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A simple view of cancer progression

cells grow as a benign
tumor in epithelium break through basal lamina invade capillary

2 b.
cannective lamina —

travel through bloodstream
(less than 1in 1000 cells
will survive to form metastases)

proliferate to form
wall in liver (extravasation) metastasis in liver
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Chromosomic aberrations in cancer
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Comparative Genomic Hybridization (CGH)

@ Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome

@ Very useful, in particular in cancer research
@ Can we classify CGH arrays for diagnosis or prognosis purpose?
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Aggressive vs non-aggressive melanoma
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Problem 1
Given the CGH profile of a melanoma, is it aggressive or not?
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DNA — RNA — protein
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T
e
- &%\\a@-&‘a\% N Franseription

L Rt X

Fransiotion

@ CGH shows the (static) DNA

@ Cancer cells have also abnormal (dynamic) gene expression (=
transcription)
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Tissue profiling with DNA chips
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B ALL AML

Problem 2

Given the expression profile of a leukemia, is it an acute lymphocytic or
myeloid leukemia (ALL or AML)?
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Use in prognosis

A Gene-Expression Profiling B St. Gallen Criteria
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Problem 3

Given the expression profile of a breast cancer, is the risk of relapse
within 5 years high?
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Proteins

Aming Acid

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Methionine
E : Acide glutamique K : Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine
H : Histidine V : Thyrosine W : Tryptophane
| : Isoleucine S : Serine Q : Glutamine

D : Acide aspartique G : Glycine
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Protein annotation

Data available

@ Secreted proteins:
MASKATLLLAFTLLFATCTIARHQQRQQQQONQCQLQNIEA. . .
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL. . .

@ Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG. . .
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. . .
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP. .

Problem 4
Given a newly sequenced protein, is it secreted or not?
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Drug discovery
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Problem 4
Given a new candidate molecule, is it likely to be active?
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Pattern recognition, aka supervised classification
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Pattern recognition, aka supervised classification

Challenges

@ High dimension
Few samples

@ Structured data

@ Heterogeneous data
@ Prior knowledge
°

Fast and scalable
implementations

Interpretable models
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e Linear support vector machines
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Linear classifiers
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Linear classifiers
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Which one is better?

Jean-Philippe Vert (ParisTech) Machine learning in bioinformatics Mines ParisTech 19/88



The margin of a linear classifier
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The margin of a linear classifier
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Largest margin classifier (support vector machines)
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Support vectors
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More formally

@ The training set is a finite set of N data/class pairs:

S={(,y1),---, (Xn, YN }
where X; c R and y; € {—1,1}.
@ We assume (for the moment) that the data are linearly separable,
i.e., that there exists (W, b) € RY x R such that:
w.Xi+b>0 ify, =1,
{VT/.)?,‘—i-b<0 if yj=-—1.
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How to find the largest separating hyperplane?

For a given linear classifier f(x) = w.X + b consider the "tube" defined
by the values —1 and +1 of the decision function:

X+b=0
W.X N \A
\\ W.X+b > +1
\
\
o
O
w.x+b < -1 °
o ©O
w.x+b=+1
\ /
\,
O w.x+b \ '
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The margin is 2/||w||

Indeed, the points X; and x> satisfy:
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All training points should be on the right side of the

dotted line

For positive examples (y; = 1) this means:
w.X; + b > 1
For negative examples (y; = —1) this means:
w.X +b< —1
Both cases are summarized by:

Vi=1,...,N, yi (W.X;+ b) > 1
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Finding the optimal hyperplane

Find (w, b) which minimize:

under the constraints:

This is a classical quadratic program on R9+1.
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In order to minimize:
1. 2.0
5wl

2
under the constraints:

Vi=1,...,N, y,-(vT/.)‘(’,-+b)—120.
we introduce one dual variable «; for each constraint, i.e., for each

training point. The Lagrangian is:

N
T L
L(W, b, @) = S|IW|[* = Yo (yi (.5 + b) = 1).

