Support vector machines, kernels, and applications in computational biology

Jean-Philippe Vert

Jean-Philippe.Vert@mines-paristech.fr
Mines ParisTech / Institut Curie / Inserm

Mines ParisTech, ES "Machine learning" module.

Outline

(1) Machine learning in bioinformatics
(2) Linear support vector machines
(3) Nonlinear SVM and kernels
(4) SVM for complex data: the case of graphs
(5) Conclusion

Outline

(1) Machine learning in bioinformatics
(2) Linear support vector machines

3 Nonlinear SVM and kernels
(4) SVM for complex data: the case of graphs
(5) Conclusion

Outline

(1) Machine learning in bioinformatics
(2) Linear support vector machines
(3) Nonlinear SVM and kernels

4 SVM for complex data: the case of graphs
(5) Conclusion

Outline

(1) Machine learning in bioinformatics
(2) Linear support vector machines
(3) Nonlinear SVM and kernels
(4) SVM for complex data: the case of graphs
(5) Conclusion

Outline

(1) Machine learning in bioinformatics
(2) Linear support vector machines
(3) Nonlinear SVM and kernels
(4) SVM for complex data: the case of graphs
(5) Conclusion

Outline

(1) Machine learning in bioinformatics

2 Linear support vector machines
(3) Nonlinear SVM and kernels

4 SVM for complex data: the case of graphs
(5) Conclusion

A simple view of cancer progression

cells grow as a benign tumor in epithelium

invade capillary
travel through bloodstream (less than 1 in 1000 cells will survive to form metastases)

Chromosomic aberrations in cancer

Comparative Genomic Hybridization (CGH)

Motivation

- Comparative genomic hybridization (CGH) data measure the DNA copy number along the genome
- Very useful, in particular in cancer research
- Can we classify CGH arrays for diagnosis or prognosis purpose?

Aggressive vs non-aggressive melanoma

Problem 1

Given the CGH profile of a melanoma, is it aggressive or not?

DNA \rightarrow RNA \rightarrow protein

- CGH shows the (static) DNA
- Cancer cells have also abnormal (dynamic) gene expression (= transcription)

Tissue profiling with DNA chips

Use in diagnosis

Problem 2

Given the expression profile of a leukemia, is it an acute lymphocytic or myeloid leukemia (ALL or AML)?

Use in prognosis

A Gene-Expression Profiling

No. At Risk
$\begin{array}{llllllll}\text { Good signature } & 60 & 57 & 54 & 45 & 31 & 22 & 12\end{array}$
$\begin{array}{llllllll}\text { Poor signature } & 91 & 72 & 55 & 41 & 26 & 17 & 9\end{array}$

B
St. Gallen Criteria

No. AT RISK
Low risk
High risk

Problem 3

Given the expression profile of a breast cancer, is the risk of relapse within 5 years high?

Proteins

A : Alanine
F: Phenylalanine
E : Acide glutamique
T: Threonine
H: Histidine
I: Isoleucine
D : Acide aspartique

V: Valine
P: Proline
K: Lysine
C: Cysteine
V: Thyrosine
S: Serine
G: Glycine
$L:$ Leucine
$\mathrm{M}:$ Methionine
R : Arginine
$\mathrm{N}:$ Asparagine
$\mathrm{W}:$ Tryptophane
Q: Glutamine

Protein annotation

Data available

- Secreted proteins:

MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA. . .
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL. . .
...

- Non-secreted proteins:

MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG. . . MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. . .
MSISESYAKEIKTAFRQFTDFP IEGEQFEDFLPIIGNP . .

Problem 4

Given a newly sequenced protein, is it secreted or not?

Drug discovery

Problem 4

Given a new candidate molecule, is it likely to be active?

Pattern recognition, aka supervised classification

Pattern recognition, aka supervised classification

Pattern recognition, aka supervised classification

Pattern recognition, aka supervised classification

Pattern recognition, aka supervised classification

Outline

(1) Machine learning in bioinformatics

(2) Linear support vector machines
(3) Nonlinear SVM and kernels

4 SVM for complex data: the case of graphs
(5) Conclusion

Linear classifiers

Which one is better?

