Group lasso for genomic data

Jean-Philippe Vert

Mines ParisTech / Curie Institute / Inserm
Department of Statistics, University of Oxford, Jan 19, 2012

Outline

(1) Motivations
(2) Finding multiple change-points in a single profile
(3) Finding multiple change-points shared by many signals

4 Learning molecular classifiers with network information
(5) Conclusion

Outline

(1) Motivations
2) Finding multiple change-points in a single profile
(3) Finding multiple change-points shared by many signals

4 Learning molecular classifiers with network information
(5) Conclusion

Chromosomic aberrations in cancer

Comparative Genomic Hybridization (CGH)

Can we identify breakpoints and "smooth" each profile?

Can we detect frequent breakpoints?

A collection of bladder tumour copy number profiles.

DNA \rightarrow RNA \rightarrow protein

- CGH shows the (static) DNA
- Cancer cells have also abnormal (dynamic) gene expression (= transcription)

Can we identify the cancer subtype? (diagnosis)

Can we predict the future evolution? (prognosis)

Outline

(1) Motivations

(2) Finding multiple change-points in a single profile
(3) Finding multiple change-points shared by many signals

4 Learning molecular classifiers with network information
(5) Conclusion

The problem

- Let $Y \in \mathbb{R}^{p}$ the signal
- We want to find a piecewise constant approximation $\hat{U} \in \mathbb{R}^{p}$ with at most k change-points.

The problem

- Let $Y \in \mathbb{R}^{p}$ the signal
- We want to find a piecewise constant approximation $\hat{U} \in \mathbb{R}^{p}$ with at most k change-points.

An optimal solution?

- We can define an "optimal" piecewise constant approximation $\hat{U} \in \mathbb{R}^{p}$ as the solution of

$$
\min _{U \in \mathbb{R}^{p}}\|Y-U\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1} \mathbf{1}\left(U_{i+1} \neq U_{i}\right) \leq k
$$

An optimal solution?

- We can define an "optimal" piecewise constant approximation $\hat{U} \in \mathbb{R}^{p}$ as the solution of

$$
\min _{U \in \mathbb{R}^{p}}\|Y-U\|^{2} \quad \text { such that } \sum_{i=1}^{p-1} 1\left(U_{i+1} \neq U_{i}\right) \leq k
$$

- This is an optimization problem over the $\binom{p}{k}$ partitions...

An optimal solution?

- We can define an "optimal" piecewise constant approximation $\hat{U} \in \mathbb{R}^{p}$ as the solution of

$$
\min _{U \in \mathbb{R}^{p}}\|Y-U\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1} \mathbf{1}\left(U_{i+1} \neq U_{i}\right) \leq k
$$

- This is an optimization problem over the $\binom{p}{k}$ partitions...
- Dynamic programming finds the solution in $O\left(p^{2} k\right)$ in time and $O\left(p^{2}\right)$ in memory

An optimal solution?

- We can define an "optimal" piecewise constant approximation $\hat{U} \in \mathbb{R}^{p}$ as the solution of

$$
\min _{U \in \mathbb{R}^{p}}\|Y-U\|^{2} \quad \text { such that } \sum_{i=1}^{p-1} \mathbf{1}\left(U_{i+1} \neq U_{i}\right) \leq k
$$

- This is an optimization problem over the $\binom{p}{k}$ partitions...
- Dynamic programming finds the solution in $O\left(p^{2} k\right)$ in time and $O\left(p^{2}\right)$ in memory
- But: does not scale to $p=10^{6} \sim 10^{9} \ldots$

Promoting sparsity with the ℓ_{1} penalty

The ℓ_{1} penalty (Tibshirani, 1996; Chen et al., 1998)
If $R(\beta)$ is convex and "smooth", the solution of

$$
\min _{\beta \in \mathbb{R}^{p}} R(\beta)+\lambda \sum_{i=1}^{p}\left|\beta_{i}\right|
$$

is usually sparse.
Geometric interpretation with $p=2$

Promoting piecewise constant profiles penalty

The total variation / variable fusion penalty
If $R(\beta)$ is convex and "smooth", the solution of

$$
\min _{\beta \in \mathbb{R}^{p}} R(\beta)+\lambda \sum_{i=1}^{p-1}\left|\beta_{i+1}-\beta_{i}\right|
$$

is usually piecewise constant (Rudin et al., 1992; Land and Friedman, 1996).

