = −1 .
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How to find the largest separating hyperplane?

For a given linear classifier f (x) = ~w .~x + b consider the "tube" defined
by the values −1 and +1 of the decision function:

x2
x1

w.x+b > +1

w.x+b < −1
w

w.x+b=+1

w.x+b=−1

w.x+b=0
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The margin is 2/||~w ||

Indeed, the points ~x1 and ~x2 satisfy:{
~w .~x1 + b = 0,
~w .~x2 + b = 1.

By subtracting we get ~w .(~x2 − ~x1) = 1, and therefore:

γ = 2||~x2 − ~x1|| =
2
||~w ||

.
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All training points should be on the right side of the
dotted line

For positive examples (yi = 1) this means:

~w .~xi + b ≥ 1

For negative examples (yi = −1) this means:

~w .~xi + b ≤ −1

Both cases are summarized by:

∀i = 1, . . . ,N, yi
(
~w .~xi + b

)
≥ 1
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Finding the optimal hyperplane

Find (~w ,b) which minimize:
||~w ||2

under the constraints:

∀i = 1, . . . ,N, yi
(
~w .~xi + b

)
− 1 ≥ 0.

This is a classical quadratic program on Rd+1.
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Lagrangian

In order to minimize:
1
2
||~w ||2

under the constraints:

∀i = 1, . . . ,N, yi
(
~w .~xi + b

)
− 1 ≥ 0.

we introduce one dual variable αi for each constraint, i.e., for each
training point. The Lagrangian is:

L(~w ,b, ~α) =
1
2
||~w ||2 −

N∑
i=1

αi
(
yi
(
~w .~xi + b

)
− 1
)
.
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Dual problem

Find α∗ ∈ RN which maximizes

L(~α) =
N∑

i=1

αi −
1
2

N∑
i,j=1

αiαjyiyj~xi .~xj ,

under the (simple) constraints αi ≥ 0 (for i = 1, . . . ,N), and

N∑
i=1

αiyi = 0.

This is a quadratic program on RN , with "box constraints". ~α∗ can be
found efficiently using dedicated optimization softwares.
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Recovering the optimal hyperplane

Once ~α∗ is found, we recover (~w∗,b∗) corresponding to the optimal
hyperplane. w∗ is given by:

~w∗ =
N∑

i=1

αi~xi ,

and the decision function is therefore:

f ∗(~x) = ~w∗.~x + b∗

=
N∑

i=1

αi~xi .~x + b∗.
(1)
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Interpretation: support vectors

α>0

α=0
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What if data are not linearly separable?

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 32 / 308



What if data are not linearly separable?

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 32 / 308



What if data are not linearly separable?

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 32 / 308



What if data are not linearly separable?

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 32 / 308



Soft-margin SVM

Find a trade-off between large margin and few errors.
Mathematically:

min
f

{
1

margin(f )
+ C × errors(f )

}
C is a parameter
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Soft-margin SVM formulation

The margin of a labeled point (~x , y) is

margin(~x , y) = y
(
~w .~x + b

)
The error is

0 if margin(~x , y) > 1,
1−margin(~x , y) otherwise.

The soft margin SVM solves:

min
~w ,b

{
||~w ||2 + C

N∑
i=1

max
(
0,1− yi

(
~w .~xi + b

))}
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Dual formulation of soft-margin SVM

Maximize

L(~α) =
N∑

i=1

αi −
1
2

N∑
i,j=1

αiαjyiyj~xi .~xj ,

under the constraints:{
0 ≤ αi ≤ C, for i = 1, . . . ,N∑N

i=1 αiyi = 0.
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Interpretation: bounded and unbounded support
vectors

C

α=0

0<α<C

α=
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Sometimes linear classifiers are not interesting
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Solution: non-linear mapping to a feature space

2R

x1

x2

x1

x2

2

Let ~Φ(~x) = (x2
1 , x

2
2 )′, ~w = (1,1)′ and b = 1. Then the decision function

is:
f (~x) = x2

1 + x2
2 − R2 = ~w .~Φ(~x) + b,
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Kernel (simple but important)

For a given mapping Φ from the space of objects X to some feature
space, the kernel of two objects x and x ′ is the inner product of their
images in the features space:

∀x , x ′ ∈ X , K (x , x ′) = ~Φ(x).~Φ(x ′).

Example: if ~Φ(~x) = (x2
1 , x

2
2 )′, then

K (~x , ~x ′) = ~Φ(~x).~Φ(~x ′) = (x1)2(x ′1)2 + (x2)2(x ′2)2.
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Training a SVM in the feature space

Replace each ~x .~x ′ in the SVM algorithm by ~Φ(x).~Φ(x ′) = K (x , x ′)
The dual problem is to maximize

L(~α) =
N∑

i=1

αi −
1
2

N∑
i,j=1

αiαjyiyjK (xi , xj),

under the constraints:{
0 ≤ αi ≤ C, for i = 1, . . . ,N∑N

i=1 αiyi = 0.
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Predicting with a SVM in the feature space

The decision function becomes:

f (x) = ~w∗.~Φ(x) + b∗

=
N∑

i=1

αiK (xi , x) + b∗.
(2)
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The kernel trick

The explicit computation of ~Φ(x) is not necessary. The kernel
K (x , x ′) is enough. SVM work implicitly in the feature space.
It is sometimes possible to easily compute kernels which
correspond to complex large-dimensional feature spaces.

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 43 / 308



Kernel example: polynomial kernel

2R

x1

x2

x1

x2

2

For ~x = (x1, x2)> ∈ R2, let ~Φ(~x) = (x2
1 ,
√

2x1x2, x2
2 ) ∈ R3:

K (~x , ~x ′) = x2
1 x ′21 + 2x1x2x ′1x ′2 + x2

2 x ′22

=
(
x1x ′1 + x2x ′2

)2

=
(
~x .~x ′

)2
.
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Kernel example: polynomial kernel

2R

x1

x2

x1

x2

2

More generally,
K (~x , ~x ′) =

(
~x .~x ′ + 1

)d

is an inner product in a feature space of all monomials of degree up to
d (left as exercice.)
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Which functions K (x , x ′) are kernels?

Definition
A function K (x , x ′) defined on a set X is a kernel if and only if there
exists a features space (Hilbert space) H and a mapping

Φ : X 7→ H ,

such that, for any x,x′ in X :

K
(
x,x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉
H .

φ
X F
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Positive Definite (p.d.) functions

Definition
A positive definite (p.d.) function on the set X is a function
K : X × X → R symmetric:

∀
(
x,x′

)
∈ X 2, K

(
x,x′

)
= K

(
x′,x

)
,

and which satisfies, for all N ∈ N, (x1,x2, . . . ,xN) ∈ XN et
(a1,a2, . . . ,aN) ∈ RN :

N∑
i=1

N∑
j=1

aiajK
(
xi ,xj

)
≥ 0.
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Kernels are p.d. functions

Theorem (Aronszajn, 1950)
K is a kernel if and only if it is a positive definite function.

φ
X F
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Proof?

Kernel =⇒ p.d. function:
〈Φ (x) ,Φ (x′)〉Rd = 〈Φ (x′) ,Φ (x)Rd 〉 ,∑N

i=1
∑N

j=1 aiaj 〈Φ (xi ) ,Φ (xj )〉Rd = ‖
∑N

i=1 ai Φ (xi ) ‖2
Rd ≥ 0 .

P.d. function =⇒ kernel: more difficult...

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 49 / 308



Kernel examples

Polynomial (on Rd ):

K (x , x ′) = (x .x ′ + 1)d

Gaussian radial basis function (RBF) (on Rd )

K (x , x ′) = exp
(
−||x − x ′||2

2σ2

)
Laplace kernel (on R)

K (x , x ′) = exp
(
−γ|x − x ′|

)
Min kernel (on R+)

K (x , x ′) = min(x , x ′)

Exercice: for each kernel, find a Hilbert space H and a mapping
Φ : X → H such that K (x , x ′) = 〈Φ(x),Φ(x ′)〉
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Example: SVM with a Gaussian kernel

Training:

min
α∈RN

N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjyiyj exp

(
−
||~xi − ~xj ||2

2σ2

)

s.t. 0 ≤ αi ≤ C, and
N∑

i=1

αiyi = 0.

Prediction

f (~x) =
N∑

i=1

αi exp
(
−||

~x − ~xi ||2

2σ2

)
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Example: SVM with a Gaussian kernel

f (~x) =
N∑

i=1

αi exp
(
−||

~x − ~xi ||2

2σ2

)
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Linear vs nonlinear SVM
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Regularity vs data fitting trade-off
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C controls the trade-off

min
f

{
1

margin(f )
+ C × errors(f )

}
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Why it is important to control the trade-off
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How to choose C in practice

Split your dataset in two ("train" and "test")
Train SVM with different C on the "train" set
Compute the accuracy of the SVM on the "test" set
Choose the C which minimizes the "test" error
(you may repeat this several times = cross-validation)
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SVM summary

Large margin
Linear or nonlinear (with the kernel trick)
Control of the regularization / data fitting trade-off with C
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Part 5

Kernels for Biological
Sequences
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Short history of genomics

1866 : Laws of heredity (Mendel)
1909 : Morgan and the drosophilists
1944 : DNA supports heredity (Avery)
1953 : Structure of DNA (Crick and Watson)
1966 : Genetic code (Nirenberg)
1960-70 : Genetic engineering
1977 : Method for sequencing (Sanger)
1982 : Creation of Genbank
1990 : Human genome project launched
2003 : Human genome project completed
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A cell
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Chromosomes
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Chromosomes and DNA
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Structure of DNA

“We wish to suggest a
structure for the salt of
desoxyribose nucleic acid
(D.N.A.). This structure have
novel features which are of
considerable biological
interest” (Watson and Crick,
1953)
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The double helix
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Central dogma
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Proteins
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Genetic code
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Human genome project

Goal : sequence the 3,000,000,000 bases of the human genome
Consortium with 20 labs, 6 countries
Cost : about 3,000,000,000 USD
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2003: End of genomics era

Findings
About 25,000 genes only (representing 1.2% of the genome)
Automatic gene finding with graphical models
97% of the genome is considered “junk DNA”
Superposition of a variety of signals (many to be discovered)
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Protein sequence

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Methionine

E : Acide glutamique K : Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine

H : Histidine V : Thyrosine W : Tryptophane

I : Isoleucine S : Serine Q : Glutamine

D : Acide aspartique G : Glycine
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Challenges with protein sequences

A protein sequences can be seen as a variable-length sequence
over the 20-letter alphabet of amino-acids, e.g., insuline:
FVNQHLCGSHLVEALYLVCGERGFFYTPKA

These sequences are produced at a fast rate (result of the
sequencing programs)
Need for algorithms to compare, classify, analyze these
sequences
Applications: classification into functional or structural classes,
prediction of cellular localization and interactions, ...

