Machine learning in bioinformatics

Jean-Philippe Vert Jean-Philippe.Vert@mines.org

Mines ParisTech / Curie Institute / Inserm

Biointelligence symposium, Sophia-Antipolis, July 4, 2011.

Institut Curie - Mines ParisTech - INSERM U900

- A joint lab about "Cancer computational genomics, bioinformatics, biostatistics and epidemiology"
- Located in th Institut Curie, a major hospital and cancer research institute in Europe

Main topics

- Towards better diagnosis, prognosis, and personalized medicine
 - Supervised classification of genomic, transcriptomic, proteomic data; heterogeneous data integration

Towards new drug targets

 Systems biology, reconstruction of gene networks, pathway enrichment analysis, multidimensional phenotyping of cell populations.

Towards new drugs

• Ligand-based virtual screening, in silico chemogenomics.

Introduction

2 Inference of gene regulatory networks

3 Cancer prognosis from DNA copy number variations

Diagnosis and prognosis from gene expression data

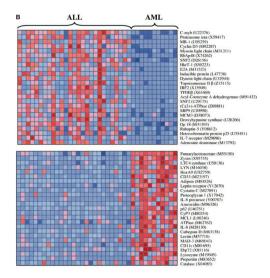
5 Conclusion

Introduction

- 2 Inference of gene regulatory networks
- 3 Cancer prognosis from DNA copy number variations
- Diagnosis and prognosis from gene expression data

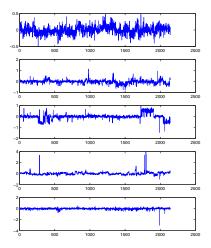
5 Conclusion

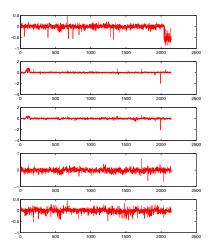
Cancer diagnosis



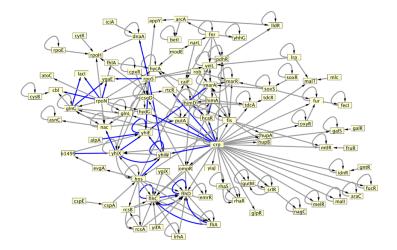
Jean-Philippe Vert (ParisTech)

Cancer prognosis

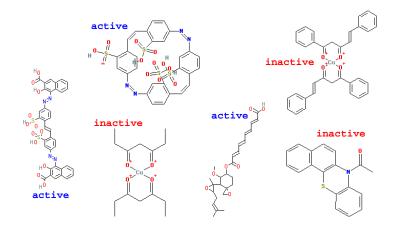




Gene network inference



Virtual screening for drug discovery



NCI AIDS screen results (from http://cactus.nci.nih.gov).

Jean-Philippe Vert (ParisTech)

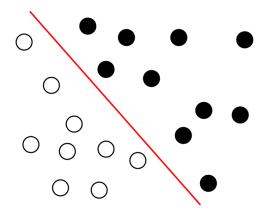
0 0 0 $(\)$

Given a training set of labeled data with...

Iearn a discrimination rule...

... in order to predict the label of new data

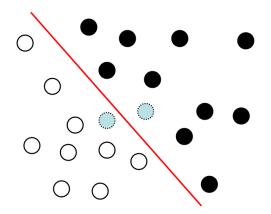
Jean-Philippe Vert (ParisTech)



- Given a training set of labeled data with...
- Iearn a discrimination rule...

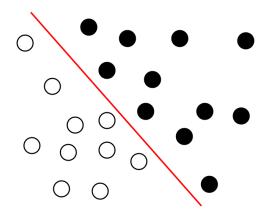
... in order to predict the label of new data

Jean-Philippe Vert (ParisTech)



- Given a training set of labeled data with...
- Iearn a discrimination rule...
- In order to predict the label of new data

Jean-Philippe Vert (ParisTech)



- Given a training set of labeled data with...
- Iearn a discrimination rule...
- In order to predict the label of new data

Jean-Philippe Vert (ParisTech)

Machine learning : tools and applications

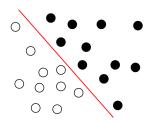
Many applications

Multimedia, image, video, speech recognition, web, social network, online advertising, finance, biology, chemistry

Many tools

Linear discriminant analysis, logistic regression, decision trees, neural networks, support vector machines...

Jean-Philippe Vert (ParisTech)



Genome annotation, systems biology, personalized medicine...