The margin of a linear classifier

Largest margin classifier (support vector machines)

Support vectors

More formally

- The training set is a finite set of N data/class pairs:

$$
\mathcal{S}=\left\{\left(\vec{x}_{1}, y_{1}\right), \ldots,\left(\vec{x}_{N}, y_{N}\right)\right\}
$$

where $\vec{x}_{i} \in \mathbb{R}^{d}$ and $y_{i} \in\{-1,1\}$.

- We assume (for the moment) that the data are linearly separable, i.e., that there exists $(\vec{w}, b) \in \mathbb{R}^{d} \times \mathbb{R}$ such that:

$$
\begin{cases}\vec{w} \cdot \vec{x}_{i}+b>0 & \text { if } y_{i}=1 \\ \vec{w} \cdot \vec{x}_{i}+b<0 & \text { if } y_{i}=-1 .\end{cases}
$$

How to find the largest separating hyperplane?

For a given linear classifier $f(x)=\vec{w} \cdot \vec{x}+b$ consider the "tube" defined by the values -1 and +1 of the decision function:

The margin is $2 /\|\vec{w}\|$

Indeed, the points $\overrightarrow{x_{1}}$ and $\overrightarrow{x_{2}}$ satisfy:

$$
\left\{\begin{array}{l}
\vec{w} \cdot \vec{x}_{1}+b=0, \\
\vec{w} \cdot \vec{x}_{2}+b=1 .
\end{array}\right.
$$

By subtracting we get $\vec{w} \cdot\left(\vec{x}_{2}-\vec{x}_{1}\right)=1$, and therefore:

$$
\gamma=2\left\|\vec{x}_{2}-\vec{x}_{1}\right\|=\frac{2}{\|\vec{w}\|} .
$$

All training points should be on the right side of the dotted line

For positive examples $\left(y_{i}=1\right)$ this means:

$$
\vec{w} \cdot \vec{x}_{i}+b \geq 1
$$

For negative examples $\left(y_{i}=-1\right)$ this means:

$$
\vec{w} \cdot \vec{x}_{i}+b \leq-1
$$

Both cases are summarized by:

$$
\forall i=1, \ldots, N, \quad y_{i}\left(\vec{w} \cdot \vec{x}_{i}+b\right) \geq 1
$$

Finding the optimal hyperplane

Find (\vec{w}, b) which minimize:

$$
\|\vec{w}\|^{2}
$$

under the constraints:

$$
\forall i=1, \ldots, N, \quad y_{i}\left(\vec{w} \cdot \vec{x}_{i}+b\right)-1 \geq 0
$$

This is a classical quadratic program on \mathbb{R}^{d+1}.

Lagrangian

In order to minimize:

$$
\frac{1}{2}\|\vec{w}\|^{2}
$$

under the constraints:

$$
\forall i=1, \ldots, N, \quad y_{i}\left(\vec{w} \cdot \vec{x}_{i}+b\right)-1 \geq 0 .
$$

we introduce one dual variable α_{i} for each constraint, i.e., for each training point. The Lagrangian is:

$$
L(\vec{w}, b, \vec{\alpha})=\frac{1}{2}\|\vec{w}\|^{2}-\sum_{i=1}^{N} \alpha_{i}\left(y_{i}\left(\vec{w} \cdot \vec{x}_{i}+b\right)-1\right) .
$$

Dual problem

Find $\alpha^{*} \in \mathbb{R}^{N}$ which maximizes

$$
L(\vec{\alpha})=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \vec{x}_{i} \cdot \vec{x}_{j}
$$

under the (simple) constraints $\alpha_{i} \geq 0$ (for $i=1, \ldots, N$), and

$$
\sum_{i=1}^{N} \alpha_{i} y_{i}=0
$$

This is a quadratic program on \mathbb{R}^{N}, with "box constraints". $\vec{\alpha}^{*}$ can be found efficiently using dedicated optimization softwares.

Recovering the optimal hyperplane

Once $\vec{\alpha}^{*}$ is found, we recover $\left(\vec{w}^{*}, b^{*}\right)$ corresponding to the optimal hyperplane. w^{*} is given by:

$$
\vec{w}^{*}=\sum_{i=1}^{N} y_{i} \alpha_{i} \vec{x}_{i}
$$

and the decision function is therefore:

$$
\begin{align*}
f^{*}(\vec{x}) & =\vec{w}^{*} \cdot \vec{x}+b^{*} \\
& =\sum_{i=1}^{N} y_{i} \alpha_{i} \vec{x}_{i} \cdot \vec{x}+b^{*} \tag{1}
\end{align*}
$$

Interpretation: support vectors

What if data are not linearly separable?