i=1
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Dual problem

Find o* € RN which maximizes

N N
B 1 L
L(a) = E o — é E Oé,‘Ozjy,'ij,'.Xj,
i=1 ij=1

under the (simple) constraints «; > 0 (fori=1,...,N), and

N
Zai}/i =0.
i—1

This is a quadratic program on RN, with "box constraints". &@* can be
found efficiently using dedicated optimization softwares.
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Recovering the optimal hyperplane

Once a* is found, we recover (w*, b*) corresponding to the optimal
hyperplane. w* is given by:

N
W= yiaiXi,
i=1
and the decision function is therefore:

f*(X)

><1

+ b*

><i
><l

w.
N
e
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Interpretation: support vectors
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What if data are not linearly separable?
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Soft-margin SVM

@ Find a trade-off between large margin and few errors.
@ Mathematically:

. 1
min {mavrgin(f) + C x errors(f)}

@ Cis a parameter
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Soft-margin SVM formulation

@ The margin of a labeled point (X, y) is
margin(X,y) = y (W.X + b)

@ The erroris

e 0if margin(X,y) > 1,

e 1 — margin(X, y) otherwise.
@ The soft margin SVM solves:

N
rpng{\wuu C> max (0,1 —y,-(vT/.)'(','er))}

i=1
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Dual formulation of soft-margin SVM

Maximize
N 1N
L(a) = Z @i— 5 Z iy YiYiXi-Xj,
i=1 ij=1
under the constraints:
0<q;<C, fori=1,...,N
SN iy =0.
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Interpretation: bounded and unbounded support
vectors
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e Nonlinear SVM and kernels
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Sometimes linear classifiers are not interesting

e © ©
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Solution: non-linear mapping to a feature space
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Kernel (simple but important)

For a given mapping ¢ from the space of objects X' to some feature
space, the kernel of two objects x and x’ is the inner product of their
images in the features space:

vx,x' € X, K(x,x') = ®(x).0(x).

Example: if ®(X) = (x2,x2)/, then

K(%,X') = $(X)-8(X') = (3)2(x)% + (x2)?(xp)%.
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Training a SVM in the feature space

Replace each X.X’ in the SVM algorithm by ®(x).®(x") = K(x, x')
The dual problem is to maximize

N N
. 1
L(a) = Zai -3 Z ajayiyiK (Xi, X;),
i=1 ij=1
under the constraints:

0<q;<C, fori=1,...,N
S iy =0.
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Predicting with a SVM in the feature space

The decision function becomes:
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The kernel trick

@ The explicit computation of ®(x) is not necessary. The kernel
K(x, x") is enough. SVM work implicitly in the feature space.

@ It is sometimes possible to easily compute kernels which
correspond to complex large-dimensional feature spaces.
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Kernel example: polynomial kernel

o) e ° o
R. 4 ° ole}
e 9 o °o® [ ] 0 00 x22
O o
©)

For X = (x1, %) € R, let &(X) = (x2,V2x1x2, x3) € RS;

K(X, X') = X2x{2 + 2x1 XpX{ Xb + X2 X2
= (x1x] + szz)
= (%%

3?1
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Kernel example: polynomial kernel

x12
o
0©%_.0
oo © 5
° °%
o, Qoo
oo °® 000 x2?

More generally,
K(X, %) = (XX +1)°

is an inner product in a feature space of all monomials of degree up to
d (left as exercice.)
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Which functions K(x, x") are kernels?

Definition
A function K(x, x’) defined on a set X is a kernel if and only if there
exists a features space (Hilbert space) ‘H and a mapping

S X —H,

such that, for any x, x" in X
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Positive Definite (p.d.) functions

Definition
A positive definite (p.d.) function on the set X is a function
K: X x X — R symmetric:

V(x,x) e X%, K (x,x) =K (X,x),
and which satisfies, for all N € N, (X1, Xz, ..., Xy) € XN et

(ay, @, ...,an) € RN:

Za,a, (x;,%;) > 0.
1 j=1

=
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Kernels are p.d. functions

Theorem (Aronszajn, 1950)
K is a kernel if and only if it is a positive definite function.
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@ Kernel — p.d. function:

o (®(X), P (X))pa = (P (X'), P (X)ga) ,

o T TN aa (® (%), (X)) = || Ty ad (%) 2, >0 .
@ Pd. function — kernel: more difficult...
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Kernel examples