Challenges

- Few samples
- High dimension
- Structured data
- Heterogeneous data
- Prior knowledge
- Fast and scalable implementations
- Interpretable models

Introduction

2 Inference of gene regulatory networks

- 3 Cancer prognosis from DNA copy number variations
- Diagnosis and prognosis from gene expression data

5 Conclusion

Gene expression

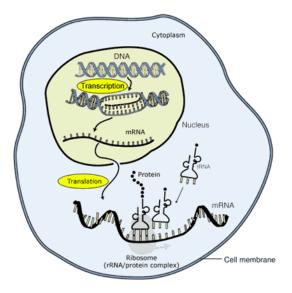
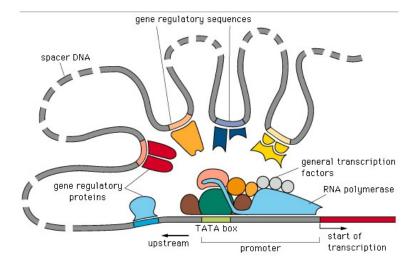
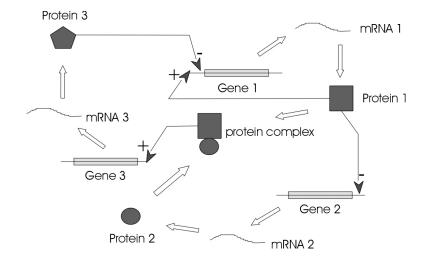


Image adapted from: National Human Genome Research Institute.

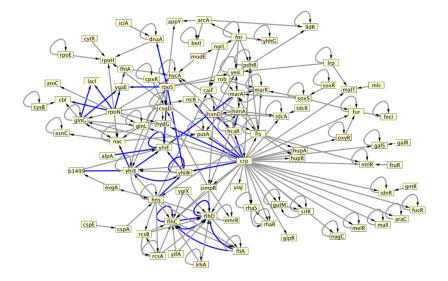
Gene expression regulation



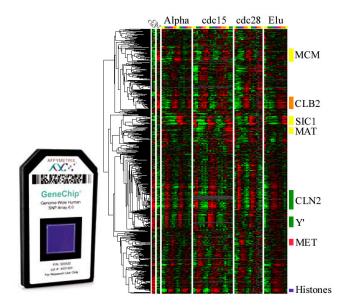
Gene regulatory network



Gene regulatory network of E. coli

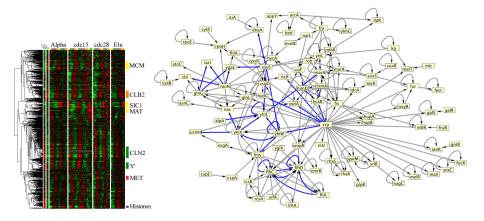


Gene expression data



Jean-Philippe Vert (ParisTech)

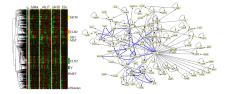
Reconstruction of gene regulatory network from expression data



De novo inference

The problem

Given a set of gene expressions, infer the regulations.



How?

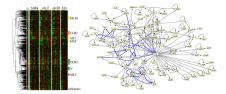
Classical approach: connect "similar" genes

 Machine learning formulation: estimate regulators as the smallest set of TF necessary to predict the expression of the target (using, e.g., Lasso or random forest)

De novo inference

The problem

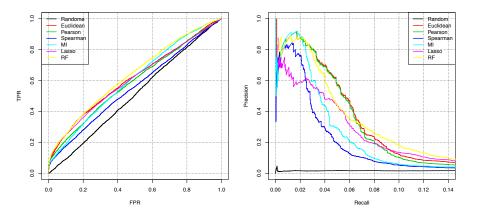
Given a set of gene expressions, infer the regulations.



How?

- Classical approach: connect "similar" genes
- Machine learning formulation: estimate regulators as the smallest set of TF necessary to predict the expression of the target (using, e.g., Lasso or random forest)

Validation



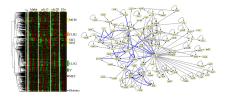
Random forests (Huynh-Thu et al., 2010) and Lasso regression (Haury et al., 2011) ranked 1st and 2nd at the 2010 DREAM5 in silico network inference challence

Jean-Philippe Vert (ParisTech)

Supervised inference

The problem

Given a set of gene expressions AND a set of known regulations, infer missing regulations.



How?

• Local models: for each TF, learn to discriminate the regulated vs non-regulated genes

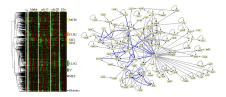
• Global models: learn to discriminate connected vs non-connected TF-target pairs

Jean-Philippe Vert (ParisTech)

Supervised inference

The problem

Given a set of gene expressions AND a set of known regulations, infer missing regulations.



