Machine learning and feature selection in bioinformatics

Jean-Philippe Vert Jean-Philippe.Vert@mines.org

Mines ParisTech / Curie Institute / Inserm

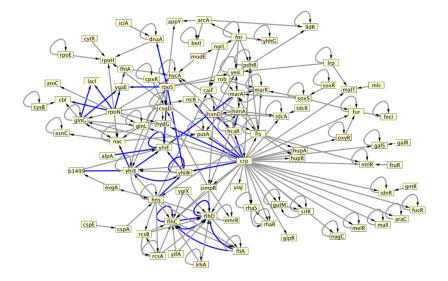
Machine Learning for Neuroimaging workshop, Marseille, Nov 8-9, 2011.

Inference of gene regulatory networks

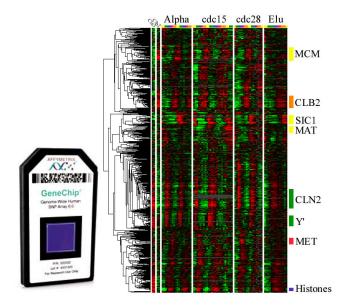
2 Diagnosis and prognosis from gene expression data

2 Diagnosis and prognosis from gene expression data

Gene regulatory network (GRN) of E. coli



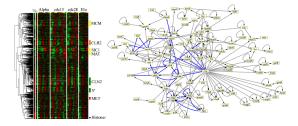
Gene expression data



Jean-Philippe Vert (ParisTech)

GRN inference (de novo)

Given a set of gene expressions, infer the regulations.



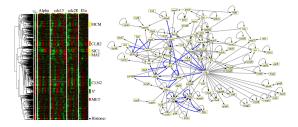
How?

- Model-based (dynamic systems)
- (Dynamic) Bayesian networks
- Similarity-based
- Feature selection

Jean-Philippe Vert (ParisTech)

GRN inference (de novo)

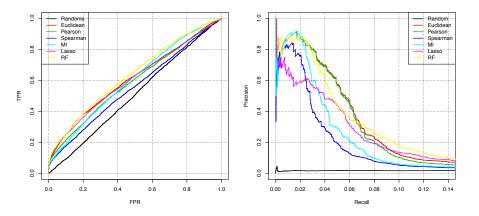
Given a set of gene expressions, infer the regulations.



How?

- Model-based (dynamic systems)
- (Dynamic) Bayesian networks
- Similarity-based
- Feature selection

Evaluation (DREAM challenge)



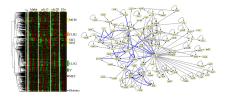
- Best results obtained by feature selection methods
- Bootstrap-based methods (RF, stability selection)
- Overall performance very disappointing (difficult problem...)

Jean-Philippe Vert (ParisTech)

Supervised inference

The problem

Given a set of gene expressions AND a set of known regulations, infer missing regulations.



How?

• Local models: for each TF, learn to discriminate the regulated vs non-regulated genes

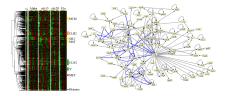
• Global models: learn to discriminate connected vs non-connected TF-target pairs

Jean-Philippe Vert (ParisTech)

Supervised inference

The problem

Given a set of gene expressions AND a set of known regulations, infer missing regulations.



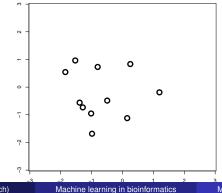
How?

- Local models: for each TF, learn to discriminate the regulated vs non-regulated genes
- Global models: learn to discriminate connected vs non-connected TF-target pairs

Jean-Philippe Vert (ParisTech)

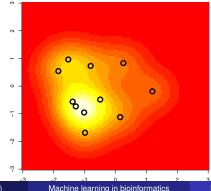
Example: one-class learning approach for local model

- For a given TF, let P ⊂ [1, n] be the set of genes known to be regulated by it
- From the expression profiles (X_i)_{i∈P}, estimate a score s(X) to assess which expression profiles X are similar
- Then classify the genes not in P by decreasing score



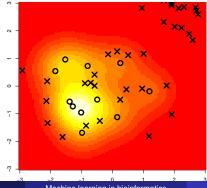
Example: one-class learning approach for local model

- For a given TF, let $P \subset [1, n]$ be the set of genes known to be regulated by it
- From the expression profiles (X_i)_{i∈P}, estimate a score s(X) to assess which expression profiles X are similar
- Then classify the genes not in P by decreasing score