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 74 / 308



Example: supervised sequence classification

Data (training)
Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA...
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW...
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...
...

Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG...
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG...
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP..
...

Goal
Build a classifier to predict whether new proteins are secreted or
not.
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Supervised classification with vector embedding

The idea
Map each string x ∈ X to a vector Φ(x) ∈ F .
Train a classifier for vectors on the images Φ(x1), . . . ,Φ(xn) of the
training set (nearest neighbor, linear perceptron, logistic
regression, support vector machine...)

mahtlg...

φ
X F

maskat...
msises

marssl...

malhtv...
mappsv...
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Kernels for protein sequences

Kernel methods have been widely investigated since Jaakkola et
al.’s seminal paper (1998).
What is a good kernel?

it should be mathematically valid (symmetric, p.d. or c.p.d.)
fast to compute
adapted to the problem (give good performances)
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Kernel engineering for protein sequences

Define a (possibly high-dimensional) feature space of interest
Physico-chemical kernels
Spectrum, mismatch, substring kernels
Pairwise, motif kernels

Derive a kernel from a generative model
Fisher kernel
Mutual information kernel
Marginalized kernel

Derive a kernel from a similarity measure
Local alignment kernel
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Vector embedding for strings

The idea
Represent each sequence x by a fixed-length numerical vector
Φ (x) ∈ Rn. How to perform this embedding?

Physico-chemical kernel
Extract relevant features, such as:

length of the sequence
time series analysis of numerical physico-chemical properties of
amino-acids along the sequence (e.g., polarity, hydrophobicity),
using for example:

Fourier transforms (Wang et al., 2004)
Autocorrelation functions (Zhang et al., 2003)

rj =
1

n − j

n−j∑
i=1

hihi+j
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Substring indexation

The approach
Alternatively, index the feature space by fixed-length strings, i.e.,

Φ (x) = (Φu (x))u∈Ak

where Φu (x) can be:
the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)
the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)
the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)
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Example: spectrum kernel (1/2)

Kernel definition
The 3-spectrum of

x = CGGSLIAMMWFGV

is:
(CGG,GGS,GSL,SLI,LIA,IAM,AMM,MMW,MWF,WFG,FGV) .

Let Φu (x) denote the number of occurrences of u in x. The
k -spectrum kernel is:

K
(
x,x′

)
:=

∑
u∈Ak

Φu (x) Φu
(
x′
)
.
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Example: spectrum kernel (2/2)

Implementation

The computation of the kernel is formally a sum over |A|k terms,
but at most |x | − k + 1 terms are non-zero in Φ (x) =⇒
Computation in O (|x |+ |x′ |) with pre-indexation of the strings.
Fast classification of a sequence x in O (|x |):

f (x) = w · Φ (x) =
∑

u

wuΦu (x) =

| x |−k+1∑
i=1

wxi ...xi+k−1 .

Remarks
Work with any string (natural language, time series...)
Fast and scalable, a good default method for string classification.
Variants allow matching of k -mers up to m mismatches.
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Example 2: Substring kernel (1/11)

Definition
For 1 ≤ k ≤ n ∈ N, we denote by I(k ,n) the set of sequences of
indices i = (i1, . . . , ik ), with 1 ≤ i1 < i2 < . . . < ik ≤ n.
For a string x = x1 . . . xn ∈ X of length n, for a sequence of indices
i ∈ I(k ,n), we define a substring as:

x (i) := xi1xi2 . . . xik .

The length of the substring is:

l (i) = ik − i1 + 1.
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Example 2: Substring kernel (2/11)

Example

ABRACADABRA

i = (3,4,7,8,10)

x (i) =RADAR

l (i) = 10− 3 + 1 = 8
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Example 2: Substring kernel (3/11)

The kernel
Let k ∈ N and λ ∈ R+ fixed. For all u ∈ Ak , let Φu : X → R be
defined by:

∀x ∈ X , Φu (x) =
∑

i∈I(k ,| x |): x(i)=u

λl(i) .

The substring kernel is the p.d. kernel defined by:

∀
(
x,x′

)
∈ X 2, Kk ,λ

(
x,x′

)
=
∑

u∈Ak

Φu (x) Φu
(
x′
)
.
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Example 2: Substring kernel (4/11)

Example

u ca ct at ba bt cr ar br
Φu(cat) λ2 λ3 λ2 0 0 0 0 0
Φu(car) λ2 0 0 0 0 λ3 λ2 0
Φu(bat) 0 0 λ2 λ2 λ3 0 0 0
Φu(bar) 0 0 0 λ2 0 0 λ2 λ3


K (cat,cat) = K (car,car) = 2λ4 + λ6

K (cat,car) = λ4

K (cat,bar) = 0
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Example 2: Substring kernel (5/11)

Kernel computation
We need to compute, for any pair x,x′ ∈ X , the kernel:

Kn,λ
(
x,x′

)
=
∑

u∈Ak

Φu (x) Φu
(
x′
)

=
∑

u∈Ak

∑
i:x(i)=u

∑
i′:x′(i′)=u

λl(i)+l(i′) .

Enumerating the substrings is too slow (of order |x |k ).
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Example 2: Substring kernel (6/11)

Kernel computation (cont.)

For u ∈ Ak remember that:

Φu (x) =
∑

i:x(i)=u

λin−i1+1 .

Let now:
Ψu (x) =

∑
i:x(i)=u

λ| x |−i1+1 .
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Example 2: Substring kernel (7/11)

Kernel computation (cont.)
Let us note x (1, j) = x1 . . . xj . A simple rewriting shows that, if we note
a ∈ A the last letter of u (u = va):

Φva (x) =
∑

j∈[1,| x |]:xj =a

Ψv (x (1, j − 1))λ ,

and
Ψva (x) =

∑
j∈[1,| x |]:xj =a

Ψv (x (1, j − 1))λ| x |−j+1 .

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 90 / 308



Example 2: Substring kernel (8/11)

Kernel computation (cont.)
Moreover we observe that if the string is of the form xa (i.e., the last
letter is a ∈ A), then:

If the last letter of u is not a:{
Φu (xa) = Φu (x) ,

Ψu (xa) = λΨu (x) .

If the last letter of u is a (i.e., u = va with v ∈ An−1):{
Φva (xa) = Φva (x) + λΨv (x) ,

Ψva (xa) = λΨva (x) + λΨv (x) .
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Example 2: Substring kernel (9/11)

Kernel computation (cont.)
Let us now show how the function:

Bn
(
x,x′

)
:=
∑

u∈An

Ψu (x) Ψu
(
x′
)

and the kernel:
Kn
(
x,x′

)
:=
∑

u∈An

Φu (x) Φu
(
x′
)

can be computed recursively. We note that:{
B0 (x,x′) = K0 (x,x′) = 0 for all x,x′

Bk (x,x′) = Kk (x,x′) = 0 if min (|x | , |x′ |) < k
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Example 2: Substring kernel (10/11)

Recursive computation of Bn

Bn
(
xa,x′

)
=
∑

u∈An

Ψu (xa) Ψu
(
x′
)

= λ
∑

u∈An

Ψu (x) Ψu
(
x′
)

+ λ
∑

v∈An−1

Ψv (x) Ψva
(
x′
)

= λBn
(
x,x′

)
+

λ
∑

v∈An−1

Ψv (x)

 ∑
j∈[1,| x′ |]:x ′j =a

Ψv
(
x′ (1, j − 1)

)
λ| x
′ |−j+1


= λBn

(
x,x′

)
+

∑
j∈[1,| x′ |]:x ′j =a

Bn−1
(
x,x′ (1, j − 1)

)
λ| x
′ |−j+2
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Example 2: Substring kernel (10/11)

Recursive computation of Kn

Kn
(
xa,x′

)
=
∑

u∈An

Φu (xa) Φu
(
x′
)

=
∑

u∈An

Φu (x) Φu
(
x′
)

+ λ
∑

v∈An−1

Ψv (x) Φva
(
x′
)

= Kn
(
x,x′

)
+

λ
∑

v∈An−1

Ψv (x)

 ∑
j∈[1,| x′ |]:x ′j =a

Ψv
(
x′ (1, j − 1)

)
λ


= λKn

(
x,x′

)
+ λ2

∑
j∈[1,| x′ |]:x ′j =a

Bn−1
(
x,x′ (1, j − 1)

)
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Summary: Substring indexation

Implementation in O(|x|+ |x′|) in memory and time for the
spectrum and mismatch kernels (with suffix trees)
Implementation in O(|x| × |x′|) in memory and time for the
substring kernels
The feature space has high dimension (|A|k ), so learning requires
regularized methods (such as SVM)
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Dictionary-based indexation

The approach
Chose a dictionary of sequences D = (x1,x2, . . . ,xn)

Chose a measure of similarity s (x,x′)
Define the mapping ΦD (x) = (s (x,xi))xi∈D

Examples
This includes:

Motif kernels (Logan et al., 2001): the dictionary is a library of
motifs, the similarity function is a matching function
Pairwise kernel (Liao & Noble, 2003): the dictionary is the training
set, the similarity is a classical measure of similarity between
sequences.