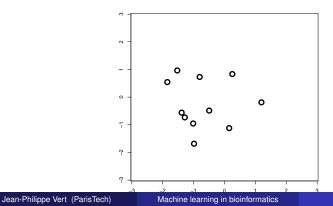
How?

- Local models: for each TF, learn to discriminate the regulated vs non-regulated genes
- Global models: learn to discriminate connected vs non-connected TF-target pairs

Jean-Philippe Vert (ParisTech)

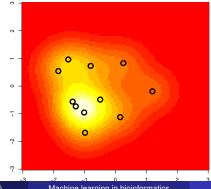
Example: one-class learning approach for local model

- For a given TF, let P ⊂ [1, n] be the set of genes known to be regulated by it
- From the expression profiles (X_i)_{i∈P}, estimate a score s(X) to assess which expression profiles X are similar
- Then classify the genes not in P by decreasing score



Example: one-class learning approach for local model

- For a given TF, let $P \subset [1, n]$ be the set of genes known to be regulated by it
- From the expression profiles (X_i)_{i∈P}, estimate a score s(X) to assess which expression profiles X are similar
- Then classify the genes not in P by decreasing score

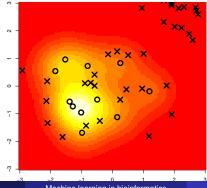


Jean-Philippe Vert (ParisTech)

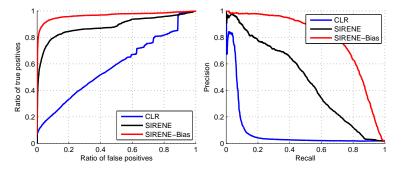
Biointelligence 2011 23/47

Example: one-class learning approach for local model

- For a given TF, let P ⊂ [1, n] be the set of genes known to be regulated by it
- From the expression profiles (X_i)_{i∈P}, estimate a score s(X) to assess which expression profiles X are similar
- Then classify the genes not in P by decreasing score



Validation

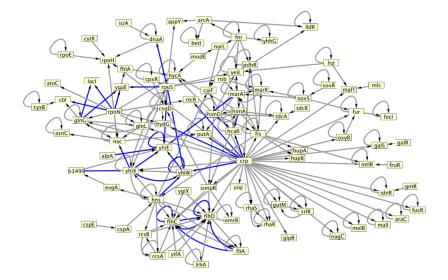


Method	Recall at 60%	Recall at 80%
SIRENE	44.5%	17.6%
CLR	7.5%	5.5%
Relevance networks	4.7%	3.3%
ARACNe	1%	0%
Bayesian network	1%	0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)

Jean-Philippe Vert (ParisTech)

Application: predicted regulatory network (E. coli)



Introduction

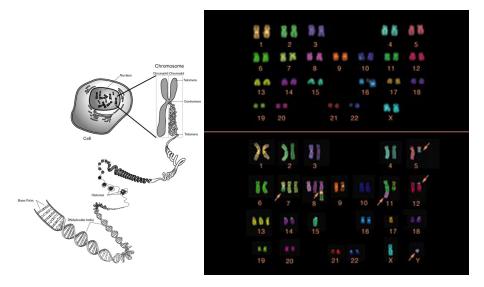
2 Inference of gene regulatory networks

3 Cancer prognosis from DNA copy number variations

Diagnosis and prognosis from gene expression data

5 Conclusion

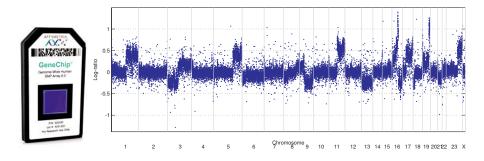
Chromosomic aberrations in cancer

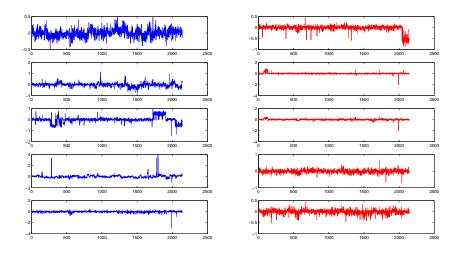


Comparative Genomic Hybridization (CGH)

Motivation

- Comparative genomic hybridization (CGH) data measure the DNA copy number along the genome
- Very useful, in particular in cancer research to observe systematically variants in DNA content





Aggressive (left) vs non-aggressive (right) melanoma

Jean-Philippe Vert (ParisTech)

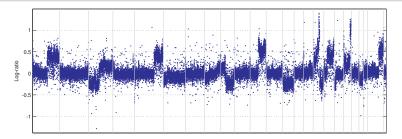
CGH array classification

Prior knowledge

• For a CGH profile $x \in \mathbb{R}^{p}$, we focus on linear classifiers, i.e., the sign of :

$$f_{\beta}(\mathbf{x}) = \beta^{\top} \mathbf{x}$$
.

