Support vector machines, kernels, and applications in computational biology

Jean-Philippe Vert

Jean-Philippe. Vert@mines-paristech.fr

Mines ParisTech / Institut Curie / Inserm

Mines ParisTech, ES "Machine learning" module.

- Machine learning in bioinformatics
- 2 Linear support vector machines
- Nonlinear SVM and kernels
- SVM for complex data: the case of graphs
- Conclusion

- Machine learning in bioinformatics
- Linear support vector machines
- Nonlinear SVM and kernels
- SVM for complex data: the case of graphs
- Conclusion

- Machine learning in bioinformatics
- Linear support vector machines
- Nonlinear SVM and kernels
- SVM for complex data: the case of graphs
- Conclusion

- Machine learning in bioinformatics
- Linear support vector machines
- Nonlinear SVM and kernels
- 4 SVM for complex data: the case of graphs
- Conclusion

- Machine learning in bioinformatics
- 2 Linear support vector machines
- Nonlinear SVM and kernels
- 4 SVM for complex data: the case of graphs
- Conclusion

- Machine learning in bioinformatics
- 2 Linear support vector machines
- Nonlinear SVM and kernels
- SVM for complex data: the case of graphs
- Conclusion

A simple view of cancer progression

Chromosomic aberrations in cancer

Comparative Genomic Hybridization (CGH)

Motivation

- Comparative genomic hybridization (CGH) data measure the DNA copy number along the genome
- Very useful, in particular in cancer research
- Can we classify CGH arrays for diagnosis or prognosis purpose?

Aggressive vs non-aggressive melanoma

Problem 1

Given the CGH profile of a melanoma, is it aggressive or not?

$\mathsf{DNA} \to \mathsf{RNA} \to \mathsf{protein}$

- CGH shows the (static) DNA
- Cancer cells have also abnormal (dynamic) gene expression (= transcription)

Tissue profiling with DNA chips

Use in diagnosis

Problem 2

Given the expression profile of a leukemia, is it an acute lymphocytic or myeloid leukemia (ALL or AML)?

Use in prognosis

Problem 3

Given the expression profile of a breast cancer, is the risk of relapse within 5 years high?

Proteins

A: Alanine

F: Phenylalanine

 ${\sf E}$: Acide glutamique

T: Threonine

H: Histidine

I: Isoleucine

D: Acide aspartique

V: Valine

P: Proline

K : Lysine

C : Cysteine

V : Thyrosine

S : Serine

G: Glycine

L : Leucine

M : Methionine

R : Arginine

N : Asparagine

W : Tryptophane

Q : Glutamine

Protein annotation

Data available

Secreted proteins:

```
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA...
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW...
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...
```

Non-secreted proteins:

```
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG...
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG...
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP...
```

Problem 4

Given a newly sequenced protein, is it secreted or not?

Drug discovery

Problem 4

Given a new candidate molecule, is it likely to be active?

Challenges

- High dimension
- Few samples
- Structured data
- Heterogeneous data
- Prior knowledge
- Fast and scalable implementations
- Interpretable models

- Machine learning in bioinformatics
- 2 Linear support vector machines
- Nonlinear SVM and kernels
- SVM for complex data: the case of graphs
- Conclusion

Which one is better?

The margin of a linear classifier

The margin of a linear classifier

The margin of a linear classifier

The margin of a linear classifier

The margin of a linear classifier

Largest margin classifier (support vector machines)

Support vectors

More formally

The training set is a finite set of N data/class pairs:

$$\mathcal{S} = \left\{ (\vec{x}_1, y_1), \dots, (\vec{x}_N, y_N) \right\} \,,$$

where $\vec{x}_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$.

• We assume (for the moment) that the data are linearly separable, i.e., that there exists $(\vec{w}, b) \in \mathbb{R}^d \times \mathbb{R}$ such that:

$$\begin{cases} \vec{w}.\vec{x}_i + b > 0 & \text{if } y_i = 1, \\ \vec{w}.\vec{x}_i + b < 0 & \text{if } y_i = -1. \end{cases}$$

How to find the largest separating hyperplane?

