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Motivations

Predict the risk of second heart from demographic, diet and
clinical measurements
Predict the future price of a stock from company performance
measures
Recognize a ZIP code from an image
Identify the risk factors for prostate cancer

and many more applications in many areas of science, finance and
industry where a lot of data are collected.
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Learning from data

Supervised learning
An outcome measurement (target or response variable)
which can be quantitative (regression) or categorial (classification)
which we want to predicted based on a set of features or
descriptors or predictors)
We have a training set with features and outcome
We build a prediction model, or learner to predict outcome from
features for new unseen objects

Unsupervised learning
No outcome
Describe how data are organized or clustered

Examples - Fig 1.1-1.3
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Machine learning / data mining vs statistics

They share many concepts and tools, but in ML:
Prediction is more important than modelling (understanding,
causality)
There is no settled philosophy or theoretical framework
We are ready to use ad hoc methods if they seem to work on real
data
We often have many features, and sometimes large training sets.
We focus on efficient algorithms, with little or no human
intervention.
We often use complex nonlinear models dfs
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Organization

Focus on supervised learning (regression and classification)
Reference: "The Elements of Statistical Learning" by Hastie,
Tibshirani and Friedman (HTF)
Available online at http:
//www-stat.stanford.edu/~tibs/ElemStatLearn/

Practical sessions using R
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Notations

Y ∈ Y the response (usually Y = {−1,1} or R)
X ∈ X the input (usually X = Rp)
x1, . . . , xN observed inputs, stored in the N × p matrix X
y1, . . . , yN observed inputs, stored in the vector Y ∈ YN
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Simple method 1: Linear least squares

Parametric model for β ∈ Rp+1:

fβ(X ) = β0 +

p∑
i=1

βiXi = X>β

Estimate β̂ from training data to minimize

RSS(β) =
N∑

i=1

(yi − fβ(xi))2

See Fig 2.1
Good if model is correct...
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Simple method 2: Nearest neighbor methods (k-NN)

Prediction based on the k nearest neighbors:

Ŷ (x) =
1
k

∑
xi∈Nk (x)

yi

Depends on k
Less assumptions that linear regression, but more risk of
overfitting
Fig 2.2-2.4
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Statistical decision theory

Joint distribution Pr(X ,Y )

Loss function L(Y , f (X )), e.g. squared error loss

L(Y , f (X )) = (Y − f (X ))2

Expected prediction error (EPE):

EPE(f ) = E(X ,Y )∼Pr(X ,Y )L(Y , f (X ))

Minimizer is f (X ) = E(Y |X ) (regression function)
Bayes classifier for 0/1 loss in classification (Fig 2.5)
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Least squares and k -NN

Least squares assumes f (x) is linear, and pools over values of X
to estimate the best parameters. Stable but biased
k -NN assumes f (x) is well approximated by a locally constant
function, and pools over local sample data to approximate
conditional expectation. Less stable but less biased.
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Local methods in high dimension

If N is large enough, k -NN seems always optimal (universally
consistent)
But when p is large, curse of dimension:

No method can be "local’ (Fig 2.6)
Training samples sparsely populate the input space, which can lead
to large bias or variance (eq. 2.25 and Fig 2.7-2.8)

If structure is known (eg, linear regression function), we can
reduce both variance and bias (Fig. 2.9)
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Bias-variance trade-off

Assume Y = f (X ) + ε, on a fixed design. Y (x) is random because of ε,
f̂ (X ) is random because of variations in the training set T . Then

Eε,T
(

Y − f̂ (X )
)2

= EY 2 + Ef̂ (X )2 − 2EY f̂ (X )

= Var(Y ) + Var(f̂ (X )) +
(

EY − Ef̂ (X )
)2

= noise + bias(f̂ )2 + variance(f̂ )
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Structured regression and model selection

Define a family of function classes Fλ, where λ controls the
"complexity", eg:

Ball of radius λ in a metric function space
Bandwidth of the kernel is a kernel estimator
Number of basis functions

For each λ, define
f̂λ = argmin

Fλ

EPE(f )

Select f̂ = f̂λ̂ to minimize the bias-variance tradeoff (Fig. 2.11).
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Cross-validation

A simple and systematic procedure to estimate the risk (and to
optimize the model’s parameters)

1 Randomly divide the training set (of size N) into K (almost) equal
portions, each of size K/N

2 For each portion, fit the model with different parameters on the
K − 1 other groups and test its performance on the left-out group

3 Average performance over the K groups, and take the parameter
with the smallest average performance.

Taking K = 5 or 10 is recommended as a good default choice.
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Summary

To learn complex functions in high dimension from limited training sets,
we need to optimize a bias-variance trade-off. We will do that typically
by:

1 Define a family of learners of various complexities (eg, dimension
of a linear predictor)

2 Define an estimation procedure for each learner (eg,
least-squares or empirical risk minimization)

3 Define a procedure to tune the complexity of the learner (eg,
cross-validation)
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Linear least squares