- We expect β to be
 - sparse : not all positions should be discriminative
 - piecewise constant : within a selected region, all probes should contribute equally



Jean-Philippe Vert (ParisTech)

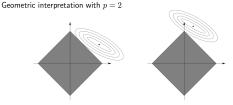
Fused lasso for supervised classification

 Idea: find the vector of weights β that best discriminates the aggressive vs non-aggressive, subject to the constraints that it should be sparse and piecewise constant

• Mathematically:

$$\min_{\beta \in \mathbb{R}^{p}} \left\{ \sum_{i=1}^{n} \max\left(1 - y_{i}\beta^{\top}x_{i}, 0\right) + \lambda_{1} \sum_{i=1}^{p} |\beta_{i}| + \lambda_{2} \sum_{i=1}^{p-1} |\beta_{i+1} - \beta_{i}| \right\}$$

 Computationnally: this is convex optimization problem that can be solved very efficiently

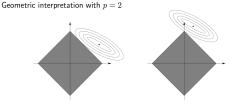


Fused lasso for supervised classification

- Idea: find the vector of weights β that best discriminates the aggressive vs non-aggressive, subject to the constraints that it should be sparse and piecewise constant
- Mathematically:

$$\min_{\beta \in \mathbb{R}^p} \left\{ \sum_{i=1}^n \max\left(1 - y_i \beta^\top x_i, 0\right) + \lambda_1 \sum_{i=1}^p |\beta_i| + \lambda_2 \sum_{i=1}^{p-1} |\beta_{i+1} - \beta_i| \right\}$$

 Computationnally: this is convex optimization problem that can be solved very efficiently

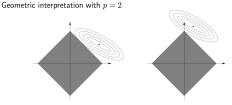


Fused lasso for supervised classification

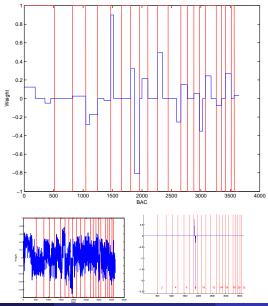
- Idea: find the vector of weights β that best discriminates the aggressive vs non-aggressive, subject to the constraints that it should be sparse and piecewise constant
- Mathematically:

$$\min_{\beta \in \mathbb{R}^{p}} \left\{ \sum_{i=1}^{n} \max\left(1 - y_{i}\beta^{\top}x_{i}, 0\right) + \lambda_{1} \sum_{i=1}^{p} |\beta_{i}| + \lambda_{2} \sum_{i=1}^{p-1} |\beta_{i+1} - \beta_{i}| \right\}$$

 Computationnally: this is convex optimization problem that can be solved very efficiently



Example: predicting metastasis in melanoma

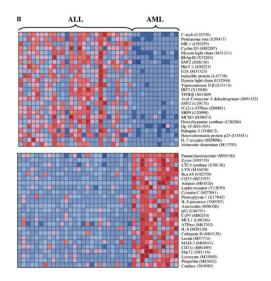


Jean-Philippe Vert (ParisTech)

Introduction

- 2 Inference of gene regulatory networks
- 3 Cancer prognosis from DNA copy number variations
- Diagnosis and prognosis from gene expression data

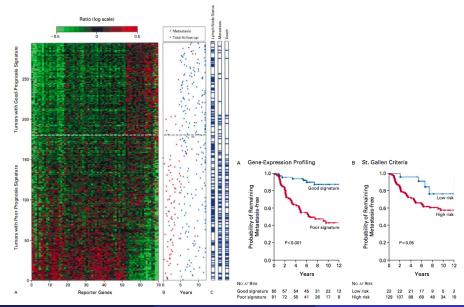
5 Conclusion



Jean-Philippe Vert (ParisTech)

Biointelligence 2011 34 / 47

Prognosis

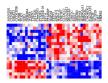


Jean-Philippe Vert (ParisTech)

Gene selection, molecular signature

The idea

- We look for a limited set of genes that are sufficient for prediction.
- Selected genes should inform us about the underlying biology



But:

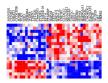
- We often observe little stability in the genes selected...
- Is gene selection the most biologically relevant hypothesis?
- What about thinking instead of "pathways" or "modules" signatures?