For a given linear classifier $f(x) = \vec{w} \cdot \vec{x} + b$ consider the "tube" defined by the values -1 and +1 of the decision function:

The margin is $2/||\vec{w}||$

Indeed, the points \vec{x}_1 and \vec{x}_2 satisfy:

$$\begin{cases} \vec{w}.\vec{x}_1 + b = 0, \\ \vec{w}.\vec{x}_2 + b = 1. \end{cases}$$

By subtracting we get $\vec{w} \cdot (\vec{x}_2 - \vec{x}_1) = 1$, and therefore:

$$\gamma = 2||\vec{x}_2 - \vec{x}_1|| = \frac{2}{||\vec{w}||}.$$

All training points should be on the right side of the dotted line

For positive examples $(y_i = 1)$ this means:

$$\vec{w}.\vec{x}_i + b \geq 1$$

For negative examples $(y_i = -1)$ this means:

$$\vec{w}.\vec{x}_i + b \leq -1$$

Both cases are summarized by:

$$\forall i = 1, \ldots, N, \qquad y_i \left(\vec{w} \cdot \vec{x}_i + b \right) \geq 1$$

Finding the optimal hyperplane

Find (\vec{w}, b) which minimize:

$$||\vec{w}||^2$$

under the constraints:

$$\forall i = 1, \ldots, N, \qquad y_i \left(\vec{w}.\vec{x}_i + b \right) - 1 \geq 0.$$

This is a classical quadratic program on \mathbb{R}^{d+1} .

Lagrangian

In order to minimize:

$$\frac{1}{2}||\vec{w}||^2$$

under the constraints:

$$\forall i = 1, \ldots, N, \qquad y_i \left(\vec{w}.\vec{x}_i + b \right) - 1 \geq 0.$$

we introduce one dual variable α_i for each constraint, i.e., for each training point. The Lagrangian is:

$$L(\vec{w}, b, \vec{\alpha}) = \frac{1}{2} ||\vec{w}||^2 - \sum_{i=1}^{N} \alpha_i (y_i (\vec{w}.\vec{x}_i + b) - 1).$$

Dual problem

Find $\alpha^* \in \mathbb{R}^N$ which maximizes

$$L(\vec{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j \vec{x}_i . \vec{x}_j,$$

under the (simple) constraints $\alpha_i \geq 0$ (for i = 1, ..., N), and

$$\sum_{i=1}^{N} \alpha_i y_i = 0.$$

This is a quadratic program on \mathbb{R}^N , with "box constraints". $\vec{\alpha}^*$ can be found efficiently using dedicated optimization softwares.

Recovering the optimal hyperplane

Once $\vec{\alpha}^*$ is found, we recover (\vec{w}^*, b^*) corresponding to the optimal hyperplane. w^* is given by:

$$\vec{\mathbf{w}}^* = \sum_{i=1}^N \mathbf{y}_i \alpha_i \vec{\mathbf{x}}_i,$$

and the decision function is therefore:

$$f^{*}(\vec{x}) = \vec{w}^{*}.\vec{x} + b^{*}$$

$$= \sum_{i=1}^{N} y_{i}\alpha_{i}\vec{x}_{i}.\vec{x} + b^{*}.$$
(1)

Interpretation: support vectors

Soft-margin SVM

- Find a trade-off between large margin and few errors.
- Mathematically:

$$\min_{f} \left\{ \frac{1}{margin(f)} + C \times errors(f) \right\}$$

C is a parameter

Soft-margin SVM formulation

• The margin of a labeled point (\vec{x}, y) is

$$margin(\vec{x}, y) = y (\vec{w}.\vec{x} + b)$$

- The error is
 - 0 if $margin(\vec{x}, y) > 1$,
 - 1 $margin(\vec{x}, y)$ otherwise.
- The soft margin SVM solves:

$$\min_{\vec{w},b} \left\{ ||\vec{w}||^2 + C \sum_{i=1}^{N} \max (0, 1 - y_i (\vec{w}.\vec{x}_i + b)) \right\}$$