Soft-margin SVM

- Find a trade-off between large margin and few errors.
- Mathematically:

$$
\min _{f}\left\{\frac{1}{\operatorname{margin}(f)}+C \times \operatorname{errors}(f)\right\}
$$

- C is a parameter

Soft-margin SVM formulation

- The margin of a labeled point (\vec{x}, y) is

$$
\operatorname{margin}(\vec{x}, y)=y(\vec{w} \cdot \vec{x}+b)
$$

- The error is
- 0 if $\operatorname{margin}(\vec{x}, y)>1$,
- $1-\operatorname{margin}(\vec{x}, y)$ otherwise.
- The soft margin SVM solves:

$$
\min _{\vec{w}, b}\left\{\|\vec{w}\|^{2}+C \sum_{i=1}^{N} \max \left(0,1-y_{i}\left(\vec{w} \cdot \vec{x}_{i}+b\right)\right)\right\}
$$

Dual formulation of soft-margin SVM

Maximize

$$
L(\vec{\alpha})=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \vec{x}_{i} \cdot \vec{x}_{j},
$$

under the constraints:

$$
\left\{\begin{array}{l}
0 \leq \alpha_{i} \leq C, \quad \text { for } i=1, \ldots, N \\
\sum_{i=1}^{N} \alpha_{i} y_{i}=0
\end{array}\right.
$$

Interpretation: bounded and unbounded support vectors

Outline

(1) Machine learning in bioinformatics

(2) Linear support vector machines
(3) Nonlinear SVM and kernels

4 SVM for complex data: the case of graphs
(5) Conclusion

Sometimes linear classifiers are not interesting

Solution: non-linear mapping to a feature space

Let $\vec{\Phi}(\vec{x})=\left(x_{1}^{2}, x_{2}^{2}\right)^{\prime}, \vec{w}=(1,1)^{\prime}$ and $b=1$. Then the decision function is:

$$
f(\vec{x})=x_{1}^{2}+x_{2}^{2}-R^{2}=\vec{w} \cdot \vec{\Phi}(\vec{x})+b
$$

Kernel (simple but important)

For a given mapping Φ from the space of objects \mathcal{X} to some feature space, the kernel of two objects x and x^{\prime} is the inner product of their images in the features space:

$$
\forall x, x^{\prime} \in \mathcal{X}, \quad K\left(x, x^{\prime}\right)=\vec{\Phi}(x) \cdot \vec{\Phi}\left(x^{\prime}\right)
$$

Example: if $\vec{\Phi}(\vec{x})=\left(x_{1}^{2}, x_{2}^{2}\right)^{\prime}$, then

$$
K\left(\vec{x}, \vec{x}^{\prime}\right)=\vec{\Phi}(\vec{x}) \cdot \vec{\Phi}\left(\vec{x}^{\prime}\right)=\left(x_{1}\right)^{2}\left(x_{1}^{\prime}\right)^{2}+\left(x_{2}\right)^{2}\left(x_{2}^{\prime}\right)^{2}
$$

Training a SVM in the feature space

Replace each $\vec{x} \cdot \vec{x}^{\prime}$ in the SVM algorithm by $\vec{\phi}(x) \cdot \vec{\Phi}\left(x^{\prime}\right)=K\left(x, x^{\prime}\right)$ The dual problem is to maximize

$$
L(\vec{\alpha})=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(x_{i}, x_{j}\right),
$$

under the constraints:

$$
\left\{\begin{array}{l}
0 \leq \alpha_{i} \leq C, \quad \text { for } i=1, \ldots, N \\
\sum_{i=1}^{N} \alpha_{i} y_{i}=0
\end{array}\right.
$$

Predicting with a SVM in the feature space

The decision function becomes:

$$
\begin{align*}
f(x) & =\vec{w}^{*} \cdot \vec{\Phi}(x)+b^{*} \\
& =\sum_{i=1}^{N} \alpha_{i} K\left(x_{i}, x\right)+b^{*} . \tag{2}
\end{align*}
$$

The kernel trick

- The explicit computation of $\vec{\Phi}(x)$ is not necessary. The kernel $K\left(x, x^{\prime}\right)$ is enough. SVM work implicitly in the feature space.
- It is sometimes possible to easily compute kernels which correspond to complex large-dimensional feature spaces.