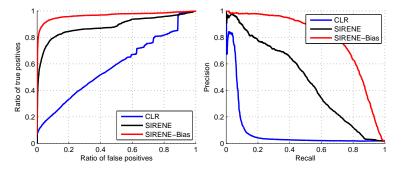


Example: one-class learning approach for local model

- For a given TF, let P ⊂ [1, n] be the set of genes known to be regulated by it
- From the expression profiles (X_i)_{i∈P}, estimate a score s(X) to assess which expression profiles X are similar
- Then classify the genes not in P by decreasing score



Validation



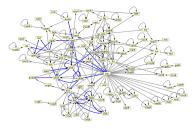
Method	Recall at 60%	Recall at 80%
SIRENE	44.5%	17.6%
CLR	7.5%	5.5%
Relevance networks	4.7%	3.3%
ARACNe	1%	0%
Bayesian network	1%	0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)

Jean-Philippe Vert (ParisTech)

Lessons learned

- Many ways to formalize the GRN inference problem (structure learning)
- De novo inference is best solved by feature selection
- Supervised inference better when the structure is partially known
- Simple local models outperform structured output learning
- Performance remains low. Still an open problem!

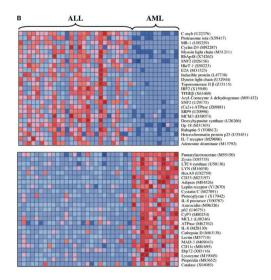


2 Diagnosis and prognosis from gene expression data

Jean-Philippe Vert (ParisTech)

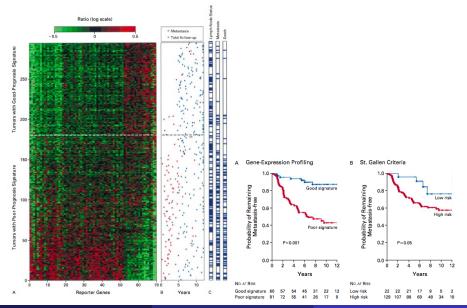
Machine learning in bioinformatics

ML for Neuroimagine 2011 12 / 28



Jean-Philippe Vert (ParisTech)

Prognosis



Jean-Philippe Vert (ParisTech)

Machine learning in bioinformatics

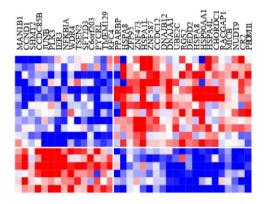
ML for Neuroimagine 2011

14/28

Gene selection, molecular signature

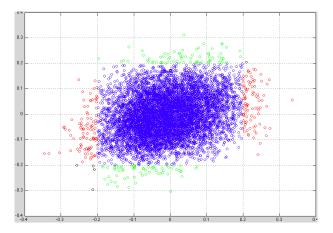
The idea

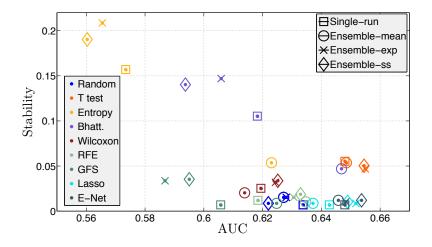
- We look for a limited set of genes that are sufficient for prediction.
- Selected genes should inform us about the underlying biology



But... unstability of molecular signatures

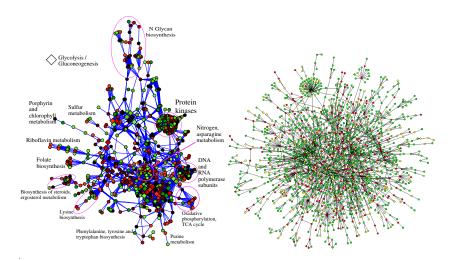
- Wang dataset: *n* = 286, *p* = 8141
- Pearson correlation with the output on 2 random subsamples of 143 samples:





Haury et al. (2011)

Jean-Philippe Vert (ParisTech)



Jean-Philippe Vert (ParisTech)

Gene networks and expression data

Motivation

 Basic biological functions usually involve the coordinated action of several proteins:

- Formation of protein complexes
- Activation of metabolic, signalling or regulatory pathways
- We know these groups through functional groups and protein networks

Shrinkage estimators with prior knowledge

 $\min_{\beta} \boldsymbol{R}(\beta) + \lambda \Omega(\beta)$

How to design penalties $\Omega(\beta)$ to encode the following hypotheses:

- Connected genes on a network should have similar weights
- Select few genes that are connected or belong to same predefined functional groups

Gene networks and expression data

Motivation

- Basic biological functions usually involve the coordinated action of several proteins:
 - Formation of protein complexes
 - Activation of metabolic, signalling or regulatory pathways
- We know these groups through functional groups and protein networks