Dual formulation of soft-margin SVM

Maximize

$$L(\vec{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j \vec{x}_i \cdot \vec{x}_j,$$

under the constraints:

$$\begin{cases} 0 \le \alpha_i \le C, & \text{for } i = 1, \dots, N \\ \sum_{i=1}^{N} \alpha_i y_i = 0. \end{cases}$$

Interpretation: bounded and unbounded support vectors

Outline

- Machine learning in bioinformatics
- Linear support vector machines
- Nonlinear SVM and kernels
- SVM for complex data: the case of graphs
- Conclusion

Sometimes linear classifiers are not interesting

Solution: non-linear mapping to a feature space

Let $\vec{\Phi}(\vec{x}) = (x_1^2, x_2^2)'$, $\vec{w} = (1, 1)'$ and b = 1. Then the decision function is:

$$f(\vec{x}) = x_1^2 + x_2^2 - R^2 = \vec{w} \cdot \vec{\Phi}(\vec{x}) + b,$$

Kernel (simple but important)

For a given mapping Φ from the space of objects \mathcal{X} to some feature space, the kernel of two objects x and x' is the inner product of their images in the features space:

$$\forall x, x' \in \mathcal{X}, \quad K(x, x') = \vec{\Phi}(x).\vec{\Phi}(x').$$

Example: if $\vec{\Phi}(\vec{x}) = (x_1^2, x_2^2)'$, then

$$K(\vec{x}, \vec{x}') = \vec{\Phi}(\vec{x}) \cdot \vec{\Phi}(\vec{x}') = (x_1)^2 (x_1')^2 + (x_2)^2 (x_2')^2.$$

Training a SVM in the feature space

Replace each $\vec{x}.\vec{x}'$ in the SVM algorithm by $\vec{\Phi}(x).\vec{\Phi}(x') = K(x,x')$ The dual problem is to maximize

$$L(\vec{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j \frac{K(x_i, x_j)}{N},$$

under the constraints:

$$\begin{cases} 0 \le \alpha_i \le C, & \text{for } i = 1, \dots, N \\ \sum_{i=1}^{N} \alpha_i y_i = 0. \end{cases}$$

Predicting with a SVM in the feature space

The decision function becomes:

$$f(x) = \vec{w}^* \cdot \vec{\Phi}(x) + b^*$$

$$= \sum_{i=1}^{N} \alpha_i K(x_i, x) + b^*.$$
(2)

The kernel trick

- The explicit computation of $\vec{\Phi}(x)$ is not necessary. The kernel K(x, x') is enough. SVM work implicitly in the feature space.
- It is sometimes possible to easily compute kernels which correspond to complex large-dimensional feature spaces.

Kernel example: polynomial kernel

For
$$\vec{x} = (x_1, x_2)^{\top} \in \mathbb{R}^2$$
, let $\vec{\Phi}(\vec{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2) \in \mathbb{R}^3$:

$$K(\vec{x}, \vec{x}') = x_1^2 x_1'^2 + 2x_1 x_2 x_1' x_2' + x_2^2 x_2'^2 \\
= (x_1 x_1' + x_2 x_2')^2 \\
= (\vec{x}. \vec{x}')^2 .$$

Kernel example: polynomial kernel

More generally,

$$K(\vec{x}, \vec{x}') = (\vec{x}.\vec{x}' + 1)^d$$

is an inner product in a feature space of all monomials of degree up to *d* (*left as exercice*.)

Which functions K(x, x') are kernels?

Definition

A function K(x, x') defined on a set \mathcal{X} is a kernel if and only if there exists a features space (Hilbert space) \mathcal{H} and a mapping

$$\Phi: \mathcal{X} \mapsto \mathcal{H}$$
,

such that, for any \mathbf{x}, \mathbf{x}' in \mathcal{X} :

$$K(\mathbf{x}, \mathbf{x}') = \langle \Phi(\mathbf{x}), \Phi(\mathbf{x}') \rangle_{\mathcal{H}}$$
.