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 96 / 308



Dictionary-based indexation

The approach
Chose a dictionary of sequences D = (x1,x2, . . . ,xn)

Chose a measure of similarity s (x,x′)
Define the mapping ΦD (x) = (s (x,xi))xi∈D

Examples
This includes:

Motif kernels (Logan et al., 2001): the dictionary is a library of
motifs, the similarity function is a matching function
Pairwise kernel (Liao & Noble, 2003): the dictionary is the training
set, the similarity is a classical measure of similarity between
sequences.

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 96 / 308



Outline

1 SVM and kernel methods

2 Kernels for biological sequences
Motivations
Feature space approach
Using generative models
Derive from a similarity measure
Application: remote homology detection

3 Kernels for graphs

4 Reconstruction of regulatory networks

5 Supervised graph inference

6 Expression data classification with gene networks

7 Conclusion

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 97 / 308



Probabilistic models for sequences

Probabilistic modeling of biological sequences is older than kernel
designs. Important models include HMM for protein sequences, SCFG
for RNA sequences.

Parametric model
A model is a family of distribution

{Pθ, θ ∈ Θ ⊂ Rm} ⊂ M+
1 (X )
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Fisher kernel

Definition
Fix a parameter θ0 ∈ Θ (e.g., by maximum likelihood over a
training set of sequences)
For each sequence x, compute the Fisher score vector:

Φθ0(x) = ∇θ log Pθ(x)|θ=θ0 .

Form the kernel (Jaakkola et al., 1998):

K
(
x,x′

)
= Φθ0(x)>I(θ0)−1Φθ0(x′) ,

where I(θ0) = Eθ0

[
Φθ0(x)Φθ0(x)>

]
is the Fisher information matrix.
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Fisher kernel properties

The Fisher score describes how each parameter contributes to
the process of generating a particular example
The Fisher kernel is invariant under change of parametrization of
the model
A kernel classifier employing the Fisher kernel derived from a
model that contains the label as a latent variable is, asymptotically,
at least as good a classifier as the MAP labelling based on the
model (Jaakkola and Haussler, 1998).
A variant of the Fisher kernel (called the Tangent of Posterior
kernel) can also improve over the direct posterior classification by
helping to correct the effect of estimation errors in the parameter
(Tsuda et al., 2002).
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Fisher kernel in practice

Φθ0(x) can be computed explicitly for many models (e.g., HMMs)
I(θ0) is often replaced by the identity matrix
Several different models (i.e., different θ0) can be trained and
combined
Feature vectors are explicitly computed
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Mutual information kernels

Definition
Chose a prior w(dθ) on the measurable set Θ

Form the kernel (Seeger, 2002):

K
(
x,x′

)
=

∫
θ∈Θ

Pθ(x)Pθ(x′)w(dθ) .

No explicit computation of a finite-dimensional feature vector
K (x,x′) =< φ (x) , φ (x′) >L2(w) with

φ (x) = (Pθ (x))θ∈Θ .

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 102 / 308



Example: coin toss

Let Pθ(X = 1) = θ and Pθ(X = 0) = 1− θ a model for random
coin toss, with θ ∈ [0,1].
Let dθ be the Lebesgue measure on [0,1]

The mutual information kernel between x = 001 and x′ = 1010 is:{
Pθ (x) = θ (1− θ)2 ,

Pθ (x′) = θ2 (1− θ)2 ,

K
(
x,x′

)
=

∫ 1

0
θ3 (1− θ)4 dθ =

3!4!

8!
=

1
280

.
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Context-tree model

Definition
A context-tree model is a variable-memory Markov chain:

PD,θ(x) = PD,θ (x1 . . . xD)
n∏

i=D+1

PD,θ (xi | xi−D . . . xi−1)

D is a suffix tree
θ ∈ ΣD is a set of conditional probabilities (multinomials)
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Context-tree model: example

P(AABACBACC) = P(AAB)θAB(A)θA(C)θC(B)θACB(A)θA(C)θC(A) .
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The context-tree kernel

Theorem (Cuturi et al., 2004)
For particular choices of priors, the context-tree kernel:

K
(
x,x′

)
=
∑
D

∫
θ∈ΣD

PD,θ(x)PD,θ(x′)w(dθ|D)π(D)

can be computed in O(|x|+ |x′|) with a variant of the Context-Tree
Weighting algorithm.
This is a valid mutual information kernel.
The similarity is related to information-theoretical measure of
mutual information between strings.
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Marginalized kernels

Definition
For any observed data x ∈ X , let a latent variable y ∈ Y be
associated probabilistically through a conditional probability
Px (dy).
Let KZ be a kernel for the complete data z = (x,y)

Then the following kernel is a valid kernel on X , called a
marginalized kernel (Kin et al., 2002):

KX
(
x,x′

)
:= EPx(dy)×Px′ (dy′)KZ

(
z, z′

)
=

∫ ∫
KZ
(
(x,y) ,

(
x′,y′

))
Px (dy) Px′

(
dy′
)
.
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Marginalized kernels: proof of positive definiteness

KZ is p.d. on Z. Therefore there exists a Hilbert space H and
ΦZ : Z → H such that:

KZ
(
z, z′

)
=
〈
ΦZ (z) ,ΦZ

(
z′
)〉
H .

Marginalizing therefore gives:

KX
(
x,x′

)
= EPx(dy)×Px′ (dy′)KZ

(
z, z′

)
= EPx(dy)×Px′ (dy′)

〈
ΦZ (z) ,ΦZ

(
z′
)〉
H

=
〈
EPx(dy)ΦZ (z) ,EPx(dy′)ΦZ

(
z′
)〉
H ,

therefore KX is p.d. on X . �
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Example: HMM for normal/biased coin toss

S

B

0.5

0.5

0.1
0.1

0.05

0.05N

E

0.85

0.85

Normal (N) and biased (B)
coins (not observed)

Observed output are 0/1 with probabilities:{
π(0|N) = 1− π(1|N) = 0.5,
π(0|B) = 1− π(1|B) = 0.8.

Example of realization (complete data):

NNNNNBBBBBBBBBNNNNNNNNNNNBBBBBB
1001011101111010010111001111011
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1-spectrum kernel on complete data

If both x ∈ A∗ and y ∈ S∗ were observed, we might rather use the
1-spectrum kernel on the complete data z = (x,y):

KZ
(
z, z′

)
=

∑
(a,s)∈A×S

na,s (z) na,s (z) ,

where na,s (x,y) for a = 0,1 and s = N,B is the number of
occurrences of s in y which emit a in x.
Example:

z =1001011101111010010111001111011,
z′ =0011010110011111011010111101100101,

KZ
(
z, z′

)
= n0 (z) n0

(
z′
)

+ n0 (z) n0
(
z′
)

+ n1 (z) n1
(
z′
)

+ n1 (z) n1
(
z′
)

= 7× 15 + 9× 12 + 13× 6 + 2× 1 = 293.
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1-spectrum marginalized kernel on observed data

The marginalized kernel for observed data is:

KX
(
x,x′

)
=

∑
y,y′∈S∗

KZ ((x,y) , (x,y)) P (y|x) P
(
y′|x′

)
=

∑
(a,s)∈A×S

Φa,s (x) Φa,s
(
x′
)
,

with
Φa,s (x) =

∑
y∈S∗

P (y|x) na,s (x,y)
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Computation of the 1-spectrum marginalized kernel

Φa,s (x) =
∑
y∈S∗

P (y|x) na,s (x,y)

=
∑
y∈S∗

P (y|x)

{
n∑

i=1

δ (xi ,a) δ (yi , s)

}

=
n∑

i=1

δ (xi ,a)

∑
y∈S∗

P (y|x) δ (yi , s)


=

n∑
i=1

δ (xi ,a) P (yi = s|x) .

and P (yi = s|x) can be computed efficiently by forward-backward
algorithm!
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HMM example (DNA)
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HMM example (protein)
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SCFG for RNA sequences

SFCG rules
S → SS
S → aSa
S → aS
S → a

Marginalized kernel (Kin et al., 2002)
Feature: number of occurrences of each (base,state) combination
Marginalization using classical inside/outside algorithm
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Marginalized kernels in practice

Examples
Spectrum kernel on the hidden states of a HMM for protein
sequences (Tsuda et al., 2002)
Kernels for RNA sequences based on SCFG (Kin et al., 2002)
Kernels for graphs based on random walks on graphs (Kashima et
al., 2004)
Kernels for multiple alignments based on phylogenetic models
(Vert et al., 2005)
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Marginalized kernels: example

PC2

PC1

A set of 74 human tRNA
sequences is analyzed using
a kernel for sequences (the
second-order marginalized
kernel based on SCFG). This
set of tRNAs contains three
classes, called Ala-AGC
(white circles), Asn-GTT
(black circles) and Cys-GCA
(plus symbols) (from Tsuda
et al., 2003).
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Sequence alignment

Motivation
How to compare 2 sequences?

x1 = CGGSLIAMMWFGV
x2 = CLIVMMNRLMWFGV

Find a good alignment:

CGGSLIAMM----WFGV
|...|||||....||||
C---LIVMMNRLMWFGV
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Alignment score

In order to quantify the relevance of an alignment π, define:
a substitution matrix S ∈ RA×A

a gap penalty function g : N→ R
Any alignment is then scored as follows

CGGSLIAMM----WFGV
|...|||||....||||
C---LIVMMNRLMWFGV

sS,g(π) = S(C,C) + S(L,L) + S(I, I) + S(A,V ) + 2S(M,M)

+ S(W ,W ) + S(F ,F ) + S(G,G) + S(V ,V )− g(3)− g(4)
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Local alignment kernel

Smith-Waterman score
The widely-used Smith-Waterman local alignment score is defined
by:

SWS,g(x,y) := max
π∈Π(x,y)

sS,g(π).

