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@ Predict the risk of second heart from demographic, diet and
clinical measurements

@ Predict the future price of a stock from company performance
measures

@ Recognize a ZIP code from an image
@ |dentify the risk factors for prostate cancer

and many more applications in many areas of science, finance and
industry where a lot of data are collected.
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Learning from data

@ Supervised learning

e An outcome measurement (target or response variable)

e which can be quantitative (regression) or categorial (classification)

e which we want to predicted based on a set of features or
descriptors or predictors)

e We have a training set with features and outcome

e We build a prediction model, or learner to predict outcome from
features for new unseen objects
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Learning from data

@ Supervised learning

e An outcome measurement (target or response variable)

e which can be quantitative (regression) or categorial (classification)

e which we want to predicted based on a set of features or
descriptors or predictors)

e We have a training set with features and outcome

e We build a prediction model, or learner to predict outcome from
features for new unseen objects

@ Unsupervised learning

e No outcome
e Describe how data are organized or clustered

@ Examples - Fig 1.1-1.3
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Machine learning / data mining vs statistics

They share many concepts and tools, but in ML:

@ Prediction is more important than modelling (understanding,
causality)

@ There is no settled philosophy or theoretical framework

@ We are ready to use ad hoc methods if they seem to work on real
data

@ We often have many features, and sometimes large training sets.

@ We focus on efficient algorithms, with little or no human
intervention.

@ We often use complex nonlinear models dfs
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@ Focus on supervised learning (regression and classification)

@ Reference: "The Elements of Statistical Learning" by Hastie,
Tibshirani and Friedman (HTF)

@ Available online at http:
//www—stat.stanford.edu/~tibs/ElemStatLearn/

@ Practical sessions using R
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@ Y € Ytheresponse (usually Y = {-1,1} or R)

@ X € X the input (usually X = RP)

@ Xxq,...,Xy Observed inputs, stored in the N x p matrix X
@ yi,...,yn Observed inputs, stored in the vector Y € YN
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Simple method 1: Linear least squares

@ Parametric model for § € RPH1:

p
f3(X)=Po+ > _BiXi=X'p

i=1

@ Estimate /3 from training data to minimize

N
RSS(B) = (yi — fs(xi))
i=1

@ See Fig 2.1
@ Good if model is correct...
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Simple method 2: Nearest neighbor methods (k-NN)

@ Prediction based on the k nearest neighbors:

o 1
Y(x) = K Z Yi
X €Nk(x)
@ Depends on k

@ Less assumptions that linear regression, but more risk of
overfitting

o Fig2.2-24
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Statistical decision theory

@ Joint distribution Pr(X,Y)
@ Loss function L(Y, f(X)), e.g. squared error loss

LY. (X)) = (Y — £(X))?
@ Expected prediction error (EPE):
EPE(f) = E(x,v)~pr(x,v)L(Y, f(X))

@ Minimizeris f(X) = E(Y | X) (regression function)
@ Bayes classifier for 0/1 loss in classification (Fig 2.5)
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Least squares and k-NN

@ Least squares assumes f(x) is linear, and pools over values of X
to estimate the best parameters. Stable but biased
@ k-NN assumes f(x) is well approximated by a locally constant

function, and pools over local sample data to approximate
conditional expectation. Less stable but less biased.
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Local methods in high dimension

@ If Nis large enough, k-NN seems always optimal (universally
consistent)
@ But when pis large, curse of dimension:

e No method can be "local’ (Fig 2.6)
e Training samples sparsely populate the input space, which can lead
to large bias or variance (eq. 2.25 and Fig 2.7-2.8)

@ If structure is known (eg, linear regression function), we can
reduce both variance and bias (Fig. 2.9)
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Bias-variance trade-off

Assume Y = f(X) + ¢, on a fixed design. Y(x) is random because of e,
f(X) is random because of variations in the training set 7. Then

N 2 A ~
E.r (Y - f(X)) = EY2 1 Ef(X)? — 2EYH(X)

— Var(Y) + Var(F(X)) + (EY - E?(X)f

= noise + bias(f)? + variance(f)
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Structured regression and model selection

Define a family of function classes F), where X controls the
"complexity", eg:

@ Ball of radius X in a metric function space

@ Bandwidth of the kernel is a kernel estimator

@ Number of basis functions

For each )\, define A
f\ = argmin EPE(f)
Fa

Select f = f; to minimize the bias-variance tradeoff (Fig. 2.11).
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Cross-validation

A simple and systematic procedure to estimate the risk (and to
optimize the model’s parameters)

@ Randomly divide the training set (of size N) into K (almost) equal
portions, each of size K/N

@ For each portion, fit the model with different parameters on the
K — 1 other groups and test its performance on the left-out group

© Average performance over the K groups, and take the parameter
with the smallest average performance.