Positive Definite (p.d.) functions

Definition

A positive definite (p.d.) function on the set \mathcal{X} is a function $\mathcal{K}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ symmetric:

$$\forall \left(\boldsymbol{x}, \boldsymbol{x}' \right) \in \mathcal{X}^2, \quad \textit{K} \left(\boldsymbol{x}, \boldsymbol{x}' \right) = \textit{K} \left(\boldsymbol{x}', \boldsymbol{x} \right),$$

and which satisfies, for all $N \in \mathbb{N}$, $(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) \in \mathcal{X}^N$ et $(a_1, a_2, \dots, a_N) \in \mathbb{R}^N$:

$$\sum_{i=1}^{N}\sum_{j=1}^{N}a_{i}a_{j}K\left(\mathbf{x}_{i},\mathbf{x}_{j}\right)\geq0.$$

Kernels are p.d. functions

Theorem (Aronszajn, 1950)

K is a kernel if and only if it is a positive definite function.

Proof?

- - $\bullet \ \langle \Phi\left(\boldsymbol{x}\right), \Phi\left(\boldsymbol{x}'\right) \rangle_{\mathbb{R}^{d}} = \langle \Phi\left(\boldsymbol{x}'\right), \Phi\left(\boldsymbol{x}\right)_{\mathbb{R}^{d}} \rangle \ ,$
 - $\sum_{i=1}^{N} \sum_{j=1}^{N} a_i a_j \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle_{\mathbb{R}^d} = \| \sum_{i=1}^{N} a_i \Phi(\mathbf{x}_i) \|_{\mathbb{R}^d}^2 \ge 0$.
- P.d. function \implies kernel: more difficult...

Kernel examples

• Polynomial (on \mathbb{R}^d):

$$K(x,x')=(x.x'+1)^d$$

• Gaussian radial basis function (RBF) (on \mathbb{R}^d)

$$K(x, x') = \exp\left(-\frac{||x - x'||^2}{2\sigma^2}\right)$$

• Laplace kernel (on \mathbb{R})

$$K(x, x') = \exp(-\gamma |x - x'|)$$

• Min kernel (on \mathbb{R}_+)

$$K(x, x') = \min(x, x')$$

Exercice: for each kernel, find a Hilbert space \mathcal{H} and a mapping $\Phi: \mathcal{X} \to \mathcal{H}$ such that $K(x, x') = \langle \Phi(x), \Phi(x') \rangle$

Example: SVM with a Gaussian kernel

Training:

$$\begin{split} \min_{\alpha \in \mathbb{R}^N} \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i,j=1}^N \alpha_i \alpha_j y_i y_j \exp\left(-\frac{||\vec{x}_i - \vec{x}_j||^2}{2\sigma^2}\right) \\ \text{s.t. } 0 \leq \alpha_i \leq C, \quad \text{and } \sum_{i=1}^N \alpha_i y_i = 0. \end{split}$$

Prediction

$$f(\vec{x}) = \sum_{i=1}^{N} \alpha_i \exp\left(-\frac{||\vec{x} - \vec{x}_i||^2}{2\sigma^2}\right)$$

Example: SVM with a Gaussian kernel

$$f(\vec{x}) = \sum_{i=1}^{N} \alpha_i \exp\left(-\frac{||\vec{x} - \vec{x}_i||^2}{2\sigma^2}\right)$$

SVM classification plot

Linear vs nonlinear SVM

Regularity vs data fitting trade-off

C controls the trade-off

$$\min_{f} \left\{ \frac{1}{margin(f)} + C \times errors(f) \right\}$$

- Large C:
 - makes few errors

- ensure a large margin
- Intermediate C:
 - finds a trade-off

Why it is important to control the trade-off

How to choose C in practice

- Split your dataset in two ("train" and "test")
- Train SVM with different C on the "train" set
- Compute the accuracy of the SVM on the "test" set
- Choose the C which minimizes the "test" error
- (you may repeat this several times = cross-validation)