It is symmetric, but not positive definite...

LA kernel
The local alignment kernel:

K (β)
LA (x,y) =

∑
π∈Π(x,y)

exp
(
βsS,g (x,y, π)

)
,

is symmetric positive definite.
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LA kernel is p.d.: proof (1/11)

Lemma
If K1 and K2 are p.d. kernels, then:

K1 + K2,

K1K2, and
cK1, for c ≥ 0,

are also p.d. kernels
If (Ki)i≥1 is a sequence of p.d. kernels that converges pointwisely
to a function K :

∀
(
x,x′

)
∈ X 2, K

(
x,x′

)
= lim

n→∞
Ki
(
x,x′

)
,

then K is also a p.d. kernel.
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LA kernel is p.d.: proof (2/11)

Proof of lemma
Let A and B be n× n positive semidefinite matrices. By diagonalization
of A:

Ai,j =
n∑

p=1

fp(i)fp(j)

for some vectors f1, . . . , fn. Then, for any α ∈ Rn:

n∑
i,j=1

αiαjAi,jBi,j =
n∑

p=1

n∑
i,j=1

αi fp(i)αj fp(j)Bi,j ≥ 0.

The matrix Ci,j = Ai,jBi,j is therefore p.d. Other properties are obvious
from definition. �
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LA kernel is p.d.: proof (3/11)

Lemma (direct sum and product of kernels)
Let X = X1 ×X2. Let K1 be a p.d. kernel on X1, and K2 be a p.d.
kernel on X2. Then the following functions are p.d. kernels on X :

the direct sum,

K ((x1,x2) , (y1,y2)) = K1 (x1,y1) + K2 (x2,y2) ,

The direct product:

K ((x1,x2) , (y1,y2)) = K1 (x1,y1) K2 (x2,y2) .
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LA kernel is p.d.: proof (4/11)

Proof of lemma
If K1 is a p.d. kernel, let Φ1 : X1 7→ H be such that:

K1 (x1,y1) = 〈Φ1 (x1) ,Φ1 (y1)〉H .

Let Φ : X1 ×X2 → H be defined by:

Φ ((x1,x2)) = Φ1 (x1) .

Then for x = (x1,x2) and y = (y1,y2) ∈ X , we get

〈Φ ((x1,x2)) ,Φ ((y1,y2))〉H = K1 (x1,x2) ,

which shows that K (x,y) := K1 (x1,y1) is p.d. on X1 ×X2. The lemma
follows from the properties of sums and products of p.d. kernels. �
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LA kernel is p.d.: proof (5/11)

Lemma: kernel for sets
Let K be a p.d. kernel on X , and let P (X ) be the set of finite subsets
of X . Then the function KP on P (X )× P (X ) defined by:

∀A,B ∈ P (X ) , KP (A,B) :=
∑
x∈A

∑
y∈B

K (x,y)

is a p.d. kernel on P (X ).
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LA kernel is p.d.: proof (6/11)

Proof of lemma
Let Φ : X 7→ H be such that

K (x,y) = 〈Φ (x) ,Φ (y)〉H .

Then, for A,B ∈ P (X ), we get:

KP (A,B) =
∑
x∈A

∑
y∈B

〈Φ (x) ,Φ (y)〉H

=

〈∑
x∈A

Φ (x) ,
∑
y∈B

Φ (y)

〉
H

= 〈ΦP(A),ΦP(B)〉H ,

with ΦP(A) :=
∑

x∈A Φ (x). �
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LA kernel is p.d.: proof (7/11)

Definition: Convolution kernel (Haussler, 1999)
Let K1 and K2 be two p.d. kernels for strings. The convolution of K1
and K2, denoted K1 ? K2, is defined for any x,x′ ∈ X by:

K1 ? K2(x,y) :=
∑

x1x2=x,y1y2=y

K1(x1,y1)K2(x2,y2).

Lemma
If K1 and K2 are p.d. then K1 ? K2 is p.d..
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LA kernel is p.d.: proof (8/11)

Proof of lemma
Let X be the set of finite-length strings. For x ∈ X , let

R (x) = {(x1,x2) ∈ X × X : x = x1x2} ⊂ X × X .

We can then write

K1 ? K2(x,y) =
∑

(x1,x2)∈R(x)

∑
(y1,y2)∈R(y)

K1(x1,y1)K2(x2,y2)

which is a p.d. kernel by the previous lemmas. �
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LA kernel is p.d.: proof (9/11)

3 basic string kernels
The constant kernel:

K0 (x,y) := 1 .

A kernel for letters:

K (β)
a (x,y) :=

{
0 if |x | 6= 1 where |y | 6= 1 ,
exp (βS(x,y)) otherwise .

A kernel for gaps:

K (β)
g (x,y) = exp [β (g (|x |) + g (|x |))] .
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LA kernel is p.d.: proof (10/11)

Remark
S : A2 → R is the similarity function between letters used in the
alignment score. K (β)

a is only p.d. when the matrix:

(exp (βs(a,b)))(a,b)∈A2

is positive semidefinite (this is true for all β when s is conditionally
p.d..
g is the gap penalty function used in alignment score. The gap
kernel is always p.d. (with no restriction on g) because it can be
written as:

K (β)
g (x,y) = exp (βg (|x |))× exp (βg (|y |)) .
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LA kernel is p.d.: proof (11/11)

Lemma
The local alignment kernel is a (limit) of convolution kernel:

K (β)
LA =

∞∑
n=0

K0 ?
(

K (β)
a ? K (β)

g

)(n−1)
? K (β)

a ? K0.

As such it is p.d..

Proof (sketch)
By induction on n (simple but long to write).
See details in Vert et al. (2004).
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LA kernel computation

We assume an affine gap penalty:{
g(0) = 0,
g(n) = d + e(n − 1) si n ≥ 1,

The LA kernel can then be computed by dynamic programming
by:

K (β)
LA (x,y) = 1 + X2(|x|, |y|) + Y2(|x|, |y|) + M(|x|, |y|),

where M(i , j),X (i , j),Y (i , j),X2(i , j), and Y2(i , j) for 0 ≤ i ≤ |x|,
and 0 ≤ j ≤ |y| are defined recursively.
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LA kernel is p.d.: proof (/)

Initialization 

M(i ,0) = M(0, j) = 0,
X (i ,0) = X (0, j) = 0,
Y (i ,0) = Y (0, j) = 0,
X2(i ,0) = X2(0, j) = 0,
Y2(i ,0) = Y2(0, j) = 0,
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LA kernel is p.d.: proof (/)

Recursion
For i = 1, . . . , |x| and j = 1, . . . , |y|:

M(i , j) = exp(βS(xi , yj))
[
1 + X (i − 1, j − 1)

+Y (i − 1, j − 1) + M(i − 1, j − 1)
]
,

X (i , j) = exp(βd)M(i − 1, j) + exp(βe)X (i − 1, j),
Y (i , j) = exp(βd) [M(i , j − 1) + X (i , j − 1)]

+ exp(βe)Y (i , j − 1),

X2(i , j) = M(i − 1, j) + X2(i − 1, j),
Y2(i , j) = M(i , j − 1) + X2(i , j − 1) + Y2(i , j − 1).
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LA kernel in practice

Implementation by a finite-state transducer in O(|x| × |x′|)

a:0/1

a:0/1

a:0/1

a:0/1

0:a/1

0:a/1

0:a/1 0:a/1

0:a/1

0:0/1

0:0/1

0:0/1

0:0/1

0:0/1

0:0/1

0:a/1

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)
a:0/D

a:0/E

0:b/E

0:b/D

0:b/D

B M E

XX X

YY Y

1

1 2

2

In practice, values are too large (exponential scale) so taking its
logarithm is a safer choice (but not p.d. anymore!)
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Using generative models
Derive from a similarity measure
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Remote homology

Sequence similarity
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Homologs have common ancestors
Structures and functions are more conserved than sequences
Remote homologs can not be detected by direct sequence
comparison
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SCOP database

Remote homologs

Superfamily

Family

SCOP

Close homologs

Fold
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A benchmark experiment

Goal: recognize directly the superfamily
Training: for a sequence of interest, positive examples come from
the same superfamily, but different families. Negative from other
superfamilies.
Test: predict the superfamily.
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Difference in performance
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Performance on the SCOP superfamily recognition benchmark (from
Vert et al., 2004).
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String kernels: Summary

A variety of principles for string kernel design have been
proposed.
Good kernel design is important for each data and each task.
Performance is not the only criterion.
Still an art, although principled ways have started to emerge.
Fast implementation with string algorithms is often possible.
Their application goes well beyond computational biology.

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 142 / 308



Outline

1 SVM and kernel methods

2 Kernels for biological sequences

3 Kernels for graphs
Motivation
Explicit computation of features
Graph kernels: the challenges
Walk-based kernels
Applications

4 Reconstruction of regulatory networks

5 Supervised graph inference

6 Expression data classification with gene networks

7 Conclusion

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 143 / 308



Part 6

Kernels for graphs
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Virtual screening for drug discovery

inactive

active

active

active

inactive

inactive

NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Image retrieval and classification

From Harchaoui and Bach (2007).
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Our approach

1 Represent each graph x by a vector Φ(x) ∈ H, either explicitly or
implicitly through the kernel

K (x , x ′) = Φ(x)>Φ(x ′) .

2 Use a linear method for classification in H.

X
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The approach

1 Represent explicitly each graph x by a vector of fixed dimension
Φ(x) ∈ Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

X
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Example

2D structural keys in chemoinformatics
Index a molecule by a binary fingerprint defined by a limited set of
pre-defined stuctures

O

N

O

O

OO

N N N

O O

O

Use a machine learning algorithms such as SVM, NN, PLS,
decision tree, ...
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Challenge: which descriptors (patterns)?