Taking K = 5 or 10 is recommended as a good default choice.
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To learn complex functions in high dimension from limited training sets,
we need to optimize a bias-variance trade-off. We will do that typically
by:

@ Define a family of learners of various complexities (eg, dimension
of a linear predictor)

© Define an estimation procedure for each learner (eg,
least-squares or empirical risk minimization)

© Define a procedure to tune the complexity of the learner (eg,
cross-validation)
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e Linear methods for regression
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Linear least squares

@ Parametric model for 3 € RPH1:
p
=P+ BiXi=X'p
=1
@ Estimate /3 from training data to minimize
N
RSS(B) =Y (vi — fa(x))
i=1
@ Solution if X X is non-singular:

B= (xTx>_1 XTY
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Fitted values

@ Fitted values on the training set:
N . —1 1
¥ =—Xj3=X (xTx) XTY = HY with H=X (xTx) X7

@ Geometrically: H projects Y on the span of X (Fig. 3.2)
e If Xiis singular, /3 is not uniquely defined, but Y is
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Inference on coefficients

@ Assume Y = Xf + ¢, with ¢ ~ NV(0, 02/)

@ Then 3 ~ N (8,02 (XTX) — 1)

@ Estimating variance: 6 = || Y — Y|[2/(N—p—1)
@ Statistics on coefficients:

@7@~W 1
N

allows to test the hypothesis Hy : 3; = 0, and gives confidence
intervals

B+ byaw-p 16V
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Inference on the model

Compare a large model with py features to a smaller model with pg
features:
RSSy — RSS1) / (P1 — Po)
RSSi/ (N —p1 —1)

follows the Fisher law Fp, _p n—p,—1 under the hypothesis that the
small model is correct.

F:(
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Gauss-Markov theorem

Assume Y = X/3 + ¢, where Ec = 0 and Eee' = 52].
Then the least squares estimator 3 is BLUE (best linear unbiased
estimator), i.e., for any other estimator 5 = CY with Ej = g,

Var(j3) < Varf
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Gauss-Markov theorem

Assume Y = X/3 + ¢, where Ec = 0 and Eee' = 52].
Then the least squares estimator 3 is BLUE (best linear unbiased
estimator), i.e., for any other estimator 5 = CY with Ej = g,

Var(j3) < Varf

Nevertheless, we may have smaller total risk by increasing bias to
decrease variance, in particular in the high-dimensional setting.
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Decreasing the complexity of linear models

@ Feature subset selection
@ Penalized criterion
© Feature construction
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Feature subset selection

@ Best subset selection

e Usually NP-hard, "leaps and bound" procedure works for up to
p =40
e Best k selected by cross-validation of various criteria (Fig 3.5)

@ Greedy selection: forward, backward, hybrid
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Ridge regression

@ Minimize

p
RSS(8)+ ) _ 87
i=1

@ Solution: »
A= (xTx + AI) XTY
@ If XX = / (orthogonal design), then 3* = 3/(1 + )), otherwise
nonlinear solution path Fig 3.8
@ Equivalent to shrinking on the small principal components (Fig 3.9)
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Lasso

@ Minimize ,
RSS() + Y151
=1

@ No explicit solution, but convex quadratic program and efficient
algorithm for the solution path (LARS, Fig. 3.10)

@ Performs feature selection because the ¢; ball has singularities
(Fig 3.11
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Discussion

@ In orthogonal design, best subset selection, ridge rggression and
Lasso correspond to 3 different ways to shrink the 5 coefficients
(Fig 3.10)

@ They minimize RSS(3) over respectively the ¢y, ¢2 and ¢4 balls

@ Generalization: penalize by || 5 |4, but:

@ convex problem only for g > 1
o feature selection only for g < 1

@ Generalization: group lasso, fused lasso, elastic net...
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Using derived input space

@ PCR

@ OLS on the top M principal components
e Similar to ridge regression, but truncates instead of shrinking

@ PLS
e Similar to PCR but uses Y to construct the directions: maximize

max Corr?(Y, Xa) Var(Xa)
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e Linear methods for classification
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Supervised classification

@ Y ={—1,1} (can be generalized to K classes)
@ Goal: estimate P(Y = k| X = x), or (easier)
Y(x) =argmax, P(Y = k| X = x)
@ Approach: estimate a function f : X — R and predict according to

g1 X 20,
x) = -1 iff(x)<0.

