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Chromosomic aberrations in cancer
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Comparative Genomic Hybridization (CGH)
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Can we identify breakpoints and "smooth" each
profile?
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Can we detect frequent breakpoints?
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A collection of bladder tumour copy number profiles.
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DNA→ RNA→ protein

CGH shows the (static) DNA
Cancer cells have also abnormal (dynamic) gene expression (=
transcription)
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Can we identify the cancer subtype? (diagnosis)
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Can we predict the future evolution? (prognosis)
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The problem
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Let Y ∈ Rp the signal
We want to find a piecewise constant approximation Û ∈ Rp with
at most k change-points.

J.P Vert (ParisTech) Prior knowlege in ML Oxford 12 / 61



The problem

0 100 200 300 400 500 600 700 800 900 1000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Let Y ∈ Rp the signal
We want to find a piecewise constant approximation Û ∈ Rp with
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An optimal solution?
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We can define an "optimal" piecewise constant approximation
Û ∈ Rp as the solution of

min
U∈Rp

‖Y − U ‖2 such that
p−1∑

i=1

1 (Ui+1 6= Ui) ≤ k

This is an optimization problem over the
(p

k

)
partitions...

Dynamic programming finds the solution in O(p2k) in time and
O(p2) in memory
But: does not scale to p = 106 ∼ 109...
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Promoting sparsity with the `1 penalty

The `1 penalty (Tibshirani, 1996; Chen et al., 1998)
If R(β) is convex and "smooth", the solution of

min
β∈Rp

R(β) + λ

p∑

i=1

|βi |

is usually sparse.
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Promoting piecewise constant profiles penalty

The total variation / variable fusion penalty
If R(β) is convex and "smooth", the solution of

min
β∈Rp

R(β) + λ

p−1∑

i=1

|βi+1 − βi |

is usually piecewise constant (Rudin et al., 1992; Land and Friedman,
1996).

Proof:
Change of variable ui = βi+1 − βi , u0 = β1

We obtain a Lasso problem in u ∈ Rp−1

u sparse means β piecewise constant
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TV signal approximator

min
β∈Rp

‖Y − β ‖2 such that
p−1∑

i=1

|βi+1 − βi | ≤ µ

Adding additional constraints does not change the change-points:∑p
i=1 |βi | ≤ ν (Tibshirani et al., 2005; Tibshirani and Wang, 2008)∑p
i=1 β

2
i ≤ ν (Mairal et al. 2010)
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TV signal approximator as dichotomic segmentation

2 Problem formulation

Let Y = (Y1, . . . , Yn) 2 Rn a signal that we wish to approximate by a piecewise-constant signal
µ = (µ1, . . . , µn). We consider the following formulation [2]:

min
µ1,...,µn

1

2

nX

i=1

(Yi � µi)
2 + �

n�1X

i=1

| µi+1 � µi | . (1)

As shown by [1, 4], from the solution of (1) we can easily deduce the solution of the FLSA:

min
µ1,...,µn

1

2

nX

i=1

(Yi � µi)
2 + �

n�1X

i=1

| µi+1 � µi | + �2

nX

i=1

| µi | , (2)

as well as the solution of the FLSA with quadratic penalty:

min
µ1,...,µn

1

2

nX

i=1

(Yi � µi)
2 + �

n�1X

i=1

| µi+1 � µi | + �2

nX

i=1

| µi | + �3

nX

i=1

µ2
i . (3)

In the sequel we therefore focus only on the problem (1). [1] proposed to solve it for each value of �
using a coordinate descent method. [2, 4] proposed a faster homotopy method to compute the solutions
of (1) for all values of � leading to up to k change points in O(nk), by reformulating it as a LASSO
problem and using the LARS algorithm. Below we show that we can get the same result much faster,
on average in O(n log k), by showing that (1) can in fact be formulated as an iterative dichotomic
segmentation method.

3 Dichotomic segmentation

A general dichotomic segmentation strategy requires:

• A representation of any intervals I of [1, n].