Proof:

- Change of variable $u_{i}=\beta_{i+1}-\beta_{i}, u_{0}=\beta_{1}$
- We obtain a Lasso problem in $u \in \mathbb{R}^{p-1}$
- u sparse means β piecewise constant

TV signal approximator

$$
\min _{\beta \in \mathbb{R}^{p}}\|Y-\beta\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1}\left|\beta_{i+1}-\beta_{i}\right| \leq \mu
$$

Adding additional constraints does not change the change-points:

- $\sum_{i=1}^{p}\left|\beta_{i}\right| \leq \nu$ (Tibshirani et al., 2005; Tibshirani and Wang, 2008)
- $\sum_{i=1}^{p} \beta_{i}^{2} \leq \nu$ (Mairal et al. 2010)

TV signal approximator as dichotomic segmentation

```
Algorithm 1 Greedy dichotomic segmentation
Require: \(k\) number of intervals, \(\gamma(I)\) gain function to split an interval \(I\) into \(I_{L}(I), I_{R}(I)\)
    1: \(I_{0}\) represents the interval \([1, n]\)
    2: \(\mathcal{P}=\left\{I_{0}\right\}\)
    for \(i=1\) to \(k\) do
    4: \(\quad I^{*} \leftarrow \underset{I}{\arg \max } \gamma\left(I^{*}\right)\)
    \(\mathcal{P} \leftarrow \mathcal{P} \backslash\left\{I^{*}\right\}\)
    6: \(\quad \mathcal{P} \leftarrow \mathcal{P} \cup\left\{I_{L}\left(I^{*}\right), I_{R}\left(I^{*}\right)\right\}\)
    end for
    8: return \(\mathcal{P}\)
```


Theorem

TV signal approximator performs "greedy" dichotomic segmentation
(V. and Bleakley, 2010; see also Hoefling, 2009)

Solving TV signal approximator

$$
\min _{\beta \in \mathbb{R}^{\rho}}\|Y-\beta\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1}\left|\beta_{i+1}-\beta_{i}\right| \leq \mu
$$

- QP with sparse linear constraints in $O\left(p^{2}\right)->135 \mathrm{~min}$ for $p=10^{5}$ (Tibshirani and Wang, 2008)
- Coordinate descent-like method $O(p)$? -> 3s s for $p=10^{5}$ (Friedman et al., 2007)
- For all μ with the LARS in $O(p K)$ (Harchaoui and Levy-Leduc, 2008)
- For all μ in $O(p \ln p)$ (Hoefling, 2009)
- For the first K change-points in $O(p \ln K)$ (Bleakley and V., 2010)

Speed trial : 2 s . for $K=100, p=10^{7}$

Speed for $K=1,10,1 \mathrm{e} 2,1 \mathrm{e} 3,1 \mathrm{e} 4,1 \mathrm{e} 5$

Outline

(1) Motivations

(2) Finding multiple change-points in a single profile
(3) Finding multiple change-points shared by many signals

4 Learning molecular classifiers with network information
(5) Conclusion

The problem

- Let $Y \in \mathbb{R}^{p \times n}$ the n signals of length p
- We want to find a piecewise constant approximation $\hat{U} \in \mathbb{R}^{p \times n}$ with at most k change-points.

The problem

- Let $Y \in \mathbb{R}^{p \times n}$ the n signals of length p
- We want to find a piecewise constant approximation $\hat{U} \in \mathbb{R}^{p \times n}$ with at most k change-points.

"Optimal" segmentation by dynamic programming

- Define the "optimal" piecewise constant approximation $\hat{U} \in \mathbb{R}^{p \times n}$ of Y as the solution of

$$
\min _{U \in \mathbb{R}^{p \times n}}\|Y-U\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1} 1\left(U_{i+1, \bullet} \neq U_{i, \bullet}\right) \leq k
$$

- DP finds the solution in $O\left(p^{2} k n\right)$ in time and $O\left(p^{2}\right)$ in memory
- But: does not scale to $p=10^{6} \sim 10^{9} \ldots$

Selecting pre-defined groups of variables

Group lasso (Yuan \& Lin, 2006)

If groups of covariates are likely to be selected together, the ℓ_{1} / ℓ_{2}-norm induces sparse solutions at the group level:

$$
\Omega_{\text {group }}(w)=\sum_{g}\left\|w_{g}\right\|_{2}
$$

$$
\begin{aligned}
\Omega\left(w_{1}, w_{2}, w_{3}\right) & =\left\|\left(w_{1}, w_{2}\right)\right\|_{2}+\left\|w_{3}\right\|_{2} \\
& =\sqrt{w_{1}^{2}+w_{2}^{2}}+\sqrt{w_{3}^{2}}
\end{aligned}
$$

TV approximator for many signals

- Replace

$$
\min _{U \in \mathbb{R}^{p \times n}}\|Y-U\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1} \mathbf{1}\left(U_{i+1, \bullet} \neq U_{i, \bullet}\right) \leq k
$$

by

$$
\min _{U \in \mathbb{R}^{p \times n}}\|Y-U\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1} w_{i}\left\|U_{i+1, \bullet}-U_{i, \bullet}\right\| \leq \mu
$$

Questions

- Practice: can we solve it efficiently?
- Theory: does it benefit from increasing p (for n fixed)?