Jean-Philippe Vert (ParisTech)

Gene selection, molecular signature

The idea

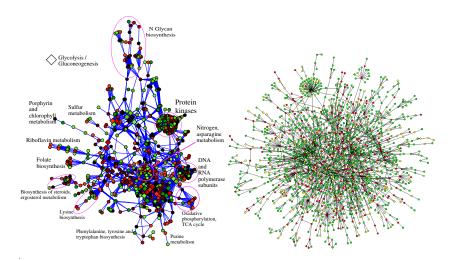
- We look for a limited set of genes that are sufficient for prediction.
- Selected genes should inform us about the underlying biology



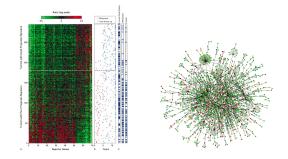
But:

- We often observe little stability in the genes selected...
- Is gene selection the most biologically relevant hypothesis?
- What about thinking instead of "pathways" or "modules" signatures?

Jean-Philippe Vert (ParisTech)



Idea 1: graph-based SVM



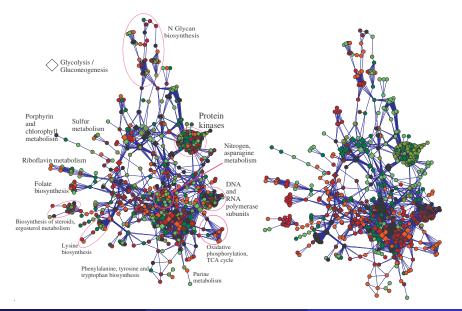
Hypothesis 1

Genes near each other on the graph should have similar weigths.

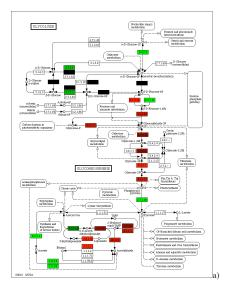
$$\min_{\beta} R(\beta) + \lambda \sum_{i \sim j} (\beta_i - \beta_j)^2$$

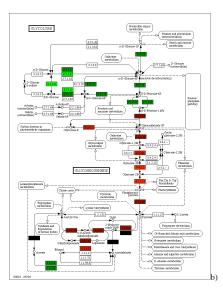
Rapaport et al. (2007)

Classifiers



Classifiers



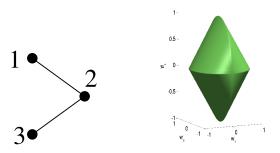


Idea 2: graph-based lasso

Hypothesis 2

Selecte genes which tend to be connected on the graph

$$\min_{\beta} R(\beta) + \lambda \sup_{\alpha \in \mathbb{R}^{p}: \forall i \sim j, \|\alpha_{i}^{2} + \alpha_{j}^{2}\| \leq 1} \alpha^{\top} \beta.$$

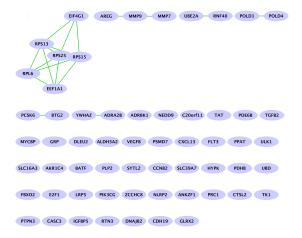


Breast cancer data

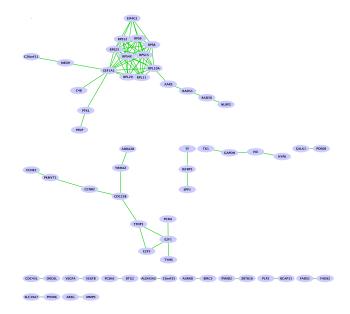
- Gene expression data for 8, 141 genes in 295 breast cancer tumors.
- Performance

Метнор	ℓ_1	$\Omega_{graph}(.)$
Error	0.39 ± 0.04	$\textbf{0.36} \pm \textbf{0.01}$
AV. SIZE C.C.	1.03	1.30

Classical lasso signature



Graph Lasso signature



Jean-Philippe Vert (ParisTech)

Biointelligence 2011 44 / 47

Introduction

- 2 Inference of gene regulatory networks
- 3 Cancer prognosis from DNA copy number variations
- Diagnosis and prognosis from gene expression data

5 Conclusion

- Machine learning offers many powerful tools to learn predictive models from large sets of complex data
- Specific developments are required to solve complex problems that arise in bio-informatics
- Requires interdisciplinary collaborations to incorporate expert knowledge at the heart of learning algorithms
- Many other applications not covered in this presentation!

Acknowledgements!

Franck Rapaport (MSKCC), Emmanuel Barillot, Andrei Zynoviev, Kevin Bleakley (INRIA), Fantine Mordelet, Anne-Claire Haury, Laurent Jacob (UC Berkeley) Guillaume Obozinski (INRIA)