• A function to split any interval I = [u, v] of length > 1 into two intervals IL(I) = [u, k] and
IR(I) = [k + 1, v], and a function �(I) 2 R+ which represents the gain resulting from splitting I
into IL(I� and IR(I).

We will investigate different function IL(I), IR(I) and �(I). The dichotomic segmentation method,
presented in Algorithm 1, then proceeds as follows: starting from the full interval [i, n] as a trivial
partition of [1, n] into intervals, and then iteratively refine any partition P of [1, n] into p intervals
P = {I1, . . . , Ip} by splitting the interval I⇤ 2 P with maximal �(I⇤) into the two intervals IL(I⇤) and
IR(I⇤).

Algorithm 1 Greedy dichotomic segmentation
Require: k number of intervals, �(I) gain function to split an interval I into IL(I), IR(I)

1: I0 represents the interval [1, n]
2: P = {I0}
3: for i = 1 to k do
4: I⇤  arg max

I2P
� (I⇤)

5: P  P\ {I⇤}
6: P  P [ {IL (I⇤) , IR (I⇤)}
7: end for
8: return P

2Theorem
TV signal approximator performs "greedy" dichotomic segmentation

(V. and Bleakley, 2010; see also Hoefling, 2009)
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Solving TV signal approximator

min
β∈Rp

‖Y − β ‖2 such that
p−1∑

i=1

|βi+1 − βi | ≤ µ

QP with sparse linear constraints in O(p2) -> 135 min for p = 105

(Tibshirani and Wang, 2008)
Coordinate descent-like method O(p)? -> 3s s for p = 105

(Friedman et al., 2007)
For all µ with the LARS in O(pK ) (Harchaoui and Levy-Leduc,
2008)
For all µ in O(p ln p) (Hoefling, 2009)
For the first K change-points in O(p ln K ) (Bleakley and V., 2010)
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Speed trial : 2 s. for K = 100, p = 107

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

signal length

s
e

c
o

n
d

s

Speed for K=1, 10, 1e2, 1e3, 1e4, 1e5

J.P Vert (ParisTech) Prior knowlege in ML Oxford 19 / 61



Outline

1 Motivations

2 Finding multiple change-points in a single profile

3 Finding multiple change-points shared by many signals

4 Learning molecular classifiers with network information

5 Conclusion

J.P Vert (ParisTech) Prior knowlege in ML Oxford 20 / 61



The problem
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Let Y ∈ Rp×n the n signals of length p
We want to find a piecewise constant approximation Û ∈ Rp×n

with at most k change-points.
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"Optimal" segmentation by dynamic programming
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Define the "optimal" piecewise constant approximation Û ∈ Rp×n

of Y as the solution of

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑

i=1

1
(
Ui+1,• 6= Ui,•

)
≤ k

DP finds the solution in O(p2kn) in time and O(p2) in memory
But: does not scale to p = 106 ∼ 109...
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)
If groups of covariates are likely to be selected together, the
`1/`2-norm induces sparse solutions at the group level:

Ωgroup(w) =
∑

g

‖wg‖2

Ω(w1,w2,w3) = ‖(w1,w2)‖2 + ‖w3‖2
=
√

w2
1 + w2

2 +
√

w2
3

J.P Vert (ParisTech) Prior knowlege in ML Oxford 23 / 61



TV approximator for many signals

Replace

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑

i=1

1
(
Ui+1,• 6= Ui,•

)
≤ k

by

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑

i=1

wi‖Ui+1,• − Ui,•‖ ≤ µ

Questions
Practice: can we solve it efficiently?

Theory: does it benefit from increasing p (for n fixed)?
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TV approximator as a group Lasso problem

Make the change of variables:

γ = U1,• ,

βi,• = wi
(
Ui+1,• − Ui,•

)
for i = 1, . . . ,p − 1 .