Kernel example: polynomial kernel

For $\vec{x}=\left(x_{1}, x_{2}\right)^{\top} \in \mathbb{R}^{2}$, let $\vec{\Phi}(\vec{x})=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right) \in \mathbb{R}^{3}$:

$$
\begin{aligned}
K\left(\vec{x}, \vec{x}^{\prime}\right) & =x_{1}^{2} x_{1}^{\prime 2}+2 x_{1} x_{2} x_{1}^{\prime} x_{2}^{\prime}+x_{2}^{2} x_{2}^{\prime 2} \\
& =\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2} \\
& =\left(\vec{x} \cdot \vec{x}^{\prime}\right)^{2}
\end{aligned}
$$

Kernel example: polynomial kernel

More generally,

$$
K\left(\vec{x}, \vec{x}^{\prime}\right)=\left(\vec{x} \cdot \vec{x}^{\prime}+1\right)^{d}
$$

is an inner product in a feature space of all monomials of degree up to d (left as exercice.)

Which functions $K\left(x, x^{\prime}\right)$ are kernels?

Definition

A function $K\left(x, x^{\prime}\right)$ defined on a set \mathcal{X} is a kernel if and only if there exists a features space (Hilbert space) \mathcal{H} and a mapping

$$
\Phi: \mathcal{X} \mapsto \mathcal{H},
$$

such that, for any $\mathbf{x}, \mathbf{x}^{\prime}$ in \mathcal{X} :

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\Phi(\mathbf{x}), \Phi\left(\mathbf{x}^{\prime}\right)\right\rangle_{\mathcal{H}} .
$$

Positive Definite (p.d.) functions

Definition

A positive definite (p.d.) function on the set \mathcal{X} is a function $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ symmetric:

$$
\forall\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in \mathcal{X}^{2}, \quad K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=K\left(\mathbf{x}^{\prime}, \mathbf{x}\right)
$$

and which satisfies, for all $N \in \mathbb{N},\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right) \in \mathcal{X}^{N}$ et $\left(a_{1}, a_{2}, \ldots, a_{N}\right) \in \mathbb{R}^{N}$:

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i} a_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \geq 0
$$

Kernels are p.d. functions

Theorem (Aronszajn, 1950)

K is a kernel if and only if it is a positive definite function.

Proof?

- Kernel \Longrightarrow p.d. function:
- $\left\langle\Phi(\mathbf{x}), \Phi\left(\mathbf{x}^{\prime}\right)\right\rangle_{\mathbb{R}^{d}}=\left\langle\Phi\left(\mathbf{x}^{\prime}\right), \Phi(\mathbf{x})_{\mathbb{R}^{d}}\right\rangle$,
- $\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i} a_{j}\left\langle\Phi\left(\mathbf{x}_{i}\right), \Phi\left(\mathbf{x}_{j}\right)\right\rangle_{\mathbb{R}^{d}}=\left\|\sum_{i=1}^{N} a_{i} \Phi\left(\mathbf{x}_{i}\right)\right\|_{\mathbb{R}^{d}}^{2} \geq 0$.
- P.d. function \Longrightarrow kernel: more difficult...

Kernel examples

- Polynomial (on \mathbb{R}^{d}):

$$
K\left(x, x^{\prime}\right)=\left(x \cdot x^{\prime}+1\right)^{d}
$$

- Gaussian radial basis function (RBF) (on \mathbb{R}^{d})

$$
K\left(x, x^{\prime}\right)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

- Laplace kernel (on \mathbb{R})

$$
K\left(x, x^{\prime}\right)=\exp \left(-\gamma\left|x-x^{\prime}\right|\right)
$$

- Min kernel (on \mathbb{R}_{+})

$$
K\left(x, x^{\prime}\right)=\min \left(x, x^{\prime}\right)
$$

Exercice: for each kernel, find a Hilbert space \mathcal{H} and a mapping $\Phi: \mathcal{X} \rightarrow \mathcal{H}$ such that $K\left(x, x^{\prime}\right)=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle$

Example: SVM with a Gaussian kernel

- Training:

$$
\begin{array}{r}
\min _{\alpha \in \mathbb{R}^{N}} \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \exp \left(-\frac{\left\|\vec{x}_{i}-\vec{x}_{j}\right\|^{2}}{2 \sigma^{2}}\right) \\
\text { s.t. } 0 \leq \alpha_{i} \leq C, \quad \text { and } \sum_{i=1}^{N} \alpha_{i} y_{i}=0 .
\end{array}
$$