O

N

O

O

OO

N N N

O O

O

Expressiveness: they should retain as much information as
possible from the graph
Computation : they should be fast to compute
Large dimension of the vector representation: memory storage,
speed, statistical issues
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Indexing by substructures

O

N

O

O

OO

N N N

O O

O

Often we believe that the presence substructures are important
predictive patterns
Hence it makes sense to represent a graph by features that
indicate the presence (or the number of occurrences) of particular
substructures
However, detecting the presence of particular substructures may
be computationally challenging...
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Subgraphs

Definition
A subgraph of a graph (V ,E) is a connected graph (V ′,E ′) with
V ′ ⊂ V and E ′ ⊂ E .
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Indexing by all subgraphs?

Theorem
Computing all subgraph occurrences is NP-hard.

Proof.
The linear graph of size n is a subgraph of a graph X with n
vertices iff X has an Hamiltonian path
The decision problem whether a graph has a Hamiltonian path is
NP-complete.
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Paths

Definition
A path of a graph (V ,E) is sequence of distinct vertices
v1, . . . , vn ∈ V (i 6= j =⇒ vi 6= vj ) such that (vi , vi+1) ∈ E for
i = 1, . . . ,n − 1.
Equivalently the paths are the linear subgraphs.
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Indexing by all paths?

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Theorem
Computing all path occurrences is NP-hard.

Proof.
Same as for subgraphs.
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Indexing by what?

Substructure selection
We can imagine more limited sets of substuctures that lead to more
computationnally efficient indexing (non-exhaustive list)

substructures selected by domain knowledge (MDL fingerprint)
all path up to length k (Openeye fingerprint, Nicholls 2005)
all shortest paths (Borgwardt and Kriegel, 2005)
all subgraphs up to k vertices (graphlet kernel, Sherashidze et al.,
2009)
all frequent subgraphs in the database (Helma et al., 2004)
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Example : Indexing by all shortest paths

(0,...,0,2,0,...,0,1,0,...)

B

A
B

A
A A A B

A B A B

A A

A

A

Properties (Borgwardt and Kriegel, 2005)

There are O(n2) shortest paths.
The vector of counts can be computed in O(n4) with the
Floyd-Warshall algorithm.
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Example : Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

Naive enumeration scales as O(nk ).
Enumeration of connected graphlets in O(ndk−1) for graphs with
degree ≤ d and k ≤ 5.
Randomly sample subgraphs if enumeration is infeasible.
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Summary

Explicit computation of substructure occurrences can be
computationnally prohibitive (subgraph, paths)
Several ideas to reduce the set of substructures considered
In practice, NP-hardness may not be so prohibitive (e.g., graphs
with small degrees), the strategy followed should depend on the
data considered.
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The idea

1 Represent implicitly each graph x by a vector Φ(x) ∈ H through
the kernel

K (x , x ′) = Φ(x)>Φ(x ′) .

2 Use a kernel method for classification in H.

X
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Expressiveness vs Complexity

Definition: Complete graph kernels
A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

∀G1,G2 ∈ X , dK (G1,G2) = 0 =⇒ G1 ' G2 .

Equivalently, Φ(G1) 6= Φ(G1) if G1 and G2 are not isomorphic.

Expressiveness vs Complexity trade-off
If a graph kernel is not complete, then there is no hope to learn all
possible functions over X : the kernel is not expressive enough.
On the other hand, kernel computation must be tractable, i.e., no
more than polynomial (with small degree) for practical
applications.
Can we define tractable and expressive graph kernels?
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Complexity of complete kernels

Proposition (Gärtner et al., 2003)
Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.

Proof
For any kernel K the complexity of computing dK is the same as
the complexity of computing K , because:

dK (G1,G2)2 = K (G1,G1) + K (G2,G2)− 2K (G1,G2) .

If K is a complete graph kernel, then computing dK solves the
graph isomorphism problem (dK (G1,G2) = 0 iff G1 ' G2). �
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Subgraph kernel

Definition
Let (λG)G∈X a set or nonnegative real-valued weights
For any graph G ∈ X , let

∀H ∈ X , ΦH(G) =
∣∣ {G′ is a subgraph of G : G′ ' H

} ∣∣ .
The subgraph kernel between any two graphs G1 and G2 ∈ X is
defined by:

Ksubgraph(G1,G2) =
∑
H∈X

λHΦH(G1)ΦH(G2) .
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Subgraph kernel complexity

Proposition (Gärtner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (1/2)
Let Pn be the path graph with n vertices.
Subgraphs of Pn are path graphs:

Φ(Pn) = neP1 + (n − 1)eP2 + . . .+ ePn .

The vectors Φ(P1), . . . ,Φ(Pn) are linearly independent, therefore:

ePn =
n∑

i=1

αiΦ(Pi) ,

where the coefficients αi can be found in polynomial time (solving
a n × n triangular system).
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Subgraph kernel complexity

Proposition (Gärtner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (2/2)
If G is a graph with n vertices, then it has a path that visits each
node exactly once (Hamiltonian path) if and only if Φ(G)>en > 0,
i.e.,

Φ(G)>

(
n∑

i=1

αiΦ(Pi)

)
=

n∑
i=1

αiKsubgraph(G,Pi) > 0 .

The decision problem whether a graph has a Hamiltonian path is
NP-complete. �
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Path kernel

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Definition
The path kernel is the subgraph kernel restricted to paths, i.e.,

Kpath(G1,G2) =
∑
H∈P

λHΦH(G1)ΦH(G2) ,

where P ⊂ X is the set of path graphs.

Proposition (Gärtner et al., 2003)
Computing the path kernel is NP-hard.
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Summary

Expressiveness vs Complexity trade-off
It is intractable to compute complete graph kernels.
It is intractable to compute the subgraph kernels.
Restricting subgraphs to be linear does not help: it is also
intractable to compute the path kernel.
One approach to define polynomial time computable graph kernels
is to have the feature space be made up of graphs homomorphic
to subgraphs, e.g., to consider walks instead of paths.
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Walks

Definition
A walk of a graph (V ,E) is sequence of v1, . . . , vn ∈ V such that
(vi , vi+1) ∈ E for i = 1, . . . ,n − 1.
We noteWn(G) the set of walks with n vertices of the graph G,
andW(G) the set of all walks.

etc...
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Walks 6= paths
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Walk kernel

Definition
Let Sn denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = ∪n≥1Sn.
For any graph X let a weight λG(w) be associated to each walk
w ∈ W(G).
Let the feature vector Φ(G) = (Φs(G))s∈S be defined by:

Φs(G) =
∑

w∈W(G)

λG(w)1 (s is the label sequence of w) .

A walk kernel is a graph kernel defined by:

Kwalk (G1,G2) =
∑
s∈S

Φs(G1)Φs(G2) .
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Walk kernel examples

Examples
The nth-order walk kernel is the walk kernel with λG(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.
The random walk kernel is obtained with λG(w) = PG(w), where
PG is a Markov random walk on G. In that case we have:

K (G1,G2) = P(label(W1) = label(W2)) ,

where W1 and W2 are two independant random walks on G1 and
G2, respectively (Kashima et al., 2003).
The geometric walk kernel is obtained (when it converges) with
λG(w) = β length(w), for β > 0. In that case the feature space is of
infinite dimension (Gärtner et al., 2003).
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Computation of walk kernels

Proposition
These three kernels (nth-order, random and geometric walk kernels)
can be computed efficiently in polynomial time.
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Product graph

Definition
Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs with labeled
vertices. The product graph G = G1 ×G2 is the graph G = (V ,E) with:

1 V = {(v1, v2) ∈ V1 × V2 : v1 and v2 have the same label} ,
2 E ={(

(v1, v2), (v ′1, v
′
2)
)
∈ V × V : (v1, v ′1) ∈ E1 and (v2, v ′2) ∈ E2

}
.

G1 x G2

c

d e43

2

1 1b 2a 1d

1a 2b
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4c

2d

3e

4e

G1 G2
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Walk kernel and product graph

Lemma
There is a bijection between:

1 The pairs of walks w1 ∈ Wn(G1) and w2 ∈ Wn(G2) with the same
label sequences,

2 The walks on the product graph w ∈ Wn(G1 ×G2).

Corollary

Kwalk (G1,G2) =
∑
s∈S

Φs(G1)Φs(G2)

=
∑

(w1,w2)∈W(G1)×W(G1)

λG1(w1)λG2(w2)1(l(w1) = l(w2))

=
∑

w∈W(G1×G2)

λG1×G2(w) .
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Computation of the nth-order walk kernel

For the nth-order walk kernel we have λG1×G2(w) = 1 if the length
of w is n, 0 otherwise.
Therefore:

Knth−order (G1,G2) =
∑

w∈Wn(G1×G2)

1 .

Let A be the adjacency matrix of G1 ×G2. Then we get:

Knth−order (G1,G2) =
∑
i,j

[An]i,j = 1>An1 .

Computation in O(n|G1||G2|d1d2), where di is the maximum
degree of Gi .
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Computation of random and geometric walk kernels

In both cases λG(w) for a walk w = v1 . . . vn can be decomposed
as:

λG(v1 . . . vn) = λi(v1)
n∏

i=2

λt (vi−1, vi) .

Let Λi be the vector of λi(v) and Λt be the matrix of λt (v , v ′):

Kwalk (G1,G2) =
∞∑

n=1

∑
w∈Wn(G1×G2)

λi(v1)
n∏

i=2

λt (vi−1, vi)

=
∞∑

n=0

ΛiΛ
n
t 1

= Λi (I − Λt )
−1 1

Computation in O(|G1|3|G2|3)
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Extensions 1: label enrichment

Atom relabebling with the Morgan index

Order 2 indices
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Compromise between fingerprints and structural keys features.
Other relabeling schemes are possible (graph coloring).
Faster computation with more labels (less matches implies a
smaller product graph).
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Extension 2: Non-tottering walk kernel

Tottering walks
A tottering walk is a walk w = v1 . . . vn with vi = vi+2 for some i .