TV approximator is then equivalent to the following group Lasso
problem (Yuan and Lin, 2006):

min
β∈R(p−1)×n

‖ Ȳ − X̄β ‖2 + λ

p−1∑

i=1

‖βi,• ‖ ,

where Ȳ is the centered signal matrix and X̄ is a particular
(p − 1)× (p − 1) design matrix.
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TV approximator implementation

min
β∈R(p−1)×n

‖ Ȳ − X̄β ‖2 + λ

p−1∑

i=1

‖βi,• ‖ ,

Theorem
The TV approximator can be solved efficiently:

approximately with the group LARS in O(npk) in time and O(np)
in memory
exactly with a block coordinate descent + active set method in
O(np) in memory
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Proof: computational tricks...

Although X̄ is (p − 1)× (p − 1):
For any R ∈ Rp×n, we can compute C = X̄>R in O(np) operations
and memory
For any two subset of indices A =

(
a1, . . . ,a|A|

)
and

B =
(
b1, . . . ,b|B|

)
in [1,p − 1], we can compute X̄>•,AX̄•,B in

O (|A||B|) in time and memory
For any A =

(
a1, . . . ,a|A|

)
, set of distinct indices with

1 ≤ a1 < . . . < a|A| ≤ p − 1, and for any |A| × n matrix R, we can

compute C =
(

X̄>•,AX̄•,A
)−1

R in O(|A|n) in time and memory
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Speed trial

so the slope gives the exponent of the complexity (resp. n, p and k). For the weighted group fused LARS,
linearity is clearest for k, whereas for n and p, the curves are initially sub-linear, then slightly super-linear for
extremely large values of n and p. As these time trials reach out to the practical limits of current technology,
we see that this is not critical - on average, even the longest trials here took less than 200 seconds. The
weighted fused group Lasso results are perhaps more interesting, as it is harder to predict in advance the
practical time performance of the algorithm. Surprisingly, when increasing n (p and k fixed) or increasing
p (n and k fixed), the group fused Lasso eventually becomes as fast the iterative, deterministic group fused
LARS. This suggests that at the limits of current technology, if k is small (say, less than 10), the potentially
superior performance of the Lasso version (see later) may not even be punished by a slower run-time with
respect to the LARS version. We suggest that this may be due to the Lasso optimization problem becoming
relatively “easier” to solve when n or p increases, as we observed that the Lasso algorithm converged quickly
to its final set of change-points. The main difference between the Lasso and LARS performance appears
when the number of change-points increases: with respective empirical complexities cubic and linear in k,
as predicted by the theoretical analysis, Lasso is already 1,000 times slower than LARS when we seek 100
change-points.
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Figure 2: Speed trials for group fused LARS (top row) and Lasso (bottom row). Left column: varying
n, with fixed p = 10 and k = 10; center column: varying p, with fixed n = 1000 and k = 10; right column:
varying k, with fixed n = 1000 and p = 10. Figure axes are log-log. Results are averaged over 100 trials.

6.2 Accuracy for detection of a single change-point

Next, we tested empirically the accuracy the group fused Lasso for detecting a single change-point. We
first generated multidimensional profiles of dimension p, with a single jump of height 1 at a position u, for
different values of p and u. We added to the signals an i.i.d. Gaussian noise with variance σ̃2

α = 10.78,
the critical value corresponding to α = 0.8 in Theorem 2. We ran 1000 trials for each value of u and p,
and recorded how often the group fused Lasso with or without weights correctly identified the change-point.
According to Theorem 2, we expect that, for the unweighted group fused Lasso, for 50 ≤ u < 80 there is
convergence in accuracy to 1 when p increases, and for u > 80, convergence in accuracy to zero. This is
indeed what is seen in Figure 3 (left panel), with u = 80 the limit case between the two different modes of
convergence. The center panel of Figure 3 shows that when the default weights (5) are added, convergence
in accuracy to 1 occurs across all u, as predicted by Theorem 3. In addition, the right-hand-side panel
of Figure 3 shows results for the same trials except that change-point locations can vary uniformly in the
interval u ± 2. We see that, as predicted by Theorem 4, the accuracy of the weighted group fused Lasso