TV approximator as a group Lasso problem

- Make the change of variables:

$$
\begin{aligned}
\gamma & =U_{1, \bullet} \\
\beta_{i, \bullet} & =w_{i}\left(U_{i+1, \bullet}-U_{i, \bullet}\right) \quad \text { for } i=1, \ldots, p-1 .
\end{aligned}
$$

- TV approximator is then equivalent to the following group Lasso problem (Yuan and Lin, 2006):

$$
\min _{\beta \in \mathbb{R}^{(p-1) \times n}}\|\bar{Y}-\bar{X} \beta\|^{2}+\lambda \sum_{i=1}^{p-1}\left\|\beta_{i, \bullet}\right\|
$$

where \bar{Y} is the centered signal matrix and \bar{X} is a particular $(p-1) \times(p-1)$ design matrix.

TV approximator implementation

$$
\min _{\beta \in \mathbb{R}^{(p-1) \times n}}\|\bar{Y}-\bar{X} \beta\|^{2}+\lambda \sum_{i=1}^{p-1}\left\|\beta_{i, \bullet}\right\|,
$$

Theorem

The TV approximator can be solved efficiently:

- approximately with the group LARS in $O(n p k)$ in time and $O(n p)$ in memory
- exactly with a block coordinate descent + active set method in $O(n p)$ in memory

Proof: computational tricks...

Although \bar{X} is $(p-1) \times(p-1)$:

- For any $R \in \mathbb{R}^{p \times n}$, we can compute $C=\bar{X}^{\top} R$ in $O(n p)$ operations and memory
- For any two subset of indices $A=\left(a_{1}, \ldots, a_{|A|}\right)$ and $B=\left(b_{1}, \ldots, b_{|B|}\right)$ in $[1, p-1]$, we can compute $\bar{X}_{\bullet, A}^{\top} \bar{X}_{\bullet, B}$ in $O(|A||B|)$ in time and memory
- For any $A=\left(a_{1}, \ldots, a_{|A|}\right)$, set of distinct indices with $1 \leq a_{1}<\ldots<a_{|A|} \leq p-1$, and for any $|A| \times n$ matrix R, we can compute $C=\left(\bar{X}_{\bullet, A}^{\top} \bar{X}_{\bullet, A}\right)^{-1} R$ in $O(|A| n)$ in time and memory

Speed trial

Figure 2: Speed trials for group fused LARS (top row) and Lasso (bottom row). Left column: varying n, with fixed $p=10$ and $k=10$; center column: varying p, with fixed $n=1000$ and $k=10$; right column: varying k, with fixed $n=1000$ and $p=10$. Figure axes are log-log. Results are averaged over 100 trials.

Consistency for a single change-point

Suppose a single change-point:

- at position $u=\alpha p$
- with increments $\left(\beta_{i}\right)_{i=1, \ldots, n}$ s.t. $\bar{\beta}^{2}=\lim _{k \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \beta_{i}^{2}$
- corrupted by i.i.d. Gaussian noise of variance σ^{2}

Does the TV approximator correctly estimate the first change-point as p increases?

Consistency of the unweighted TV approximator

$$
\min _{U \in \mathbb{R}^{p \times n}}\|Y-U\|^{2} \text { such that } \sum_{i=1}^{p-1}\left\|U_{i+1, \bullet}-U_{i, \bullet}\right\| \leq \mu
$$

Theorem

The unweighted TV approximator finds the correct change-point with probability tending to 1 (resp. 0) as $n \rightarrow+\infty$ if $\sigma^{2}<\tilde{\sigma}_{\alpha}^{2}$ (resp. $\left.\sigma^{2}>\tilde{\sigma}_{\alpha}^{2}\right)$, where

$$
\tilde{\sigma}_{\alpha}^{2}=p \bar{\beta}^{2} \frac{(1-\alpha)^{2}\left(\alpha-\frac{1}{2 p}\right)}{\alpha-\frac{1}{2}-\frac{1}{2 p}}
$$

- correct estimation on $[p \epsilon, p(1-\epsilon)]$ with $\epsilon=\sqrt{\frac{\sigma^{2}}{2 p \bar{\beta}^{2}}}+o\left(p^{-1 / 2}\right)$.
- wrong estimation near the boundaries

Consistency of the weighted TV approximator

$$
\min _{U \in \mathbb{R}^{p \times n}}\|Y-U\|^{2} \text { such that } \sum_{i=1}^{p-1} w_{i}\left\|U_{i+1, \bullet}-U_{i, \bullet}\right\| \leq \mu
$$

Theorem

The weighted TV approximator with weights

$$
\forall i \in[1, p-1], \quad w_{i}=\sqrt{\frac{i(p-i)}{p}}
$$

correctly finds the first change-point with probability tending to 1 as $n \rightarrow+\infty$.