@ Polynomial (on RY):
K(x,x") = (x.x' +1)¢

@ Gaussian radial basis function (RBF) (on RY)

112
K(x,x") = exp (—HXZ_U)Z(H>
@ Laplace kernel (on R)
K(x,x") = exp (—v|x — x'|)
@ Min kernel (on R)
K(x, x") = min(x, x)

Exercice: for each kernel, find a Hilbert space H and a mapping
& : X — H such that K(x, x") = (®(x), d(x))
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Example: SVM with a Gaussian kernel

@ Training:
. ||X/ - X/H2
rrelanZa, - Z QiQ YY) exp
@ i,j=1
st.0<a;<C, and Za,-y,- =0.
i=1
@ Prediction

Za,exp( _X'H >
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Example: SVM with a Gaussian kernel

x)—Za,exp( X _)2(’||2>

SVM classification plot
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Linear vs nonlinear SVM
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Regularity vs data fitting trade-off
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C controls the trade-off

. 1
min {margin(f) +Cx errors(f)}

e Large C: .
— makes few errors

e Small C: *le e o

— ensure a large margin Se e
 Intermediate C: %o
— finds a trade-off YA ’
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Why it is important to control the trade-off

TEST

ERROR
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How to choose C in practice

@ Split your dataset in two ("train" and "test")

@ Train SVM with different C on the "train" set

@ Compute the accuracy of the SVM on the "test" set

@ Choose the C which minimizes the "test" error

@ (you may repeat this several times = cross-validation)
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SVM summary

@ Large margin
@ Linear or nonlinear (with the kernel trick)
@ Control of the regularization / data fitting trade-off with C
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e SVM for complex data: the case of graphs
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Virtual screening for drug discovery

active

o

inactive jeul.

NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Classification with SVM
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Classification with SVM

@ Represent each graph x by a vector ®(x) € H, either explicitly or
implicitly through the kernel

K(x,x') = o(x)Td(x)).
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Classification with SVM

@ Represent each graph x by a vector ®(x) € H, either explicitly or
implicitly through the kernel

K(x,x') = o(x)Td(x)).

@ Use a linear method for classification in .
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Example: indexing by substructures

@ Often we believe that the presence substructures are important
predictive patterns

@ Hence it makes sense to represent a graph by features that
indicate the presence (or the number of occurrences) of particular
substructures

@ However, detecting the presence of particular substructures may
be computationally challenging...
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Subgraphs

Definition

A subgraph of a graph (V, E) is a connected graph (V’, E’) with
V' cVand E' C E.

<] 23392
Lo e lode Lo
S Foedlls
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Indexing by all subgraphs?
@=»
(®»(0,...,0,1,0,...,0,1,0,...)
poo

@®) @
oi6
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Indexing by all subgraphs?
@=»
(®»(0,...,0,1,0,...,0,1,0,...)
poo

@®) @
oi6

@ Computing all subgraph occurrences is NP-hard.
@ Computing the subgraph kernel is NP-hard.
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Indexing by all subgraphs?
(o,...,o,1,o,...,o,1,o,...)

®
o

@ Computing all subgraph occurrences is NP-hard.
@ Computing the subgraph kernel is NP-hard.

@ Finding an occurrence of the linear path of size nis finding a
Hamiltonian path, which is NP-complete.

@ Similarly, if we can compute the subgraph kernel then we can
deduce the presence of a Hamiltonian path (left as exercice).

L]
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Definition

@ A path of a graph (V, E) is sequence of distinct vertices
Vi,...,Vp€ V(i #] = Vv; # vj) such that (v;,vi11) € E for
i=1,....,n—1.

@ Equivalently the paths are the linear subgraphs.
: | NONON
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Indexing by all paths?

B—A
(0,...,0,1,0,...,0,1,0,...)
@‘@ ® t t
(a—a) (6—e—0)

Jean-Philippe Vert (ParisTech) Machine learning in bioinformatics Mines ParisTech 66 /88



Indexing by all paths?