SVM summary

- Large margin
- Linear or nonlinear (with the kernel trick)
- Control of the regularization / data fitting trade-off with C

Outline

- Machine learning in bioinformatics
- 2 Linear support vector machines
- Nonlinear SVM and kernels
- 4 SVM for complex data: the case of graphs
- Conclusion

Virtual screening for drug discovery

NCI AIDS screen results (from http://cactus.nci.nih.gov).

Classification with SVM

① Represent each graph x by a vector $\Phi(x) \in \mathcal{H}$, either explicitly or implicitly through the kernel

$$K(x, x') = \Phi(x)^{\top} \Phi(x')$$
.

2 Use a linear method for classification in \mathcal{H} .

Classification with SVM

 Represent each graph x by a vector Φ(x) ∈ H, either explicitly or implicitly through the kernel

$$K(x, x') = \Phi(x)^{\top} \Phi(x')$$
.

② Use a linear method for classification in \mathcal{H} .

Classification with SVM

 Represent each graph x by a vector Φ(x) ∈ H, either explicitly or implicitly through the kernel

$$K(x, x') = \Phi(x)^{\top} \Phi(x')$$
.

2 Use a linear method for classification in \mathcal{H} .

Example: indexing by substructures

- Often we believe that the presence substructures are important predictive patterns
- Hence it makes sense to represent a graph by features that indicate the presence (or the number of occurrences) of particular substructures
- However, detecting the presence of particular substructures may be computationally challenging...

Subgraphs

Definition

A subgraph of a graph (V, E) is a connected graph (V', E') with $V' \subset V$ and $E' \subset E$.

Indexing by all subgraphs?

Theorem

- Computing all subgraph occurrences is NP-hard.
- 2 Computing the subgraph kernel is NP-hard.

Proof.

- Finding an occurrence of the linear path of size n is finding a Hamiltonian path, which is NP-complete.
- Similarly, if we can compute the subgraph kernel then we can deduce the presence of a Hamiltonian path (left as exercice).

Indexing by all subgraphs?

Theorem

- Computing all subgraph occurrences is NP-hard.
- Computing the subgraph kernel is NP-hard.

Proof

- Finding an occurrence of the linear path of size *n* is finding a Hamiltonian path, which is NP-complete.
- Similarly, if we can compute the subgraph kernel then we can deduce the presence of a Hamiltonian path (left as exercice).

Indexing by all subgraphs?

Theorem

- Computing all subgraph occurrences is NP-hard.
- Computing the subgraph kernel is NP-hard.

Proof.

- Finding an occurrence of the linear path of size *n* is finding a Hamiltonian path, which is NP-complete.
- 2 Similarly, if we can compute the subgraph kernel then we can deduce the presence of a Hamiltonian path (left as exercice).

Paths

Definition

- A path of a graph (V, E) is sequence of distinct vertices $v_1, \ldots, v_n \in V$ $(i \neq j \implies v_i \neq v_j)$ such that $(v_i, v_{i+1}) \in E$ for $i = 1, \ldots, n-1$.
- Equivalently the paths are the linear subgraphs.

Indexing by all paths?

Theorem

- Computing all path occurrences is NP-hard.
- 2 Computing the path kernel is NP-hard

Proof.

Same as for subgraphs

Indexing by all paths?

Theorem

- Computing all path occurrences is NP-hard.
- Computing the path kernel is NP-hard

Proof

Same as for subgraphs

Indexing by all paths?

Theorem

- Computing all path occurrences is NP-hard.
- Computing the path kernel is NP-hard

Proof.

Same as for subgraphs.