- Prediction

$$
f(\vec{x})=\sum_{i=1}^{N} \alpha_{i} \exp \left(-\frac{\left\|\vec{x}-\vec{x}_{i}\right\|^{2}}{2 \sigma^{2}}\right)
$$

Example: SVM with a Gaussian kernel

$$
f(\vec{x})=\sum_{i=1}^{N} \alpha_{i} \exp \left(-\frac{\left\|\vec{x}-\vec{x}_{i}\right\|^{2}}{2 \sigma^{2}}\right)
$$

SVM classification plot

Linear vs nonlinear SVM

Regularity vs data fitting trade-off

C controls the trade-off

$$
\min _{f}\left\{\frac{1}{\operatorname{margin}(f)}+C \times \operatorname{errors}(f)\right\}
$$

- Large C :
- makes few errors

- Small C :
- ensure a large margin

- Intermediate C:
- finds a trade-off

Why it is important to control the trade-off

How to choose C in practice

- Split your dataset in two ("train" and "test")
- Train SVM with different C on the "train" set
- Compute the accuracy of the SVM on the "test" set
- Choose the C which minimizes the "test" error
- (you may repeat this several times = cross-validation)

SVM summary

- Large margin
- Linear or nonlinear (with the kernel trick)
- Control of the regularization / data fitting trade-off with C

Outline

(1) Machine learning in bioinformatics

2 Linear support vector machines
(3) Nonlinear SVM and kernels

4 SVM for complex data: the case of graphs

(5) Conclusion

Virtual screening for drug discovery

NCI AIDS screen results (from http://cactus.nci.nih.gov).

Classification with SVM

(1) Represent each graph x by a vector $\Phi(x) \in \mathcal{H}$, either explicitly or implicitly through the kernel

$$
K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right) .
$$

(2) Use a linear method for classification in \mathcal{H}.

Classification with SVM

(1) Represent each graph x by a vector $\Phi(x) \in \mathcal{H}$, either explicitly or implicitly through the kernel

$$
K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right) .
$$

(3) Use a linear method for classification in \mathcal{H}.

Classification with SVM

(1) Represent each graph x by a vector $\Phi(x) \in \mathcal{H}$, either explicitly or implicitly through the kernel

$$
K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right)
$$

(2) Use a linear method for classification in \mathcal{H}.

Example: indexing by substructures

- Often we believe that the presence substructures are important predictive patterns
- Hence it makes sense to represent a graph by features that indicate the presence (or the number of occurrences) of particular substructures
- However, detecting the presence of particular substructures may be computationally challenging...

Subgraphs

Definition

A subgraph of a graph (V, E) is a connected graph $\left(V^{\prime}, E^{\prime}\right)$ with $V^{\prime} \subset V$ and $E^{\prime} \subset E$.

Indexing by all subgraphs?

Theorem

a Comnuting all subgraph occurrences is NP-hard.
(2) Computing the subgraph kernel is NP-hard.

Proof.

(a Finding an occurrence of the linear path of size n is finding a Hamiltonian path, which is NP-complete.
(2) Similarly, if we can compute the subgraph kernel then we can deduce the presence of a Hamiltonian path (left as exercice).

Indexing by all subgraphs?

Theorem

(1) Computing all subgraph occurrences is NP-hard.
(2) Computing the subgraph kernel is NP-hard.

Proof.

(1) Finding an occurrence of the linear path of size n is finding a Hamiltonian path, which is NP-complete.
(2) Similarly, if we can compute the subgraph kernel then we can deduce the presence of a Hamiltonian path (left as exercice).

Indexing by all subgraphs?

Theorem

(1) Computing all subgraph occurrences is NP-hard.
(2) Computing the subgraph kernel is NP-hard.

Proof.

(1) Finding an occurrence of the linear path of size n is finding a Hamiltonian path, which is NP-complete.
(2) Similarly, if we can compute the subgraph kernel then we can deduce the presence of a Hamiltonian path (left as exercice).

Paths

Definition

- A path of a graph (V, E) is sequence of distinct vertices $v_{1}, \ldots, v_{n} \in V\left(i \neq j \Longrightarrow v_{i} \neq v_{j}\right)$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for $i=1, \ldots, n-1$.
- Equivalently the paths are the linear subgraphs.