12
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Consistency for a single change-point

Suppose a single change-point:
at position u = αp
with increments (βi)i=1,...,n s.t. β̄2 = limk→∞

1
n
∑n

i=1 β
2
i

corrupted by i.i.d. Gaussian noise of variance σ2
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Does the TV approximator correctly estimate the first change-point as
p increases?
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Consistency of the unweighted TV approximator

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑

i=1

‖Ui+1,• − Ui,•‖ ≤ µ

Theorem
The unweighted TV approximator finds the correct change-point with
probability tending to 1 (resp. 0) as n→ +∞ if σ2 < σ̃2

α (resp.
σ2 > σ̃2

α), where

σ̃2
α = pβ̄2

(1− α)2(α− 1
2p )

α− 1
2 − 1

2p

.

correct estimation on [pε,p(1− ε)] with ε =
√

σ2

2pβ̄2 + o(p−1/2) .

wrong estimation near the boundaries
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Consistency of the weighted TV approximator

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑

i=1

wi‖Ui+1,• − Ui,•‖ ≤ µ

Theorem

The weighted TV approximator with weights

∀i ∈ [1,p − 1] , wi =

√
i(p − i)

p

correctly finds the first change-point with probability tending to 1 as
n→ +∞.

we see the benefit of increasing n
we see the benefit of adding weights to the TV penalty
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Proof sketch

The first change-point î found by TV approximator maximizes
Fi = ‖ ĉi,• ‖2, where

ĉ = X̄>Ȳ = X̄>X̄β∗ + X̄>W .

ĉ is Gaussian, and Fi is follows a non-central χ2 distribution with

Gi =
EFi

p
=

i(p − i)
pw2

i
σ2 +

β̄2

w2
i w2

u p2
×
{

i2 (p − u)2 if i ≤ u ,
u2 (p − i)2 otherwise.

We then just check when Gu = maxi Gi
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Consistency for a single change-point
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Figure 3: Single change-point accuracy for the group fused Lasso. Accuracy as a function of the number
of profiles p when the change-point is placed in a variety of positions u = 50 to u = 90 (left and centre
plots, resp. unweighted and weighted group fused Lasso), or: u = 50±2 to u = 90±2 (right plot, weighted
with varying change-point location), for a signal of length 100.

remains robust against fluctuations in the exact change-point location.

6.3 Accuracy for detecting multiple change-points

To investigate the potential for extending the results to the case of many shared change-points, we further
simulated profiles of length n = 100 with a change-point at all of positions 10, 20, . . . , 90. We consider
dimensions p between 1 and 500. Jumps at each change-point of each profile were drawn from a Gaussian
with mean 0 and variance 1; we then added centered Gaussian noise with σ2 ∈ {0.05, 0.2, 1} to each
position in each profile. For each value of p and σ2, we ran one hundred trials of both implementations, with
or without weights, and recorded the accuracy of each method, defined as the percentage of trials where the
first 9 change-points detected by the method are exactly the 9 true change-points. Results are presented in
Figure 4 (from left to right, resp. σ2 = 0.05, 0.2, 1). Clearly, the group fused Lasso outperforms the group
fused LARS, and the weighted version of each algorithm outperforms the unweighted version. Although
the group LARS is usually considered a reliable alternative to the exact group Lasso [21], this experiment
shows that the exact optimization by block coordinate descent may be worth the computational burden if
one is interested in accurate group selection. It also demonstrates that, as we conjectured in Section 5.3, the
group fused Lasso can consistently estimate multiple change-points as the number of profiles increases.