Walks

Definition

- A walk of a graph (V, E) is sequence of $v_1, \ldots, v_n \in V$ such that $(v_i, v_{i+1}) \in E$ for $i = 1, \ldots, n-1$.
- We note W_n(G) the set of walks with n vertices of the graph G, and W(G) the set of all walks.

Walks \neq paths

Walk kernel

Definition

- Let S_n denote the set of all possible label sequences of walks of length n (including vertices and edges labels), and $S = \bigcup_{n>1} S_n$.
- For any graph \mathcal{X} let a weight $\lambda_G(w)$ be associated to each walk $w \in \mathcal{W}(G)$.
- Let the feature vector $\Phi(G) = (\Phi_s(G))_{s \in S}$ be defined by:

$$\Phi_s(G) = \sum_{w \in \mathcal{W}(G)} \lambda_G(w) \mathbf{1}$$
 (s is the label sequence of w).

A walk kernel is a graph kernel defined by:

$$K_{walk}(G_1,G_2) = \sum_{s \in \mathcal{S}} \Phi_s(G_1) \Phi_s(G_2)$$
 .

Walk kernel

Definition

- Let S_n denote the set of all possible label sequences of walks of length n (including vertices and edges labels), and $S = \bigcup_{n \ge 1} S_n$.
- For any graph \mathcal{X} let a weight $\lambda_G(w)$ be associated to each walk $w \in \mathcal{W}(G)$.
- Let the feature vector $\Phi(G) = (\Phi_s(G))_{s \in S}$ be defined by:

$$\Phi_s(G) = \sum_{w \in \mathcal{W}(G)} \lambda_G(w) \mathbf{1}$$
 (s is the label sequence of w).

• A walk kernel is a graph kernel defined by:

$$K_{walk}(G_1,G_2) = \sum_{s \in \mathcal{S}} \Phi_s(G_1) \Phi_s(G_2)$$
 .

Walk kernel examples

Examples

- The *n*th-order walk kernel is the walk kernel with $\lambda_G(w) = 1$ if the length of w is n, 0 otherwise. It compares two graphs through their common walks of length n.
- The random walk kernel is obtained with $\lambda_G(w) = P_G(w)$, where P_G is a Markov random walk on G. In that case we have:

$$K(G_1, G_2) = P(label(W_1) = label(W_2)),$$

- where W_1 and W_2 are two independant random walks on G_1 and G_2 , respectively (Kashima et al., 2003).
- The geometric walk kernel is obtained (when it converges) with $\lambda_G(w) = \beta^{length(w)}$, for $\beta > 0$. In that case the feature space is of infinite dimension (Gärtner et al., 2003).

Walk kernel examples

Examples

- The *n*th-order walk kernel is the walk kernel with $\lambda_G(w) = 1$ if the length of w is n, 0 otherwise. It compares two graphs through their common walks of length n.
- The random walk kernel is obtained with $\lambda_G(w) = P_G(w)$, where P_G is a Markov random walk on G. In that case we have:

$$K(G_1, G_2) = P(label(W_1) = label(W_2)),$$

where W_1 and W_2 are two independant random walks on G_1 and G_2 , respectively (Kashima et al., 2003).

• The geometric walk kernel is obtained (when it converges) with $\lambda_G(w) = \beta^{length(w)}$, for $\beta > 0$. In that case the feature space is of infinite dimension (Gärtner et al., 2003).

Walk kernel examples

Examples

- The *n*th-order walk kernel is the walk kernel with $\lambda_G(w) = 1$ if the length of w is n, 0 otherwise. It compares two graphs through their common walks of length n.
- The random walk kernel is obtained with $\lambda_G(w) = P_G(w)$, where P_G is a Markov random walk on G. In that case we have:

$$K(G_1, G_2) = P(label(W_1) = label(W_2)),$$

where W_1 and W_2 are two independant random walks on G_1 and G_2 , respectively (Kashima et al., 2003).

• The geometric walk kernel is obtained (when it converges) with $\lambda_G(w) = \beta^{length(w)}$, for $\beta > 0$. In that case the feature space is of infinite dimension (Gärtner et al., 2003).