Parametric model for β ∈ Rp+1:

fβ(X ) = β0 +

p∑
i=1

βiXi = X>β

Estimate β̂ from training data to minimize

RSS(β) =
N∑

i=1

(yi − fβ(xi))2

Solution if X>X is non-singular:

β̂ =
(

X>X
)−1

X>Y
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Fitted values

Fitted values on the training set:

Ŷ = Xβ̂ = X
(

X>X
)−1

X>Y = HY with H = X
(

X>X
)−1

X>

Geometrically: H projects Y on the span of X (Fig. 3.2)
If X is singular, β̂ is not uniquely defined, but Ŷ is
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Inference on coefficients

Assume Y = Xβ + ε, with ε ∼ N (0, σ2I)
Then β̂ ∼ N

(
β, σ2 (X>X

)
− 1
)

Estimating variance: σ̂ = ‖Y− Ŷ ‖2/(N − p − 1)

Statistics on coefficients:

β̂j − βj

σ̂
√vj

∼ tN−p−1

allows to test the hypothesis H0 : βj = 0, and gives confidence
intervals

β̂j ± tα/2,N−p−1σ̂
√

vj
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Inference on the model

Compare a large model with p1 features to a smaller model with p0
features:

F =
(RSS0 − RSS1) / (p1 − p0)

RSS1/ (N − p1 − 1)

follows the Fisher law Fp1−p0,N−p1−1 under the hypothesis that the
small model is correct.

Jean-Philippe Vert (Mines ParisTech) 22 / 46



Gauss-Markov theorem

Assume Y = Xβ + ε, where Eε = 0 and Eεε> = σ2I.
Then the least squares estimator β̂ is BLUE (best linear unbiased
estimator), i.e., for any other estimator β̃ = CY with E β̃ = β,

Var(β̂) ≤ Var β̃

Nevertheless, we may have smaller total risk by increasing bias to
decrease variance, in particular in the high-dimensional setting.
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Decreasing the complexity of linear models

1 Feature subset selection
2 Penalized criterion
3 Feature construction
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Feature subset selection

Best subset selection
Usually NP-hard, "leaps and bound" procedure works for up to
p = 40
Best k selected by cross-validation of various criteria (Fig 3.5)

Greedy selection: forward, backward, hybrid
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Ridge regression

Minimize

RSS(β) + λ

p∑
i=1

β2
i

Solution:
β̂λ =

(
X>X + λI

)−1
X>Y

If X>X = I (orthogonal design), then β̂λ = β̂/(1 + λ), otherwise
nonlinear solution path Fig 3.8
Equivalent to shrinking on the small principal components (Fig 3.9)
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Lasso

Minimize

RSS(β) + λ

p∑
i=1

|βi |

No explicit solution, but convex quadratic program and efficient
algorithm for the solution path (LARS, Fig. 3.10)
Performs feature selection because the `1 ball has singularities
(Fig 3.11
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Discussion

In orthogonal design, best subset selection, ridge regression and
Lasso correspond to 3 different ways to shrink the β̂ coefficients
(Fig 3.10)
They minimize RSS(β) over respectively the `0, `2 and `1 balls
Generalization: penalize by ‖β ‖q, but:

convex problem only for q ≥ 1
feature selection only for q ≤ 1

Generalization: group lasso, fused lasso, elastic net...
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Using derived input space

PCR
OLS on the top M principal components
Similar to ridge regression, but truncates instead of shrinking

PLS
Similar to PCR but uses Y to construct the directions: maximize

max
α

Corr2(Y,Xα)Var(Xα)
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Supervised classification

Y = {−1,1} (can be generalized to K classes)
Goal: estimate P(Y = k |X = x), or (easier)
Ŷ (x) = arg maxk P(Y = k |X = x)

Approach: estimate a function f : X → R and predict according to

Ŷ (x) =

{
1 if f (x) ≥ 0 ,
−1 if f (x) < 0 .

3 strategies
1 Model P(X ,Y ) (LDA)
2 Model P(Y |X ) (logistic regression)
3 Separate positives from negative examples (SVM)
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Linear discriminant analysis (LDA)

Model P(Y = k) = πk and P(X |Y = k) ∼ N (µk ,Σ)

Estimation:

π̂k =
Nk

N

µ̂k =
1

Nk

∑
i:yi=k

xi

Σ̂ =
1

N − 1

∑
k∈{−1,1}

∑
i:yi=k

(xi − µk ) (xi − µk )>

Prediction:

ln
P(Y = 1 |X = x)

P(Y = −1 |X = x)
=

x>Σ̂−1 (µ1 − µ−1)− 1
2
µ̂>2 Σ̂−1µ̂2 +

1
2
µ̂>1 Σ̂−1µ̂1 + ln

N1

N2
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Remarks on LDA

If a Σ̂ is estimated on each class, we obtain a quadratic function :
quadratic discriminant analysis (QDA)
LDA performs linear discrimination f (X ) = β>X + b. β can also be
found by OLS, taking Yi = Ni/N
Good baseline method, even if the data are not Gaussian
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Quadratic discriminant analysis (QDA)