6.4 Application to gain and loss detection

We now consider a possible application of our method for the detection of regions with frequent gains
(positive values) and losses (negative values) among a set of DNA copy number profiles, measured by
array comparative genomic hybridization (aCGH) technology [27]. We propose a two-step strategy for
this purpose: first, find an adequate joint segmentation of the signals; then, check the presence of gain or

13
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Estimation of more change-points?
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Figure 4: Multiple change-point accuracy. Accuracy as a function of the number of profiles p when
change-points are placed at the nine positions {10, 20, . . . , 90} and the variance σ2 of the centered Gaussian
noise is either 0.05 (left), 0.2 (center) and 1 (right). The profile length is 100.

loss on each interval of the segmentation by summarizing each profile by its average value on the interval.
Note that we do not assume that all profiles share exactly the same change-points, but merely see the joint
segmentation as an adaptive way to reduce the dimension and remove noise from data.

In practice, we used group fused LARS on each chromosome to identify a set of 100 candidate change-
points, and selected a subset of them by post-processing as described in Section 5.4. Then, in each piecewise-
constant interval between successive shared change-points, we calculate the mean of the positive segments
(shown in green in Figures 5(a) and 6(c)) and the mean of the negative segments (shown in red). The larger
the mean of the positive segments, the more likely we are to believe that a region harbors an important
common gain; the reasoning is analogous for important common losses and the mean of the negative seg-
ments. Obviously, many other statistical tests could be carried out to detect frequent gains and losses on
each segment, once the joint segmentation is performed.

We compare this method for detecting regions of gain and loss with the state-of-the-art H-HMMmethod
[27], which has been shown to outperform several other methods in this setting. As [27] have provided their
algorithm online with several of their data sets tested in their article, we implemented our method and theirs
(H-HMM) on their benchmark data sets.

In the first data set in [27], the goal is to recover two regions – one amplified, one deleted, that are shared
in 8 short profiles, though only 6 of the profiles exhibit each of the amplified or deleted regions. Performance
is measured by area under ROC curve (AUC), following [27]. Running H-HMMwith the default parameters,
we obtained an AUC (averaged over 10 trials) of 0.96± .01, taking on average 60.20 seconds. The weighted
group fused LARS, asked to select 100 breakpoints and followed by dynamic programming, took 0.06
seconds and had an AUC of 0.97. Thus, the performance of both methods was similar, though weighted
group fused LARS was around 1000 times faster.

The second data set was a cohort of lung cancer cell lines originally published in [28, 29]. As in [27], we
concentrated on the 18 NSCLC adenocarcinoma (NA) cell lines. Figure 5 shows the score statistics obtained
on Chromosome 8 when using either weighted group fused LARS or H-HMM.Weighted group fused LARS
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Molecular diagnosis / prognosis / theragnosis
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Gene networks and expression data

Motivation
Basic biological functions usually involve the coordinated action of
several proteins:

Formation of protein complexes
Activation of metabolic, signalling or regulatory pathways

Many pathways and protein-protein interactions are already known
Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge
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Graph-based penalty

min
β

R(β) + λΩG(β)

Hypothesis
We would like to design penalties ΩG(β) to promote one of the
following hypothesis:

Hypothesis 1: genes near each other on the graph should have
similar weights (but we do not try to select only a few genes), i.e.,
the classifier should be smooth on the graph
Hypothesis 2: genes selected in the signature should be
connected to each other, or be in a few known functional groups,
without necessarily having similar weights.
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Graph based penalty

Prior hypothesis
Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)

Ωspectral(β) =
∑

i∼j

(βi − βj)
2 ,

min
β∈Rp

R(β) + λ
∑

i∼j

(βi − βj)
2 .
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ClassifiersRapaport et al
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Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-

8
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Classifier
Spectral analysis of gene expression profiles using gene networks

 a)  b)
Fig. 5. Theglycolysis/gluconeogenesis pathways ofKEGGwithmapped coefficients of the decision function obtained by applying a customary

linear SVM (a) and using high-frequency eigenvalue attenuation (b). The pathways are mutually exclusive in a cell, as clearly highlighted by

our algorithm.

or under-expression of individual genes, which is the cost to

pay to obtain instead an interpretation in terms of more glo-

bal pathways. Constraining the classifier to rely on just a few

genes would have a similar effect of reducing the complexity

of the problem,butwould lead to amoredifficult interpretation

in terms of pathways.