Indexing by all paths?

Theorem

a Computing all path occurrences is NP-hard.
(2) Computing the path kernel is NP-hard

Proof.

Same as for subgraphs.

Indexing by all paths?

Theorem

(1) Computing all path occurrences is NP-hard.
(2) Computing the path kernel is NP-hard

Proof.
 Same as for subgraphs.

Indexing by all paths?

Theorem

(1) Computing all path occurrences is NP-hard.
(2) Computing the path kernel is NP-hard

Proof.

Same as for subgraphs.

Walks

Definition

- A walk of a graph (V, E) is sequence of $v_{1}, \ldots, v_{n} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for $i=1, \ldots, n-1$.
- We note $\mathcal{W}_{n}(G)$ the set of walks with n vertices of the graph G, and $\mathcal{W}(G)$ the set of all walks.

Walks \neq paths

Walk kernel

Definition

- Let \mathcal{S}_{n} denote the set of all possible label sequences of walks of length n (including vertices and edges labels), and $\mathcal{S}=\cup_{n \geq 1} \mathcal{S}_{n}$.
- For any graph \mathcal{X} let a weight $\lambda_{G}(w)$ be associated to each walk $w \in \mathcal{W}(G)$.
- Let the feature vector $\Phi(G)=\left(\Phi_{s}(G)\right)_{s \in \mathcal{S}}$ be defined by:

$$
\Phi_{s}(G)=\sum_{w \in \mathcal{W}(G)} \lambda_{G}(w) 1(s \text { is the label sequence of } w) .
$$

- A walk kernel is a graph kernel defined by:

Walk kernel

Definition

- Let \mathcal{S}_{n} denote the set of all possible label sequences of walks of length n (including vertices and edges labels), and $\mathcal{S}=\cup_{n \geq 1} \mathcal{S}_{n}$.
- For any graph \mathcal{X} let a weight $\lambda_{G}(w)$ be associated to each walk $w \in \mathcal{W}(G)$.
- Let the feature vector $\Phi(G)=\left(\Phi_{s}(G)\right)_{s \in \mathcal{S}}$ be defined by:

$$
\Phi_{s}(G)=\sum_{w \in \mathcal{W}(G)} \lambda_{G}(w) \mathbf{1}(s \text { is the label sequence of } w)
$$

- A walk kernel is a graph kernel defined by:

$$
K_{\text {walk }}\left(G_{1}, G_{2}\right)=\sum_{s \in \mathcal{S}} \Phi_{s}\left(G_{1}\right) \Phi_{s}\left(G_{2}\right)
$$

Walk kernel examples

Examples

- The n th-order walk kernel is the walk kernel with $\lambda_{G}(w)=1$ if the length of w is $n, 0$ otherwise. It compares two graphs through their common walks of length n.

- The random walk kernel is obtained with $\lambda_{G}(w)=P_{G}(w)$, where P_{G} is a Markov random walk on G. In that case we have:

$K\left(G_{1}, G_{2}\right)=P\left(\operatorname{label}\left(W_{1}\right)=\operatorname{label}\left(W_{2}\right)\right)$
where W_{1} and W_{2} are two independant random walks on G_{1} and G_{2}, respectively (Kashima et al., 2003).

- The geometric walk kernel is obtained (when it converges) with
$\lambda_{G}(w)=\beta^{\text {length }(w)}$, for $\beta>0$. In that case the feature space is of infinite dimension (Gärtner et al., 2003).

Walk kernel examples

Examples

- The n th-order walk kernel is the walk kernel with $\lambda_{G}(w)=1$ if the length of w is $n, 0$ otherwise. It compares two graphs through their common walks of length n.
- The random walk kernel is obtained with $\lambda_{G}(w)=P_{G}(w)$, where P_{G} is a Markov random walk on G. In that case we have:

$$
K\left(G_{1}, G_{2}\right)=P\left(\text { label }\left(W_{1}\right)=\operatorname{label}\left(W_{2}\right)\right),
$$

where W_{1} and W_{2} are two independant random walks on G_{1} and G_{2}, respectively (Kashima et al., 2003).