Tottering

Non−tottering

Tottering walks seem irrelevant for many applications
Focusing on non-tottering walks is a way to get closer to the path
kernel (e.g., equivalent on trees).
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Computation of the non-tottering walk kernel (Mahé et
al., 2005)

Second-order Markov random walk to prevent tottering walks
Written as a first-order Markov random walk on an augmented
graph
Normal walk kernel on the augmented graph (which is always a
directed graph).
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Extension 3: Subtree kernels
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Example: Tree-like fragments of molecules
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Computation of the subtree kernel

Like the walk kernel, amounts to compute the (weighted) number
of subtrees in the product graph.
Recursion: if T (v ,n) denotes the weighted number of subtrees of
depth n rooted at the vertex v , then:

T (v ,n + 1) =
∑

R⊂N (v)

∏
v ′∈R

λt (v , v ′)T (v ′,n) ,

where N (v) is the set of neighbors of v .
Can be combined with the non-tottering graph transformation as
preprocessing to obtain the non-tottering subtree kernel.
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Application in chemoinformatics (Mahé et al., 2004)

MUTAG dataset
aromatic/hetero-aromatic compounds
high mutagenic activity /no mutagenic activity, assayed in
Salmonella typhimurium.
188 compouunds: 125 + / 63 -

Results
10-fold cross-validation accuracy

Method Accuracy
Progol1 81.4%
2D kernel 91.2%
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2D Subtree vs walk kernels
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Image classification (Harchaoui and Bach, 2007)

COREL14 dataset
1400 natural images in 14 classes
Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination
(M).
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Performance comparison on Corel14
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Summary: graph kernels

What we saw
Kernels do not allow to overcome the NP-hardness of subgraph
patterns
They allow to work with approximate subgraphs (walks, subtrees),
in infinite dimension, thanks to the kernel trick
However: using kernels makes it difficult to come back to patterns
after the learning stage
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Gene expression
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Gene expression regulation
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Gene regulatory network
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Gene regulatory network of E. coli
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Gene expression data
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Reconstruction of gene regulatory network
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Two flavours: de novo or supervised

De novo inference
Given a matrix of expression data, infer regulations

Supervised inference
Given a matrix of expression data and a set of knows regulations, infer
other unknown regulations
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The idea

If A regulates B, then we should expect some form of "correlation"
between the expression levels of A and B across different experiments.

We can therefore try to detect these correlations to infer regulation.
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Measuring dependency: correlation coefficients

(X1,Y1), . . . , (Xn,Yn) the n expression values of both genes
Pearson correlation:

ρ =
cov(X ,Y )

σXσY
=

∑
i(Xi − X̄ )(Yi − Ȳ )√∑

i(Xi − X̄ )2
√∑

i(Yi − Ȳ )2

Spearman correlation: similar but replace Xi by its rank.
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Illustration
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Limit of correlations
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Mutual information

I(X ; Y ) =

∫
Y

∫
X

p(x , y) log
(

p(x , y)

p(x)p(y)

)
dxdy

I(X ; Y ) ≥ 0
I(X ; Y ) = 0 if and only if X and Y are independent
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The idea

The dynamic equation of the mRNA concentration of a gene is of
the form:

dX
dt

= f (X ,R)

where R represent the set of concentrations of transcription
factors that regulate X .
At steady state, dX/dt = 0 = f (X ,R)

If we linearize f (X ,R) = 0 we get linear relation of the form

X =
∑
i∈R

βiXi

This suggests to look for sets of transcription factors whose
concentration is sufficient to explain the level of X across different
experiments.
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Predicting regulation by sparse regression

Let Y the expression of a gene, and X1, . . . ,Xp the expression of all
TFs. We look for a model

Y =

p∑
i=1

βiXi + noise

where β is sparse, i.e., only a few βi are non-zero.
We can estimate the sparse regression model from a matrix of
expression data.
Non-zero βi ’s correspond to predicted regulators.
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Example: sparse regression with the Lasso

min
β∈Rp

∑
i = 1n

Yi −
p∑

j=1

Xi , jβj

2

such that
p∑

i=1

|βi | ≤ t

No explicit solution, but this is just a quadratic program.
LARS (Efron et al., 2004) provides a fast algorithm to compute the
solution for all t ’s simultaneously (regularization path)
When t is not too large, the solution will usually be sparse
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LASSO regression example
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Why LASSO leads to sparse solutions
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Improved feature selection with stability selection

For t = 1 to T do
Bootstrap a random sample St from the training set
Randomly reweight each feature
Select M features, e.g., with the Lassp

The score of a feature is the number of times it was selected
among the T repeats
Rank features by decreasing score.
See Meinshausen and Bühlmann (2009).
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Examples of de novo methods
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Motivations

In many cases, we already know quite a few regulations.
Can we use them, in addition to expression data, to predict
unknown regulations?
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Using expression data for supervised inference

If a gene has an expression profile similar to other genes known to
be regulated by a TF, then it is likely to be regulated by the TF itself
Underlying hypothesis: genes regulated by the same TF have
similar expression variations
Note that this is very different from de novo inference, where we
compare the expression profile of the gene to that of the TF
This is only possible if we already have a list of known regulations.
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The idea

For a given TF, let P ⊂ [1,n] be the set of genes known to be
regulated by it
From the expression profiles (Xi)i∈P , estimate a score s(X ) to
assess which expression profiles X are similar
Then classify the genes not in P by decreasing score
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Estimating the scoring function: examples
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Kernel density estimation

s(X ) =
∑
i∈P

exp
(
−γ‖X − Xi ‖2

)
One-class SVM

s(X ) =
∑
i∈P

αi exp
(
−γ‖X − Xi ‖2

)
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The idea

Since we know in advance all genes, can we use them instead of
relying only on genes in P to estimate the scoring function?
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From one-class to PU learning
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One class: given genes in P, estimate the function s(X )

PU learning: given genes in P and the set of unlabeled genes U,
estimate the scores s(Xj) for j ∈ U
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PU learning in practice
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1 Train a classifier to discriminate P from U (eg, SVM or random
forest)

2 Rank genes in U by decreasing training score
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Example: E. coli regulatory network
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SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)
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Application: predicted regulatory network (E. coli)

Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).
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Proteins

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 228 / 308



Network 1: protein-protein interaction
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Network 2: metabolic network
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Network 3: gene regulatory network

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 231 / 308



Data available

Biologists have collected a lot of data about proteins. e.g.,

Gene expression measurements
Phylogenetic profiles
Location of proteins/enzymes in the cell

How to use this information “intelligently” to find a good function that
predicts edges between nodes.
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Our goal

Data
Gene expression,
Gene sequence,
Protein localization, ...

Graph
Protein-protein interactions,
Metabolic pathways,
Signaling pathways, ...

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 233 / 308



More precisely

Formalization
V = {1, . . . ,N} vertices (e.g., genes, proteins)
D = (x1, . . . , xN) ∈ HN data about the vertices (H Hilbert space)
Goal: predict edges E ⊂ V × V. We focus on undirected graphs.

“De novo” inference
Given data about individual genes and proteins D, ...
... Infer the edges between genes and proteins E

“Supervised” inference
Given data about individual genes and proteins D, ...
... and given some known interactions Etrain ⊂ E , ...
... infer unknown interactions Etest = E\Etrain
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De novo methods

Typical strategies
Fit a dynamical system to time series (e.g., PDE, boolean
networks, state-space models)
Detect statistical conditional independence or dependency
(Bayesian netwok, mutual information networks, co-expression)

Pros
Excellent approach if the
model is correct and
enough data are available
Interpretability of the model
Inclusion of prior
knowledge

Cons
Specific to particular data
and networks
Needs a correct model!
Difficult integration of
heterogeneous data
Often needs a lot of data
and long computation time
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Evaluation on metabolic network reconstruction

The known metabolic network of the yeast involves 769 proteins.
Predict edges from distances between a variety of genomic data
(expression, localization, phylogenetic profiles, interactions).
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Supervised methods

Motivation
In actual applications,

we know in advance parts of the network to be inferred
the problem is to add/remove nodes and edges using genomic
data as side information

Supervised method
Given genomic data and
the currently known
network...
Infer missing edges
between current nodes and
additional nodes.
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Pattern recognition

Given a training set of patterns in two classes, learn to
discriminate them
Many algorithms (ANN, SVM, Decision tress, ...)
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Pattern recognition and graph inference

Pattern recognition
Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (X1,X2)

Two solutions
Consider each pair (X1,X2) as a single data -> learning over pairs
Reformulate the graph inference problem as a pattern recognition
problem at the level of individual vertices -> local models
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Pattern recognition for pairs: basic issue

A pair can be connected (1) or not connected (-1)
From the known subgraph we can extract examples of connected
and non-connected pairs
However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Representing a pair as a vector

Each individual protein is represented by a vector v ∈ Rp

Depending on the network, we are interested in ordered or
unordered pairs of proteins.
We must represent a pair of proteins (u, v) by a vector
ψ(u, v) ∈ Rq in order to estimate a linear classifier
Question: how build ψ(u, v) from u and v , in the ordered and
unordered cases?
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Direct sum for ordered pairs?

A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

ψ(u, v) = u ⊕ v =

(
u
v

)
.