An advantage of our approach over other pathway-based

clustering methods is that we consider the network modules

that naturally appear from spectral analysis rather than a histo-

rically defined separation of the network into pathways. Thus,

pathways cross-talking is taken into account, which is diffi-

cult to do using other approaches. It can however be noticed

that the implicit decomposition into pathways that we obtain

is biased by the very incomplete knowledge of the network

and that certain regions of the network are better understood,

leading to a higher connection concentration.

Like most approaches aiming at comparing expression data

with gene networks such as KEGG, the scope of this work

is limited by two important constraints. First the gene net-

work we use is only a convenient but rough approximation to

describe complex biochemical processes; second, the trans-

criptional analysis of a sample can not give any information

regarding post-transcriptional regulation and modifications.

Nevertheless, we believe that our basic assumptions remain

valid, in that we assume that the expression of the genes

belonging to the same metabolic pathways module are coor-

dinately regulated. Our interpretation of the results supports

this assumption.

Another important caveat is that we simplify the network

description as an undirected graph of interactions. Although

this would seem to be relevant for simplifying the descrip-

tion of metabolic networks, real gene regulation networks are

influenced by the direction, sign and importance of the interac-

tion. Although the incorporationof weights into the Laplacian

(equation 1) is straightforward and allows the extension of the

approach to weighted undirected graphs, the incorporation

of directions and signs to represent signalling or regulatory

pathways requires more work but could lead to important

advances for the interpretation of microarray data in cancer

studies, for example.
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Graph Laplacian

Definition
The Laplacian of the graph is the matrix L = D − A.

1

2

3

4

5

L = D − A =




1 0 −1 0 0
0 1 −1 0 0
−1 −1 3 −1 0
0 0 −1 2 −1
0 0 0 1 1
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Spectral penalty as a kernel

Theorem
The function f (x) = β>x where b is solution of

min
β∈Rp

1
n

n∑

i=1

l
(
β>xi , yi

)
+ λ

∑

i∼j

(
βi − βj

)2

is equal to g(x) = γ>Φ(x) where γ is solution of

min
γ∈Rp

1
n

n∑

i=1

l
(
γ>Φ(xi), yi

)
+ λγ>γ ,

and where
Φ(x)>Φ(x ′) = x>KGx ′

for KG = L∗, the pseudo-inverse of the graph Laplacian.
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Other penalties with kernels

Φ(x)>Φ(x ′) = x>KGx ′

with:
KG = (c + L)−1 leads to

Ω(β) = c
p∑

i=1

β2
i +

∑

i∼j

(
βi − βj

)2
.

The diffusion kernel:

KG = expM(−2tL) .

penalizes high frequencies of β in the Fourier domain.
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Other penalties without kernels

Gene selection + Piecewise constant on the graph

Ω(β) =
∑

i∼j

∣∣βi − βj
∣∣+

p∑

i=1

|βi |

Gene selection + smooth on the graph

Ω(β) =
∑

i∼j

(
βi − βj

)2
+

p∑

i=1

|βi |
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How to select jointly genes belonging to predefined
pathways?
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)
If groups of covariates are likely to be selected together, the
`1/`2-norm induces sparse solutions at the group level:

Ωgroup(w) =
∑

g

‖wg‖2

Ω(w1,w2,w3) = ‖(w1,w2)‖2+‖w3‖2
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What if a gene belongs to several groups?

Issue of using the group-lasso
Ωgroup(w) =

∑
g ‖wg‖2 sets groups to 0.

One variable is selected⇔ all the groups to which it belongs are
selected.

IGF selection⇒ selection of
unwanted groups

⇒
‖wg1‖2=‖wg3‖2=0

Removal of any group
containing a gene⇒ the
weight of the gene is 0.
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Overlap norm (Jacob et al., 2009)

An idea
Introduce latent variables vg :





min
w ,v

L(w) + λ
∑

g∈G
‖vg‖2

w =
∑

g∈G vg

supp
(
vg
)
⊆ g.