Walk kernel examples

Examples

- The n th-order walk kernel is the walk kernel with $\lambda_{G}(w)=1$ if the length of w is $n, 0$ otherwise. It compares two graphs through their common walks of length n.
- The random walk kernel is obtained with $\lambda_{G}(w)=P_{G}(w)$, where P_{G} is a Markov random walk on G. In that case we have:

$$
K\left(G_{1}, G_{2}\right)=P\left(\text { label }\left(W_{1}\right)=\operatorname{label}\left(W_{2}\right)\right),
$$

where W_{1} and W_{2} are two independant random walks on G_{1} and G_{2}, respectively (Kashima et al., 2003).

- The geometric walk kernel is obtained (when it converges) with $\lambda_{G}(w)=\beta^{\text {length }(w)}$, for $\beta>0$. In that case the feature space is of infinite dimension (Gärtner et al., 2003).

Computation of walk kernels

Proposition

These three kernels (n th-order, random and geometric walk kernels) can be computed efficiently in polynomial time.

Product graph

Definition

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs with labeled vertices. The product graph $G=G_{1} \times G_{2}$ is the graph $G=(V, E)$ with:
(1) $V=\left\{\left(v_{1}, v_{2}\right) \in V_{1} \times V_{2}: v_{1}\right.$ and v_{2} have the same label $\}$,
(2) $E=$

$$
\left\{\left(\left(v_{1}, v_{2}\right),\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right) \in V \times V:\left(v_{1}, v_{1}^{\prime}\right) \in E_{1} \text { and }\left(v_{2}, v_{2}^{\prime}\right) \in E_{2}\right\} .
$$

G1

G2

G1 \times G2

Walk kernel and product graph

Lemma

There is a bijection between:
(1) The pairs of walks $w_{1} \in \mathcal{W}_{n}\left(G_{1}\right)$ and $w_{2} \in \mathcal{W}_{n}\left(G_{2}\right)$ with the same label sequences,
(2) The walks on the product graph $w \in \mathcal{W}_{n}\left(G_{1} \times G_{2}\right)$.

Corollary

Walk kernel and product graph

Lemma

There is a bijection between:
(1) The pairs of walks $w_{1} \in \mathcal{W}_{n}\left(G_{1}\right)$ and $w_{2} \in \mathcal{W}_{n}\left(G_{2}\right)$ with the same label sequences,
(2) The walks on the product graph $w \in \mathcal{W}_{n}\left(G_{1} \times G_{2}\right)$.

Corollary

$$
\begin{aligned}
K_{\text {walk }}\left(G_{1}, G_{2}\right) & =\sum_{s \in \mathcal{S}} \Phi_{s}\left(G_{1}\right) \Phi_{s}\left(G_{2}\right) \\
& =\sum_{\left(w_{1}, w_{2}\right) \in \mathcal{W}\left(G_{1}\right) \times \mathcal{W}\left(G_{1}\right)} \lambda_{G_{1}}\left(w_{1}\right) \lambda_{G_{2}}\left(w_{2}\right) \mathbf{1}\left(I\left(w_{1}\right)=I\left(w_{2}\right)\right) \\
& =\sum_{w \in \mathcal{W}\left(G_{1} \times G_{2}\right)} \lambda_{G_{1} \times G_{2}}(w) .
\end{aligned}
$$

Computation of the n th-order walk kernel

- For the n th-order walk kernel we have $\lambda_{G_{1} \times G_{2}}(w)=1$ if the length of w is $n, 0$ otherwise.
- Therefore:

$$
K_{\text {nth-order }}\left(G_{1}, G_{2}\right)=\sum_{w \in \mathcal{W}_{n}\left(G_{1} \times G_{2}\right)} 1
$$

- Let A be the adjacency matrix of $G_{1} \times G_{2}$. Then we get:

$$
K_{\text {nth }-\operatorname{order}}\left(G_{1}, G_{2}\right)=\sum_{i, j}\left[A^{\eta}\right]_{i, j}=\mathbf{1}^{\top} A^{n} \mathbf{1} .
$$

- Computation in $O\left(n\left|G_{1}\right|\left|G_{2}\right| d_{1} d_{2}\right)$, where d_{i} is the maximum degree of G_{i}.