@ 3 strategies
@ Model P(X, Y) (LDA)
@ Model P(Y| X) (logistic regression)
© Separate positives from negative examples (SVM)
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Linear discriminant analysis (LDA)

@ Model P(Y = k) =mxand P(X|Y = k) ~ N (uk, X)
@ Estimation:

2\42\»2

Tk

, 2 %
K iy=

@ Prediction:
n P(Y=1|X=x)
P(Y=—-1|X=x)

. 1 .+ 1 N;
X'y 1(#1-#-1)—§M22 M2+2M1Z 1+Inﬁ2
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Remarks on LDA

e lfa ¥ is estimated on each class, we obtain a quadratic function :
quadratic discriminant analysis (QDA)

@ LDA performs linear discrimination f(X) = 37 X 4 b. /3 can also be
found by OLS, taking Y; = N;/N
@ Good baseline method, even if the data are not Gaussian
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Quadratic discriminant analysis (QDA)

@ Model P(Y = k) =mxand P(X|Y =K) ~ N (uk, X)
@ Estimation: same as LDA except

1

Yk = Ne Z (G — 1K) (Xi = i) "
i:yi=k
@ Prediction: P(Y = k| X )
= = X
with

1 1 _
Ok(X) = —5 In [T = 5 (x - ) T E T (X — k) + In g
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Logistic regression

@ Model: .
P(Y =1[X=x) =%
P(Y = -1 ]X:x):mlﬁ
@ Equivalently 1
P(Y:y|X:x):m
@ Equivalently,
n P(Y =1]X=x) _5Tx

P(Y=—-1[X=x)
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Logistic regression: parameter estimation

@ Likelihood:

03) = Zm ( e .ViﬁTXi)

N
(ﬁ) ZL ZYiP(_}/i|Xi)Xi

14 eyif'xi
D20 i xix! ?" Z | (1 %)
p(1]xi)) (1 —p(1|xi)) xix;
o (
0pop i=1 _i_e,@Tx) i=1

@ Optimization by Newton-Raphson is iteratively reweighted least
squares (IRLS)

@ Problem if data linearly separable —- regularization
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Regularized logistic regression

@ Problem if data linearly separable : infinite likelihood possible
@ Classical /5 regularization

N P
min > I (1 + e‘y'ﬂTX’) +AY 57
i= i=

@ /4 regularization (feature selection)

N P
min > In (1 + e‘y’ﬂTX") +AD 16
i= i=
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LDA vs Logistic regression

@ Both methods are linear

@ Estimation is different: model P(X, Y) (likelihood) or P(Y'| X)
(conditional likelihood)

@ LDA works better if data are Gaussian, but more sensitive to
outliers

Jean-Philippe Vert (Mines ParisTech) 38/46



Hard-margin SVM

@ If data are linearly separable, separate them with largest margin
@ Equivalently, ming || 3 ||> such that y;57 x; > 1
@ Dual problem:

Tzaé(za' — ZZa,ajy,ij X

/1/1

and

N
Bi=>_ yiaix;
=1
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Soft-margin SVM

@ If data are not linearly separable, add slack variable:
ming || 6]12/2 + C YN, ¢ such that y;,8Tx; > 1 — ¢

@ Dual problem: same as hard-margin with the additional constraint
0<a<C

@ Equivalently,

N
mﬁin > “max(0,1 -y x;) + Al 317

i=1
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Large-margin classifiers

@ The margin is yf(x)
@ LDA, logistic and SVM all try to ensure large margin:

N
min>~ 6(f(x)) + A(9)

i=1
where
(1 —u)? for LDA
pu)=<¢In(1+eu) for logistic regression

max(0,1 —u) for SVM
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0 Nonlinear methods with positive definite kernels
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Feature expansion

@ We have seen many linear methods for regression and
classification, of the form

N
min >~ L (i, 87x) + Al 13

BERP £
i=1

@ To be nonlinear in x, we can apply them after some transformation
x — ®(x) € R9, where g may be larger than p

@ Example: nonlinear functions of x, polynomials, ...
@ Notation: we define the kernel corresponding to ¢ by

K(x,x") = &(x) " d(x))
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Representer theorem

For any solution of

N
A . AT, 2
feemmy (v 872) + X813

there exists & € R" such that

Consequences:
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° (f(x,-))l.T:1 ~y=Kaand || 3|5 =aKa, sowe can plug a in the
optimization problem instead of 3, and only K is needed
@ Example: kernel ridge regression:

a=(K+Ah)y

@ Example: kernel SVM

0?3}02 WiTN Z Z aiojK (X, X))

i=1 j=1
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Positive definite kernel

Theorem (Aronszajn)

There exists ¢ : RP — RY9 for some q (possibly infinite if and only if K is
positive definite, i.e., K(x, x") = K(x’, x) for any x, x’, and

n n
Z Z ajaiK(x;, X/) >0

i=1 j=1

for any n, a and x.

Examples:
@ Linear: K(x,x") = x"x’
@ Polynomial: K(x,x') = (x"x')9
@ Gaussian: K(x,x') = exp —| x — x'||?/25?
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