@‘Q ® (0.....0,1,0,...,0,1,0,...)
B—® t !

@ Computing all path occurrences is NP-hard.
© Computing the path kernel is NP-hard
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Indexing by all paths?

@‘Q ® (0.....0,1,0,...,0,1,0,...)
B—® t !

@ Computing all path occurrences is NP-hard.
© Computing the path kernel is NP-hard

Same as for subgraphs. O \
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aks

Definition

@ A walk of a graph (V, E) is sequence of vy, ..., Vn € V such that
(Vi,Vig1) e Efori=1,..., n—1.

@ We note W,,(G) the set of walks with n vertices of the graph G,
and W(G) the set of all walks.

! 2233
Lo o dods Lo

.3..2..53@@2.43.43.55.2@
mmumum
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Walks # paths
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Walk kernel

@ Let S, denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = U,>1Sp.

@ For any graph X let a weight A\g(w) be associated to each walk
w € W(G).

@ Let the feature vector ®(G) = (®s(G))s. 5 be defined by:

= ) Ag(w)1(sis the label sequence of w) .
weW(G)
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Walk kernel

@ Let S, denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = U,>1Sp.

@ For any graph X let a weight A\g(w) be associated to each walk
w € W(G).

@ Let the feature vector ®(G) = (®s(G))s. 5 be defined by:

= ) Ag(w)1(sis the label sequence of w) .
weW(G)

@ A walk kernel is a graph kernel defined by:

Kuak(Gr1, G2) = Y ©5(Gy)®

seS
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Walk kernel examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.
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Walk kernel examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.

@ The random walk kernel is obtained with Ag(w) = Pg(w), where
Pg is a Markov random walk on G. In that case we have:

K(Gy, Go) = P(label(W;) = label(Ws)),

where W; and W, are two independant random walks on G; and
Go, respectively (Kashima et al., 2003).
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Walk kernel examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their

common walks of length n.
@ The random walk kernel is obtained with \g(w) = Pg(w), where
Pg is a Markov random walk on G. In that case we have:

K(Gy, Go) = P(label(W;) = label(Ws)),

where W; and W, are two independant random walks on G; and
Go, respectively (Kashima et al., 2003).

@ The geometric walk kernel is obtained (when it converges) with
Ag(w) = pength(w) for g > 0. In that case the feature space is of

infinite dimension (Gértner et al., 2003).

Mines ParisTech 70/88
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Computation of walk kernels

Proposition

These three kernels (nth-order, random and geometric walk kernels)
can be computed efficiently in polynomial time.
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Product graph
Definition

Let G = (V4, Ey) and G = (V», E>) be two graphs with labeled
vertices. The product graph G = Gy x Gy is the graph G = (V, E) with:

Q V={(vy,) e Vi x Vs
Q E=

{((vi, ), (v{,v})) € Vx V : (vy,v]) € Ey and (v, V) € Eb}.

. vy and v, have the same label} ,

1 a b 1b 2a 1d
o—O O
2 c 3c 3e
la 2b : 2d :
3 4 d e
4c 4e
Gl (€74 Gl x &
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Walk kernel and product graph

There is a bijection between:

@ The pairs of walks wy € Wp(Gy) and wa € Wy(Gz) with the same
label sequences,

@ The walks on the product graph w € Wi(Gy x Go).

Jean-Philippe Vert (ParisTech) Machine learning in bioinformatics Mines ParisTech 73/88



Walk kernel and product graph

There is a bijection between:

@ The pairs of walks wy € Wy(Gy) and wo € Wy(Gz) with the same
label sequences,

@ The walks on the product graph w € Wi(Gy x Go).

Corollary

Kuak(Gr, Go) = Y _ 05(Gy)®s(Gz)

SES

= > e, (W) A, (Wa)1(I(wy) = I(w2))

(w1, w2)EW(G1) xW(Gy)

= ) Agxaw).

WEW(G1 X Gz)
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Computation of the nth-order walk kernel

@ For the nth-order walk kernel we have \g, «g,(w) = 1 if the length
of w is n, 0 otherwise.