Problem: a linear function then becomes additive...

f (u, v) = w>ψ(u, v) = w>1 u + w>v .
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Direct product for ordered pairs

Alternatively, make the direct product, i.e., the p2-dimensional
vector whose entries are all products of entries of u by entries of
v :

ψ(u, v) = u ⊗ v

Problem: can get really large-dimensional...
Good news: inner product factorizes:

(u1 ⊗ v1)> (u2 ⊗ v2) =
(

u>1 u2

)
×
(

v>1 v2

)
,

which is good for algorithms that use only inner products (SVM...):

KP ((u1, v1), (u2, v2)) = ψ(u1, v1)>ψ(u2, v2) = K (u1,u2)K (v1, v2)
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Representing an unordered pair

Often we want to work with unordered pairs, e.g., PPI network:

{u, v} = {(u, v), (v ,u)}

This suggest to symmetrize the representation of ordered pairs:

ψU({u, v}) = ψ(u, v) + ψ(v ,u)

When ψ(u, v) = u ⊗ v , this leads to the symmetric tensor product
pairwise kernel (TPPK) (Ben-Hur and Noble, 2006):

KTPPK ({u1, v1} , {u2, v2}) = K (u1,u2)K (v1, v2)+K (u1, v2)K (v1,u2)
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Another idea: metric learning

For two vectors u, v ∈ H let the metric:

dM(u, v) = (u − v)>M(u − v) .

Can we learn the metric M such that, in the new metric, connected
points are near each other, and non-connected points are far from
each other?
We consider the problem:

min
M≥0

∑
i

l(ui , vi , yi) + λ||M||2Frobenius ,

where l is a hinge loss to enforce:

dM(ui , vi)

{
≤ 1− γ if(ui , vi)is connected ,
≥ 1 + γ otherwise.
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Link with metric learning

Theorem (V. et al., 2007)
A SVM with the representation

ψ({u, v}) = (u − v)⊗2

trained to discriminate connected from non-connected pairs,
solves this metric learning problem without the constraint M ≥ 0 .
Equivalently, train the SVM over pairs with the metric learning
pairwise kernel:

KMLPK ({u1, v1} , {u2, v2}) = ψ({u1, v1})>ψ({u2, v2})

= [K (u1,u2)− K (u1, v2)− K (v1,u2) + K (u2, v2)]2 .
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The idea (Bleakley et al., 2007)

Motivation: define specific models for each target node to
discriminate between its neighbors and the others
Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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The LOCAL model
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A few remarks

In the case of unordered interactions, we need to symmetrize the
prediction, typically by averaging the predictive scores of A→ B
and B → A to predict the interaction {A,B}
Weak hypothesis:

if A is connected to B,
if C is similar to B,
then A is likely to be connected to C.

Computationally: much faster to train N local models with N
training points each, than to train 1 model with N2 training points.
Caveats:

each local model may have very few training points
no sharing of information between different local models
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Motivation

In the case of unordered pairs {A,B}, pairwise kernels such as the
TPPK and local models look very different:

Local models seem to over-emphasize the asymmetry of the
relationships, but symmetrize the prediction a posteriori
Pairwise kernels symmetrize the data a priori and learn in the
space or unordered pairs

Can be clarify the links between these approaches, and perhaps
interpolate between them?
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Notations

A the set of individual proteins, endowed with a kernel KA
X = A2 the set of ordered pairs of the form x = (a,b) endowed
with a kernel KX (usually deduced from KA)
P the set of unordered pairs of the form p = {(a,b), (b,a)}
We want to learn over P from a set of labeled training pairs
(p1, y1), . . . , (pn, yn) ∈ P × {−1,1}
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Two strategies to learn over P

Strategy 1: Inference over P with a pair kernel
1 Define a kernel KP over P by convolution of KX :

KP(p,p′) =
1

|p| · |p′|
∑

x∈p,x ′∈p′
KX (x , x ′) .

2 Train a classifier over P e.g., a SVM, using the kernel KP

Strategy 2: Inference over X with a pair duplication
1 Duplicate each training pair p = {a,b} into 2 ordered paired
2 Train a classifier over X , e.g., a SVM, using the kernel KX
3 The classifier over P is then the a posteriori average:

fP (p) =
1
|p|
∑
x∈p

fX (x)
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The TPPK kernel

KTPPK ({a,b} , {c,d}) = KA(a, c)KA(b,d) + KA(a,d)KA(b, c) .

Theorem
Let X = A2 be endowed with the p.d. kernel:

KX ((a,b), (c,d)) = 2KA(a, c)KA(b,d) . (3)

Then the TPPK approach is equivalent to both Strategy 1 and Strategy
2.

Remarks: Equivalence with Strategy 1 is obvious, equivalence with
Strategy 2 is not, see proof in Hue and V. (ICML 2010).
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The local models

+1

−1

?
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?
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−1

−1

Theorem
Let X = A2 be endowed with the p.d. kernel:

KX ((a,b), (c,d)) = δ(a, c)KA(b,d) ,

where δ is the Kronecker kernel (δ(a, c) = 1 if a = c, 0 otherwise).
Then the local approach is equivalent to Strategy 2.

Remarks: Strategies 1 and 2 are not equivalent with this kernel. In
general, they are equivalent up to a modification in the loss function of
the learning algorithm, see details in Hue and V. (ICML 2010)..
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Interpolation between local model and TPPK

Strategy 1: pair kernel Strategy 2: duplication
KX = KA ⊗ KA TPPK TPPK
KX = δ ⊗ KA new Local model

Interpolation:
KX = ((1− λ)KA + λδ)⊗ KA

for λ ∈ [0,1]
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Results: protein-protein interaction (yeast)
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Interpolation kernel

Table: Strategy and kernel realizing the maximum mean AUC for nine
metabolic and protein-protein interaction networks experiments, with the
kernel K λ for λ ∈ [0,1].

benchmark best kernel
interaction, exp Duplicate, λ = 0.7
interaction, loc Pair kernel, λ = 0.6
interaction, phy Duplicate, λ = 0.8
interaction, y2h Duplicate / Pair kernel, λ = 0

interaction, integrated Duplicate / Pair kernel, λ = 0
metabolic, exp Pair kernel, λ = 0.6
metabolic, loc Pair kernel, λ = 1
metabolic, phy Pair kernel, λ = 0.6

metabolic, integrated Duplicate / Pair kernel, λ = 0

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 262 / 308



Interpolation kernel

Metabolic networks with localization data (left); PPI network with
expression data (right)
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Applications: missing enzyme prediction
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Applications: function annotation

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 267 / 308



Conclusion

When the network is known in part, supervised methods are more
adapted than unsupervised ones.
A variety of methods have been investigated recently (metric
learning, matrix completion, pattern recognition).

work for any network
work with any data
can integrate heterogeneous data, which strongly improves
performance

Promising topic: infer edges simultaneously with global
constraints on the graph?
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Tissue profiling with DNA chips

Data
Gene expression measures for more than 10k genes
Measured typically on less than 100 samples of two (or more)
different classes (e.g., different tumors)
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Tissue classification from microarray data

Goal
Design a classifier to
automatically assign a
class to future samples
from their expression
profile
Interpret biologically the
differences between the
classes
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Linear classifiers

The approach
Each sample is represented by a vector x = (x1, . . . , xp) where
p > 105 is the number of probes
Classification: given the set of labeled sample, learn a linear
decision function:

fβ(x) =

p∑
i=1

βixi + β0 ,

that is positive for one class, negative for the other
Interpretation: the weight βi quantifies the influence of gene i for
the classification
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Linear classifiers estimation

Empirical risk minimization
Estimate the weights βi by minimizing an empirical error on the training
set:

min
β∈Rp+1

1
n

n∑
i=1

l(fβ(xi), yi) ,

where l(y , f (x)) is a loss function.

Pitfalls
Statistics does not apply (?): 100 samples in 105 dimensions!
It is necessary to reduce the complexity of the problem with prior
knowledge.
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Example : Norm Constraints

The approach
A common method in statistics to learn with few samples in high
dimension is to constrain the Euclidean norm of β

‖β ‖22 =

p∑
i=1

β2
i ,

(ridge regression, support vector machines...)

Pros
Good performance in
classification

Cons
Limited interpretation
(small weights)
No prior biological
knowledge
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Example : Feature Selection

The approach
Constrain most weights to be 0, i.e., select a few genes (< 100) whose
expression are enough for classification. Interpretation is then about
the selected genes. Examples:

Greedy feature selection (T-tests, ...)
Contrain the norm of β: LASSO penalty (‖β ‖1 =

∑p
i=1 |βi |),

elastic net penalty (‖β ‖1 + ‖β ‖2), ... )

Pros
Good performance in
classification
Biomarker selection
Interpretability

Cons
The gene selection
process is usually not
robust
No use of prior biological
knowledge
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Gene networks

 

N

-

Glycan 
biosynthesis

   

Protein 
kinases

DNA  
and 
RNA 
polymerase 
subunits

Glycolysis / 
Gluconeogenesis 

Sulfur
metabolism

Porphyrin
and 
chlorophyll 
metabolism

Riboflavin metabolism

Folate
biosynthesis

Biosynthesis of steroids, 
ergosterol metabolism

 

Lysine
biosynthesis

Phenylalanine, tyrosine and
tryptophan biosynthesis Purine

metabolism

Oxidative 
phosphorylation, 
TCA cycle

Nitrogen,
asparagine
metabolism

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 277 / 308



Gene networks

 

N

-

Glycan 
biosynthesis

   

Protein 
kinases

DNA  
and 
RNA 
polymerase 
subunits

Glycolysis / 
Gluconeogenesis 

Sulfur
metabolism

Porphyrin
and 
chlorophyll 
metabolism

Riboflavin metabolism

Folate
biosynthesis

Biosynthesis of steroids, 
ergosterol metabolism

 

Lysine
biosynthesis

Phenylalanine, tyrosine and
tryptophan biosynthesis Purine

metabolism

Oxidative 
phosphorylation, 
TCA cycle

Nitrogen,
asparagine
metabolism

Assuming you give me a reliable gene network as prior knowledge,
can it be helpful for the classification problem?
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Gene network interpretation

Motivation
Basic biological functions usually involve the coordinated action of
several proteins:

Formation of protein complexes
Activation of metabolic, signalling or regulatory pathways

Many pathways and protein-protein interactions are already known
Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 280 / 308



Reference

Jean-Philippe Vert (ParisTech) Machine learning in systems biology 281 / 308



The idea

1 Use the gene network to extract the “important information” in
gene expression profiles by Fourier analysis on the graph

2 Learn a linear classifier on the smooth components
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Notations

1

2

3

4

5

A =


0 0 1 0 0
0 0 1 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 , D =


1 0 0 0 0
0 1 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1
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Graph Laplacian

Definition
The Laplacian of the graph is the matrix L = D − A.