Computation of random and geometric walk kernels

- In both cases $\lambda_{G}(w)$ for a walk $w=v_{1} \ldots v_{n}$ can be decomposed as:

$$
\lambda_{G}\left(v_{1} \ldots v_{n}\right)=\lambda^{i}\left(v_{1}\right) \prod_{i=2}^{n} \lambda^{t}\left(v_{i-1}, v_{i}\right)
$$

- Let Λ_{i} be the vector of $\lambda^{i}(v)$ and Λ_{t} be the matrix of $\lambda^{t}\left(v, v^{\prime}\right)$:

$$
\begin{aligned}
K_{\text {walk }}\left(G_{1}, G_{2}\right) & =\sum_{n=1}^{\infty} \sum_{w \in \mathcal{W}_{n}\left(G_{1} \times G_{2}\right)} \lambda^{i}\left(v_{1}\right) \prod_{i=2}^{n} \lambda^{t}\left(v_{i-1}, v_{i}\right) \\
& =\sum_{n=0}^{\infty} \Lambda_{i} \Lambda_{t}^{n} \mathbf{1} \\
& =\Lambda_{i}\left(I-\Lambda_{t}\right)^{-1} 1
\end{aligned}
$$

- Computation in $O\left(\left|G_{1}\right|^{3}\left|G_{2}\right|^{3}\right)$

Extensions 1: label enrichment

Atom relabebling with the Morgan index

- Compromise between fingerprints and structural keys features.
- Other relabeling schemes are possible (graph coloring).
- Faster computation with more labels (less matches implies a smaller product graph).

Extension 2: Non-tottering walk kernel

Tottering walks

A tottering walk is a walk $w=v_{1} \ldots v_{n}$ with $v_{i}=v_{i+2}$ for some i.

Non-tottering

Tottering

- Tottering walks seem irrelevant for many applications
- Focusing on non-tottering walks is a way to get closer to the path kernel (e.g., equivalent on trees).

Computation of the non-tottering walk kernel (Mahé et al., 2005)

- Second-order Markov random walk to prevent tottering walks
- Written as a first-order Markov random walk on an augmented graph
- Normal walk kernel on the augmented graph (which is always a directed graph).

Extension 3: Subtree kernels

Example: Tree-like fragments of molecules

Computation of the subtree kernel

- Like the walk kernel, amounts to compute the (weighted) number of subtrees in the product graph.
- Recursion: if $\mathcal{T}(v, n)$ denotes the weighted number of subtrees of depth n rooted at the vertex v, then:

$$
\mathcal{T}(v, n+1)=\sum_{R \subset \mathcal{N}(v)} \prod_{v^{\prime} \in R} \lambda_{t}\left(v, v^{\prime}\right) \mathcal{T}\left(v^{\prime}, n\right),
$$

where $\mathcal{N}(v)$ is the set of neighbors of v.

- Can be combined with the non-tottering graph transformation as preprocessing to obtain the non-tottering subtree kernel.

Application in chemoinformatics (Mahé et al., 2004)

MUTAG dataset

- aromatic/hetero-aromatic compounds
- high mutagenic activity /no mutagenic activity, assayed in Salmonella typhimurium.
- 188 compouunds: 125 + / 63 -

Results

10-fold cross-validation accuracy

Method	Accuracy
Progol1	81.4%
2D kernel	91.2%

2D Subtree vs walk kernels (Mahé and V., 2009)

Screening of inhibitors for 60 cancer cell lines.

Summary: graph kernels

What we saw

- Kernels do not allow to overcome the NP-hardness of subgraph patterns
- They allow to work with approximate subgraphs (walks, subtrees), in infinite dimension, thanks to the kernel trick
- They give state-of-the-art results

Outline

(1) Machine learning in bioinformatics

(2) Linear support vector machines

(3) Nonlinear SVM and kernels

4 SVM for complex data: the case of graphs

Machine learning in computational biology

- Biology faces a flood of data following the development of high-throughput technologies (sequencing, DNA chips, ...)
- Many problems can be formalized in the framework of machine learning, e.g.:
- Diagnosis, prognosis
- Protein annotation
- Drug discovery, virtual screening
- These data have often complex structures (strings, graphs, high-dimensional vectors) and often require dedicated algorithms.

Support vector machines (SVM)

- A general-purpose algorithm for pattern recognition
- Based on the principle of large margin ("séparateur à vaste marge")
- Linear or nonlinear with the kernel trick
- Control of the regularization / data fitting trade-off with the C parameter
- State-of-the-art performance on many applications

Kernels

- A central ingredient of SVM
- Allows nonlinearity
- Allows to work implicitly in a high-dimensional feature space
- Allows to work with structured data (e.g., graphs)