@ Therefore:

Knth—order (Gh GZ) = Z 1.
WEWn(G1 X Gg)

@ Let A be the adjacency matrix of Gy x G,. Then we get:

Knth order G17 GZ Z [An],j = 1TAn1
7./

@ Computation in O(n|Gy||Gz|d;d>), where d; is the maximum
degree of G;.
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Computation of random and geometric walk kernels

@ In both cases \g(w) for awalk w = v; ... v, can be decomposed
as:

n
Aa(vi .. vi) = X(vy) [T M Vi1, vi).
i=2

@ Let A; be the vector of \'(v) and A; be the matrix of A{(v, v/):

n
Kwaik(G1, Go) Z > Nw) [N (i, w)
n=1 weWn(Gi xGy) =2
= NAFT
n=0
=N (I-N) 1

@ Computation in O(|G1[3|Gz[?)
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Extensions 1: label enrichment

Atom relabebling with the Morgan index

1 2 4
1 1 2 2 4 5
1 o1l 2 o1l 4 03
No Morgan Indices  O1 Order 1 indices o1 Order 2 indices 03

@ Compromise between fingerprints and structural keys features.
@ Other relabeling schemes are possible (graph coloring).

@ Faster computation with more labels (less matches implies a
smaller product graph).
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Extension 2: Non-tottering walk kernel

Tottering walks
A tottering walk is a walk w = vy ... v, with v; = v;.» for some i.

@ (O —@ VNon-tottering
OO0 @

@ (@ rTtottering

@ Tottering walks seem irrelevant for many applications

@ Focusing on non-tottering walks is a way to get closer to the path
kernel (e.g., equivalent on trees).
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Computation of the non-tottering walk kernel (Mahé et

al., 2005)

@ Second-order Markov random walk to prevent tottering walks

@ Written as a first-order Markov random walk on an augmented
graph

@ Normal walk kernel on the augmented graph (which is always a
directed graph).

o) /@‘:_ @\
H C —_— @\ /H/@

Cl @&@\
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Example: Tree-like fragments of molecules

N— N—C—C—C
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Computation of the subtree kernel

@ Like the walk kernel, amounts to compute the (weighted) number
of subtrees in the product graph.

@ Recursion: if 7(v, n) denotes the weighted number of subtrees of
depth nrooted at the vertex v, then:

Tv,n+1)= Y ] Mv.V)T(V,n),

RCN(v) v'eR

where N (v) is the set of neighbors of v.

@ Can be combined with the non-tottering graph transformation as
preprocessing to obtain the non-tottering subtree kernel.
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Application in chemoinformatics (Mahé et al., 2004)

MUTAG dataset

@ aromatic/hetero-aromatic compounds

@ high mutagenic activity /no mutagenic activity, assayed in
Salmonella typhimurium.

@ 188 compouunds: 125 +/ 63 -

v

10-fold cross-validation accuracy

Method | Accuracy
Progol1 81.4%
2D kernel | 91.2%

A
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Summary: graph kernels

@ Kernels do not allow to overcome the NP-hardness of subgraph
patterns

@ They allow to work with approximate subgraphs (walks, subtrees),
in infinite dimension, thanks to the kernel trick

@ They give state-of-the-art results
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Outline

e Conclusion
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Machine learning in computational biology

@ Biology faces a flood of data following the development of
high-throughput technologies (sequencing, DNA chips, ...)
@ Many problems can be formalized in the framework of machine
learning, e.g.:
e Diagnosis, prognosis
e Protein annotation
e Drug discovery, virtual screening
@ These data have often complex structures (strings, graphs,
high-dimensional vectors) and often require dedicated algorithms.

MR

GeneChip

Gersm Whae reman
SNP A 0.0
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Support vector machines (SVM)

@ A general-purpose algorithm for pattern recognition

@ Based on the principle of large margin ("séparateur a vaste
marge")

@ Linear or nonlinear with the kernel trick

@ Control of the regularization / data fitting trade-off with the C
parameter

@ State-of-the-art performance on many applications
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Kernels

@ A central ingredient of SVM

@ Allows nonlinearity

@ Allows to work implicitly in a high-dimensional feature space
@ Allows to work with structured data (e.g., graphs)
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