Properties
Resulting support is a union of groups in G.
Possible to select one variable without selecting all the groups
containing it.
Equivalent to group lasso when there is no overlap
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A new norm

Overlap norm




min
w ,v

L(w) + λ
∑

g∈G
‖vg‖2

w =
∑

g∈G vg

supp
(
vg
)
⊆ g.

= min
w

L(w) + λΩoverlap(w)

with

Ωoverlap(w)
∆
=





min
v

∑

g∈G
‖vg‖2

w =
∑

g∈G vg

supp
(
vg
)
⊆ g.

(∗)

Property
Ωoverlap(w) is a norm of w .
Ωoverlap(.) associates to w a specific (not necessarily unique)
decomposition (vg)g∈G which is the argmin of (∗).
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Overlap and group unity balls

Balls for ΩG
group (·) (middle) and ΩG

overlap (·) (right) for the groups
G = {{1,2}, {2,3}} where w2 is represented as the vertical coordinate. Left:

group-lasso (G = {{1,2}, {3}}), for comparison.
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Theoretical results

Consistency in group support (Jacob et al., 2009)
Let w̄ be the true parameter vector.
Assume that there exists a unique decomposition v̄g such that
w̄ =

∑
g v̄g and ΩGoverlap (w̄) =

∑ ‖v̄g‖2.
Consider the regularized empirical risk minimization problem
L(w) + λΩGoverlap (w).

Then
under appropriate mutual incoherence conditions on X ,
as n→∞,
with very high probability,

the optimal solution ŵ admits a unique decomposition (v̂g)g∈G such
that {

g ∈ G|v̂g 6= 0
}

=
{

g ∈ G|v̄g 6= 0
}
.
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Experiments

Synthetic data: overlapping groups
10 groups of 10 variables with 2 variables of overlap between two
successive groups :{1, . . . ,10}, {9, . . . ,18}, . . . , {73, . . . ,82}.
Support: union of 4th and 5th groups.
Learn from 100 training points.

Frequency of selection of each variable with the lasso (left) and ΩG
overlap (.)

(middle), comparison of the RMSE of both methods (right).
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Graph lasso

Two solutions

Ωintersection(β) =
∑

i∼j

√
β2

i + β2
j ,

Ωunion(β) = sup
α∈Rp:∀i∼j,‖α2

i +α2
j ‖≤1

α>β .
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Graph lasso vs kernel on graph

Graph lasso:

Ωgraph lasso(w) =
∑

i∼j

√
w2

i + w2
j .

constrains the sparsity, not the values
Graph kernel

Ωgraph kernel(w) =
∑

i∼j

(wi − wj)
2 .

constrains the values (smoothness), not the sparsity
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Preliminary results

Breast cancer data
Gene expression data for 8,141 genes in 295 breast cancer
tumors.
Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD `1 ΩG
OVERLAP (.)

ERROR 0.38± 0.04 0.36± 0.03
MEAN ] PATH. 130 30

Graph on the genes.

METHOD `1 Ωgraph(.)
ERROR 0.39± 0.04 0.36± 0.01
AV. SIZE C.C. 1.03 1.30
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Lasso signature
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Graph Lasso signature

J.P Vert (ParisTech) Prior knowlege in ML Oxford 59 / 61



Outline

1 Motivations

2 Finding multiple change-points in a single profile

3 Finding multiple change-points shared by many signals

4 Learning molecular classifiers with network information

5 Conclusion

J.P Vert (ParisTech) Prior knowlege in ML Oxford 60 / 61



Conclusions

Feature / pattern selection in high dimension is central for many
applications
Convex sparsity-inducing penalties (e.g., group lasso) are
promising; efficient implementations + consistency results

Kevin Bleakley (INRIA), Laurent Jacob (UC Berkeley) Guillaume
Obozinski (INRIA)
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