1

2

3

4

5

L = D − A =


1 0 −1 0 0
0 1 −1 0 0
−1 −1 3 −1 0
0 0 −1 2 −1
0 0 0 1 1
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Properties of the Laplacian

Lemma
Let L = D − A be the Laplacian of the graph:

For any f : X → R,

f>Lf =
∑
i∼j

(
f (xi)− f

(
xj
))2

L is a symmetric positive semi-definite matrix
0 is an eigenvalue with multiplicity equal to the number of
connected components.
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Proof: link between Ω(f ) and L

∑
i∼j

(
f (xi)− f

(
xj
))2

=
∑
i∼j

(
f (xi)

2 + f
(
xj
)2 − 2f (xi) f

(
xj
))

=
m∑

i=1

Di,i f (xi)
2 − 2

∑
i∼j

f (xi) f
(
xj
)

= f>Df − f>Af

= f>Lf
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Proof: eigenstructure of L

L is symmetric because A and D are symmetric.
For any f ∈ Rm, f>Lf ≥ 0, therefore the (real-valued) eigenvalues
of L are ≥ 0 : L is therefore positive semi-definite.
f is an eigenvector associated to eigenvalue 0
iff f>Lf = 0
iff
∑

i∼j
(
f (xi)− f

(
xj
))2

= 0 ,
iff f (xi) = f

(
xj
)

when i ∼ j ,
iff f is constant (because the graph is connected).
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Fourier basis

Definition
The eigenvectors e1, . . . ,en of L with eigenvalues
0 = λ1 ≤ . . . ≤ λn form a basis called Fourier basis
For any f : V → R, the Fourier transform of f is the vector f̂ ∈ Rn

defined by:
f̂i = f>ei , i = 1, . . . ,n.

Obviously the inverse Fourier formula holds:

f =
n∑

i=1

f̂iei .
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Fourier basis
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Fourier basis
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Smoothing operator

Definition
Let φ : R+ → R+ be non-increasing.
A smoothing operator Sφ transform a function f : V → R into a
smoothed version:

Sφ(f ) =
n∑

i=1

f̂iφ(λi)ei .
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Smoothing operators

Examples
Identity operator (Sφ(f ) = f ):

φ(λ) = 1 , ∀λ

Low-pass filter:

φ(λ) =

{
1 if λ ≤ λ∗ ,
0 otherwise.

Attenuation of high frequencies:

φ(λ) = exp(−βλ) .
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Supervised classification and regression

Working with smoothed profiles
Classical methods for linear classification and regression with a
ridge penalty solve:

min
β∈Rp

1
n

n∑
i=1

l
(
β>fi , yi

)
+ λβ>β .

Applying these algorithms on the smooth profiles means solving:

min
β∈Rp

1
n

n∑
i=1

l
(
β>Sφ(fi), yi

)
+ λβ>β .
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Smooth solution

Lemma
This is equivalent to:

min
v∈Rp

1
n

n∑
i=1

l
(

v>fi , yi

)
+ λ

p∑
i=1

v̂2
i

φ(λi)
,

hence the linear classifier v is smooth.

Proof

Let v =
∑n

i=1 φ(λi )eie>i β, then

β>Sφ(fi ) = β>
n∑

i=1

f̂iφ(λi )ei = f>v .

Then v̂i = φ(λi )β̂i and β>β =
∑n

i=1
v̂2

i
φ(λi )2 .
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Kernel methods

Smoothing kernel
Kernel methods (SVM, kernel ridge regression..) only need the inner
product between smooth profiles:

K (f ,g) = Sφ(f )>Sφ(g)

=
n∑

i=1

f̂i ĝiφ(λi)
2

= f>
(

n∑
i=1

φ(λi)
2eie>i

)
g

= f>Kφg ,

(4)

with

Kφ =
n∑

i=1

φ(λi)
2eie>i .
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Examples

For φ(λ) = exp(−tλ), we recover the diffusion kernel:

Kφ = expM(−2tL) .

For φ(λ) = 1/
√

1 + λ, we obtain

Kφ = (L + I)−1 ,

and the penalization is:

n∑
i=1

v̂2
i

φ(λi)
= v> (L + I) v = ‖ v ‖22 +

∑
i∼j

(vi − vj)
2 .
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Data

Expression
Study the effect of low irradiation doses on the yeast
12 non irradiated vs 6 irradiated
Which pathways are involved in the response at the transcriptomic
level?

Graph
KEGG database of metabolic pathways
Two genes are connected is they code for enzymes that catalyze
successive reactions in a pathway (metabolic gene network).
737 genes, 4694 vertices.
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Classification performance

Spectral analysis of gene expression profiles using gene networks

a)
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Fig. 2. PCA plots of the initial expression profiles (a) and the transformed profiles using network topology (80% of the eigenvalues removed)

(b). The green squares are non-irradiated samples and the red rhombuses are irradiated samples. Individual sample labels are shown together

with GO and KEGG annotations associated with each principal component.
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Fig. 3. Performance of the supervised classification when changing the metric with the function φexp(λ) = exp(−βλ) for different values
of β (left picture), or the function φthres(λ) = 1(λ < λ0) for different values of λ0 (i.e., keeping only a fraction of the smallest eigenvalues,

right picture). The performance is estimated from the number of misclassifications in a leave-one-out error.

shift). The reconstruction of this from our data with no prior

input of this knowledge strongly confirms the relevance of our

analysis method. It also shows that analysing expression in

terms of the global up- or down-regulation of entire pathways

as defined, for example, by KEGG, could mislead as there are

many antagonist processes that take place inside pathways.

Representing KEGG as a large network helps keep the bio-

chemical relationships between genes without the constraints

of pathway limits.
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ClassifierRapaport et al
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Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-
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Classifier
Spectral analysis of gene expression profiles using gene networks

 a)  b)
Fig. 5. Theglycolysis/gluconeogenesis pathways ofKEGGwithmapped coefficients of the decision function obtained by applying a customary

linear SVM (a) and using high-frequency eigenvalue attenuation (b). The pathways are mutually exclusive in a cell, as clearly highlighted by

our algorithm.

or under-expression of individual genes, which is the cost to

pay to obtain instead an interpretation in terms of more glo-

bal pathways. Constraining the classifier to rely on just a few

genes would have a similar effect of reducing the complexity

of the problem,butwould lead to amoredifficult interpretation

in terms of pathways.

An advantage of our approach over other pathway-based

clustering methods is that we consider the network modules

that naturally appear from spectral analysis rather than a histo-

rically defined separation of the network into pathways. Thus,

pathways cross-talking is taken into account, which is diffi-

cult to do using other approaches. It can however be noticed

that the implicit decomposition into pathways that we obtain

is biased by the very incomplete knowledge of the network

and that certain regions of the network are better understood,

leading to a higher connection concentration.

Like most approaches aiming at comparing expression data

with gene networks such as KEGG, the scope of this work

is limited by two important constraints. First the gene net-

work we use is only a convenient but rough approximation to

describe complex biochemical processes; second, the trans-

criptional analysis of a sample can not give any information

regarding post-transcriptional regulation and modifications.

Nevertheless, we believe that our basic assumptions remain

valid, in that we assume that the expression of the genes

belonging to the same metabolic pathways module are coor-

dinately regulated. Our interpretation of the results supports

this assumption.

Another important caveat is that we simplify the network

description as an undirected graph of interactions. Although

this would seem to be relevant for simplifying the descrip-

tion of metabolic networks, real gene regulation networks are

influenced by the direction, sign and importance of the interac-

tion. Although the incorporationof weights into the Laplacian

(equation 1) is straightforward and allows the extension of the

approach to weighted undirected graphs, the incorporation

of directions and signs to represent signalling or regulatory

pathways requires more work but could lead to important

advances for the interpretation of microarray data in cancer

studies, for example.
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Summary

Given a gene network, spectral graph analysis (Fourier analysis)
is helpful to analyze signals over the network, e.g., gene
expression data
We can smooth profiles with frequency filters or attenuation
Combined with a SVM through spectral graph kernels, we can
detect discriminant pathways or protein complexes.

Rapaport et al
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Machine learning in computational and systems
biology

Biology faces a flood of data following the development of
high-throughput technologies (sequencing, DNA chips, ...)
Many problems can be formalized in the framework of machine
learning, e.g.:

Protein annotation
Drug discovery, virtual screening
Gene network inference

These data have often complex structures (strings, graphs,
high-dimensional vectors) and often require dedicated algorithms.
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Support vector machines (SVM)

A general-purpose algorithm for pattern recognition
Based on the principle of large margin ("séparateur à vaste
marge")
Linear or nonlinear with the kernel trick
Control of the regularization / data fitting trade-off with the C
parameter
State-of-the-art performance on many applications
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Kernels

A central ingredient of SVM
Allows nonlinearity
Allows to work implicitly in a high-dimensional feature space
Allows to work with structured data (e.g., graphs)

φ
HX
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Gene network inference

Ab initio reconstruction of regulatory network can be formulated as
feature selection, and solved, e.g., by the Lasso or random forests
Supervised reconstruction is more powerful when edges (e.g.,
regulations) are already known
PU learning is more powerful than one-class learning in this
setting, and can be solved by SVM
Predicting edges requires learning over pairs with specific kernels
in the case of SVM
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Using gene networks

Gene networks can be used as prior knowledge to analyze gene
expression data
Spectral graph analysis and graph kernels are useful tools
It allows to capture pathways or protein complexes instead of
individual genes

Rapaport et al
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Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-
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