Computation of walk kernels

Proposition

These three kernels (*n*th-order, random and geometric walk kernels) can be computed efficiently in polynomial time.

Product graph

Definition

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs with labeled vertices. The product graph $G = G_1 \times G_2$ is the graph G = (V, E) with:

- $V = \{(v_1, v_2) \in V_1 \times V_2 : v_1 \text{ and } v_2 \text{ have the same label}\}$,
- ② $E = \{((v_1, v_2), (v'_1, v'_2)) \in V \times V : (v_1, v'_1) \in E_1 \text{ and } (v_2, v'_2) \in E_2\}.$

Walk kernel and product graph

Lemma

There is a bijection between:

- The pairs of walks $w_1 \in \mathcal{W}_n(G_1)$ and $w_2 \in \mathcal{W}_n(G_2)$ with the same label sequences,
- ② The walks on the product graph $w \in W_n(G_1 \times G_2)$.

Corollary

$$\begin{split} K_{walk}(G_1,G_2) &= \sum_{s \in \mathcal{S}} \Phi_s(G_1) \Phi_s(G_2) \\ &= \sum_{(w_1,w_2) \in \mathcal{W}(G_1) \times \mathcal{W}(G_1)} \lambda_{G_1}(w_1) \lambda_{G_2}(w_2) \mathbf{1}(I(w_1) = I(w_2)) \\ &= \sum_{w \in \mathcal{W}(G_1 \times G_2)} \lambda_{G_1 \times G_2}(w) \,. \end{split}$$

Walk kernel and product graph

Lemma

There is a bijection between:

- The pairs of walks $w_1 \in \mathcal{W}_n(G_1)$ and $w_2 \in \mathcal{W}_n(G_2)$ with the same label sequences,
- 2 The walks on the product graph $w \in W_n(G_1 \times G_2)$.

Corollary

$$\begin{split} \textit{K}_{\textit{walk}}(\textit{G}_{1},\textit{G}_{2}) &= \sum_{\textit{s} \in \mathcal{S}} \Phi_{\textit{s}}(\textit{G}_{1}) \Phi_{\textit{s}}(\textit{G}_{2}) \\ &= \sum_{(\textit{w}_{1},\textit{w}_{2}) \in \mathcal{W}(\textit{G}_{1}) \times \mathcal{W}(\textit{G}_{1})} \lambda_{\textit{G}_{1}}(\textit{w}_{1}) \lambda_{\textit{G}_{2}}(\textit{w}_{2}) \mathbf{1}(\textit{I}(\textit{w}_{1}) = \textit{I}(\textit{w}_{2})) \\ &= \sum_{\textit{w} \in \mathcal{W}(\textit{G}_{1} \times \textit{G}_{2})} \lambda_{\textit{G}_{1} \times \textit{G}_{2}}(\textit{w}) \,. \end{split}$$

Computation of the nth-order walk kernel

- For the *n*th-order walk kernel we have $\lambda_{G_1 \times G_2}(w) = 1$ if the length of w is n, 0 otherwise.
- Therefore:

$$K_{nth-order}\left(G_{1},\,G_{2}
ight) = \sum_{w \in \mathcal{W}_{n}\left(G_{1} \times G_{2}
ight)} 1$$
 .

• Let A be the adjacency matrix of $G_1 \times G_2$. Then we get:

$$K_{nth-order}(G_1, G_2) = \sum_{i,j} [A^n]_{i,j} = \mathbf{1}^{\top} A^n \mathbf{1}.$$

• Computation in $O(n|G_1||G_2|d_1d_2)$, where d_i is the maximum degree of G_i .