Shrinkage estimators with prior knowledge

 $\min_{\beta} \boldsymbol{R}(\beta) + \lambda \Omega(\beta)$

How to design penalties $\Omega(\beta)$ to encode the following hypotheses:

- Connected genes on a network should have similar weights
- Select few genes that are connected or belong to same predefined functional groups

Hypothesis 1: connected genes on a network should have similar weights

Smooth weights on the graph

$$\Omega(\beta) = \sum_{i \sim j} (\beta_i - \beta_j)^2$$

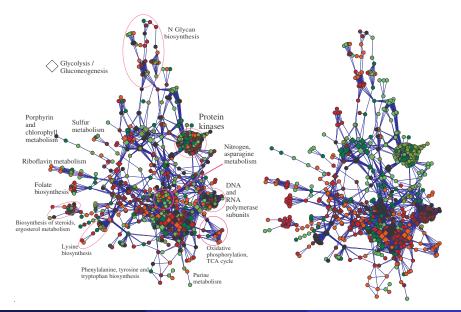
• Gene selection + smooth on the graph

$$\Omega(\beta) = \sum_{i \sim j} (\beta_i - \beta_j)^2 + \sum_{i=1}^{p} |\beta_i|$$

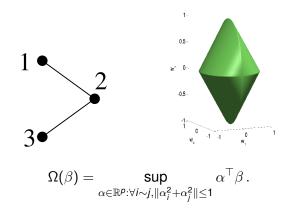
Gene selection + Piecewise constant on the graph

$$\Omega(\beta) = \sum_{i \sim j} |\beta_i - \beta_j| + \sum_{i=1}^p |\beta_i|$$

Illustration



Hypotheses 2: select genes which are connected of belong to the same functional groups



• Graph lasso:

$$\Omega_{ ext{graph lasso}}(extbf{w}) = \sum_{i\sim j} \sqrt{ extbf{w}_i^2 + extbf{w}_j^2} \,.$$

constrains the sparsity, not the values

Graph kernel

$$\Omega_{ ext{graph kernel}}(extbf{w}) = \sum_{i \sim j} (extbf{w}_i - extbf{w}_j)^2 \,.$$

constrains the values (smoothness), not the sparsity

Breast cancer data

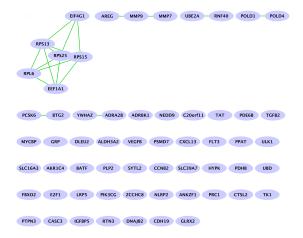
- Gene expression data for 8, 141 genes in 295 breast cancer tumors.
- Canonical pathways from MSigDB containing 639 groups of genes, 637 of which involve genes from our study.

Метнор	ℓ_1	$\Omega_{\text{overlap}}^{\mathcal{G}}\left(. ight)$
Error	$\textbf{0.38} \pm \textbf{0.04}$	$\textbf{0.36} \pm \textbf{0.03}$
Mean ♯ path.	130	30

Graph on the genes.

Метнор	ℓ_1	$\Omega_{graph}(.)$
Error	0.39 ± 0.04	0.36 ± 0.01
AV. SIZE C.C.	1.03	1.30

Classical lasso signature

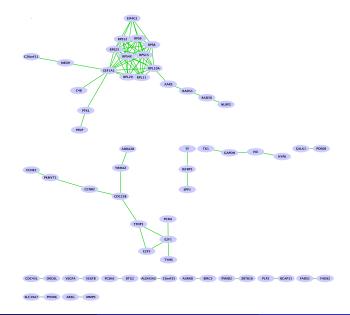


Jean-Philippe Vert (ParisTech)

Machine learning in bioinformatics

25/28

Graph Lasso signature



Jean-Philippe Vert (ParisTech)

ML for Neuroimagine 2011 26 / 28

- Very challenging problems: high dimensions, few samples, complex problems (supervised classification, structure inference)
- Methods that "work" in practice find the best trade-off between model complexity ("bias") and ability to learn from data ("variance")
- Methods that work in theory and on toy examples do not always work on real data (and vice-versa)...
- Shrinkage methods for structured sparsity is promising...
- ... but difficult to reconcile accuracy and interpretation
- Stability may be a useful empirical proxy to assess the trust we can have in selected features

Franck Rapaport (MSKCC), Emmanuel Barillot, Andrei Zynoviev, Kevin Bleakley (INRIA), Fantine Mordelet (Duke), Anne-Claire Haury, Laurent Jacob (UC Berkeley) Guillaume Obozinski (INRIA)