Model P(Y = k) = πk and P(X |Y = k) ∼ N (µk ,Σ)

Estimation: same as LDA except

Σ̂k =
1

Nk

∑
i:yi=k

(xi − µk ) (xi − µk )>

Prediction:
ln

P(Y = k |X = x)

P(Y = l |X = x)
= δk (x)− δl(x)

with

δk (x) = −1
2

ln |Σk | −
1
2

(x − µk )>Σ−1
k (x − µk ) + lnπk
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Logistic regression

Model: P(Y = 1 |X = x) = eβ>x

1+eβ>x

P(Y = −1 |X = x) = 1
1+eβ>x

Equivalently

P(Y = y |X = x) =
1

1 + e−yβ>x

Equivalently,

ln
P(Y = 1 |X = x)

P(Y = −1 |X = x)
= β>x
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Logistic regression: parameter estimation

Likelihood:

`(β) = −
N∑

i=1

ln
(

1 + e−yiβ
>xi
)

∂`

∂β
(β) =

N∑
i=1

yixi

1 + eyiβ>xi
=

N∑
i=1

yip(−yi | xi)xi

∂2`

∂β∂β>
(β) = −

N∑
i=1

xix>i eβ
>xi(

1 + eβ>xi
)2 =

N∑
i=1

p(1 | xi) (1− p(1 | xi)) xix>i

Optimization by Newton-Raphson is iteratively reweighted least
squares (IRLS)
Problem if data linearly separable =⇒ regularization
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Regularized logistic regression

Problem if data linearly separable : infinite likelihood possible
Classical `2 regularization

min
β

N∑
i=1

ln
(

1 + e−yiβ
>xi
)

+ λ

p∑
i=1

β2
i

`1 regularization (feature selection)

min
β

N∑
i=1

ln
(

1 + e−yiβ
>xi
)

+ λ

p∑
i=1

|βi |
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LDA vs Logistic regression

Both methods are linear
Estimation is different: model P(X ,Y ) (likelihood) or P(Y |X )
(conditional likelihood)
LDA works better if data are Gaussian, but more sensitive to
outliers
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Hard-margin SVM

If data are linearly separable, separate them with largest margin
Equivalently, minβ ‖β ‖2 such that yiβ

>xi ≥ 1
Dual problem:

max
α≥0

N∑
i=1

αi −
1
1

N∑
i=1

N∑
j=1

αiαjyiyjx>i xj

and

β̂i =
N∑

i=1

yiαixi
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Soft-margin SVM

If data are not linearly separable, add slack variable:
minβ ‖β ‖2/2 + C

∑N
i=1 ζi such that yiβ

>xi ≥ 1− ζi

Dual problem: same as hard-margin with the additional constraint
0 ≤ α ≤ C
Equivalently,

min
β

N∑
i=1

max(0,1− yiβ
>xi) + λ‖β ‖2
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Large-margin classifiers

The margin is yf (x)

LDA, logistic and SVM all try to ensure large margin:

min
β

N∑
i=1

φ(yi f (xi)) + λΩ(β)

where

φ(u) =


(1− u)2 for LDA
ln (1 + e−u) for logistic regression
max(0,1− u) for SVM
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Feature expansion

We have seen many linear methods for regression and
classification, of the form

min
β∈Rp

N∑
i=1

L
(

yi , β
>xi

)
+ λ‖β ‖22

To be nonlinear in x , we can apply them after some transformation
x 7→ Φ(x) ∈ Rq, where q may be larger than p
Example: nonlinear functions of x , polynomials, ...
Notation: we define the kernel corresponding to Φ by

K (x , x ′) = Φ(x)>Φ(x ′)
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Representer theorem

For any solution of

β̂ ∈ arg min
β∈Rp

N∑
i=1

L
(

yi , β
>xi

)
+ λ‖β ‖22

there exists α̂ ∈ Rn such that

β̂ =
N∑

i=1

α̂iΦ(xi) .

Consequences:

f̂ (x) =
N∑

i=1

α̂iK (xi , x)
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Solving in α

(
f(xi)

)>
i=1,...,N = Kα and ‖β ‖22 = α>Kα, so we can plug α in the

optimization problem instead of β, and only K is needed
Example: kernel ridge regression:

α̂ = (K + λI)−1 Y

Example: kernel SVM

max
0≤α≤C

N∑
i=1

αiyi −
1
N

N∑
i=1

N∑
j=1

αiαjK (xi , xj)
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Positive definite kernel

Theorem (Aronszajn)
There exists Φ : Rp → Rq for some q (possibly infinite if and only if K is
positive definite, i.e., K (x , x ′) = K (x ′, x) for any x , x ′, and

n∑
i=1

n∑
j=1

aiaiK (xi , xj) ≥ 0

for any n, a and x .

Examples:
Linear: K (x , x ′) = x>x ′

Polynomial: K (x , x ′) = (x>x ′)d

Gaussian: K (x , x ′) = exp−‖ x − x ′ ‖2/2σ2
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