Computation of random and geometric walk kernels

• In both cases $\lambda_G(w)$ for a walk $w = v_1 \dots v_n$ can be decomposed as:

$$\lambda_G(v_1 \ldots v_n) = \lambda^i(v_1) \prod_{i=2}^n \lambda^t(v_{i-1}, v_i).$$

• Let Λ_i be the vector of $\lambda^i(v)$ and Λ_t be the matrix of $\lambda^t(v, v')$:

$$K_{walk}(G_1, G_2) = \sum_{n=1}^{\infty} \sum_{w \in \mathcal{W}_n(G_1 \times G_2)} \lambda^i(v_1) \prod_{i=2}^n \lambda^t(v_{i-1}, v_i)$$
$$= \sum_{n=0}^{\infty} \Lambda_i \Lambda_t^n \mathbf{1}$$
$$= \Lambda_i (I - \Lambda_t)^{-1} \mathbf{1}$$

• Computation in $O(|G_1|^3|G_2|^3)$

Extensions 1: label enrichment

Atom relabebling with the Morgan index

- Compromise between fingerprints and structural keys features.
- Other relabeling schemes are possible (graph coloring).
- Faster computation with more labels (less matches implies a smaller product graph).

Extension 2: Non-tottering walk kernel

Tottering walks

A tottering walk is a walk $w = v_1 \dots v_n$ with $v_i = v_{i+2}$ for some i.

- Tottering walks seem irrelevant for many applications
- Focusing on non-tottering walks is a way to get closer to the path kernel (e.g., equivalent on trees).

Computation of the non-tottering walk kernel (Mahé et al., 2005)

- Second-order Markov random walk to prevent tottering walks
- Written as a first-order Markov random walk on an augmented graph
- Normal walk kernel on the augmented graph (which is always a directed graph).

Extension 3: Subtree kernels

Example: Tree-like fragments of molecules

Computation of the subtree kernel

- Like the walk kernel, amounts to compute the (weighted) number of subtrees in the product graph.
- Recursion: if $\mathcal{T}(v, n)$ denotes the weighted number of subtrees of depth n rooted at the vertex v, then:

$$\mathcal{T}(v,n+1) = \sum_{R \subset \mathcal{N}(v)} \prod_{v' \in R} \lambda_t(v,v') \mathcal{T}(v',n) \,,$$

where $\mathcal{N}(v)$ is the set of neighbors of v.

• Can be combined with the non-tottering graph transformation as preprocessing to obtain the non-tottering subtree kernel.

Application in chemoinformatics (Mahé et al., 2004)

MUTAG dataset

- aromatic/hetero-aromatic compounds
- high mutagenic activity /no mutagenic activity, assayed in Salmonella typhimurium.
- 188 compouunds: 125 + / 63 -

Results

10-fold cross-validation accuracy

Method	Accuracy
Progol1	81.4%
2D kernel	91.2%

2D Subtree vs walk kernels (Mahé and V., 2009)

Screening of inhibitors for 60 cancer cell lines.

Summary: graph kernels

What we saw

- Kernels do not allow to overcome the NP-hardness of subgraph patterns
- They allow to work with approximate subgraphs (walks, subtrees), in infinite dimension, thanks to the kernel trick
- They give state-of-the-art results

Outline

- Machine learning in bioinformatics
- Linear support vector machines
- Nonlinear SVM and kernels
- SVM for complex data: the case of graphs
- Conclusion

Machine learning in computational biology

- Biology faces a flood of data following the development of high-throughput technologies (sequencing, DNA chips, ...)
- Many problems can be formalized in the framework of machine learning, e.g.:
 - Diagnosis, prognosis
 - Protein annotation
 - Drug discovery, virtual screening
- These data have often complex structures (strings, graphs, high-dimensional vectors) and often require dedicated algorithms.

Support vector machines (SVM)

- A general-purpose algorithm for pattern recognition
- Based on the principle of large margin ("séparateur à vaste marge")
- Linear or nonlinear with the kernel trick
- Control of the regularization / data fitting trade-off with the C parameter
- State-of-the-art performance on many applications

Kernels

- A central ingredient of SVM
- Allows nonlinearity
- Allows to work implicitly in a high-dimensional feature space
- Allows to work with structured data (e.g., graphs)