- we see the benefit of increasing n
- we see the benefit of adding weights to the TV penalty

Proof sketch

- The first change-point \hat{i} found by TV approximator maximizes $F_{i}=\left\|\hat{c}_{i, \bullet}\right\|^{2}$, where

$$
\hat{c}=\bar{X}^{\top} \bar{Y}=\bar{X}^{\top} \bar{X} \beta^{*}+\bar{X}^{\top} W .
$$

- \hat{c} is Gaussian, and F_{i} is follows a non-central χ^{2} distribution with

$$
G_{i}=\frac{E F_{i}}{p}=\frac{i(p-i)}{p w_{i}^{2}} \sigma^{2}+\frac{\bar{\beta}^{2}}{w_{i}^{2} w_{u}^{2} p^{2}} \times \begin{cases}i^{2}(p-u)^{2} & \text { if } i \leq u \\ u^{2}(p-i)^{2} & \text { otherwise }\end{cases}
$$

- We then just check when $G_{u}=\max _{i} G_{i}$

Consistency for a single change-point

Figure 3: Single change-point accuracy for the group fused Lasso. Accuracy as a function of the number of profiles p when the change-point is placed in a variety of positions $u=50$ to $u=90$ (left and centre plots, resp. unweighted and weighted group fused Lasso), or: $u=50 \pm 2$ to $u=90 \pm 2$ (right plot, weighted with varying change-point location), for a signal of length 100.

Estimation of more change-points?

Figure 4: Multiple change-point accuracy. Accuracy as a function of the number of profiles p when change-points are placed at the nine positions $\{10,20, \ldots, 90\}$ and the variance σ^{2} of the centered Gaussian noise is either 0.05 (left), 0.2 (center) and 1 (right). The profile length is 100 .

Outline

(1) Motivations

(2) Finding multiple change-points in a single profile
(3) Finding multiple change-points shared by many signals

4 Learning molecular classifiers with network information
(5) Conclusion

Molecular diagnosis / prognosis / theragnosis

Gene networks

Gene networks and expression data

Motivation

- Basic biological functions usually involve the coordinated action of several proteins:
- Formation of protein complexes
- Activation of metabolic, signalling or regulatory pathways
- Many pathways and protein-protein interactions are already known
- Hypothesis: the weights of the classifier should be "coherent" with respect to this prior knowledge

Graph-based penalty

$$
\min _{\beta} R(\beta)+\lambda \Omega_{G}(\beta)
$$

Hypothesis

We would like to design penalties $\Omega_{G}(\beta)$ to promote one of the following hypothesis:

- Hypothesis 1: genes near each other on the graph should have similar weights (but we do not try to select only a few genes), i.e., the classifier should be smooth on the graph
- Hypothesis 2: genes selected in the signature should be connected to each other, or be in a few known functional groups, without necessarily having similar weights.

Graph based penalty

Prior hypothesis

Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)

Graph based penalty

Prior hypothesis

Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)

$$
\begin{aligned}
& \Omega_{\text {spectral }}(\beta)=\sum_{i \sim j}\left(\beta_{i}-\beta_{j}\right)^{2}, \\
& \min _{\beta \in \mathbb{R}^{p}} R(\beta)+\lambda \sum_{i \sim j}\left(\beta_{i}-\beta_{j}\right)^{2} .
\end{aligned}
$$

Classifiers

Classifier

a)

Graph Laplacian

Definition

The Laplacian of the graph is the matrix $L=D-A$.

$$
L=D-A=\left(\begin{array}{ccccc}
1 & 0 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
-1 & -1 & 3 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

Spectral penalty as a kernel

Theorem

The function $f(x)=\beta^{\top} x$ where b is solution of

$$
\min _{\beta \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} I\left(\beta^{\top} x_{i}, y_{i}\right)+\lambda \sum_{i \sim j}\left(\beta_{i}-\beta_{j}\right)^{2}
$$

is equal to $g(x)=\gamma^{\top} \Phi(x)$ where γ is solution of

$$
\min _{\gamma \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} I\left(\gamma^{\top} \Phi\left(x_{i}\right), y_{i}\right)+\lambda \gamma^{\top} \gamma,
$$

and where

$$
\Phi(x)^{\top} \Phi\left(x^{\prime}\right)=x^{\top} K_{G} x^{\prime}
$$

for $K_{G}=L^{*}$, the pseudo-inverse of the graph Laplacian.

Other penalties with kernels

$$
\Phi(x)^{\top} \Phi\left(x^{\prime}\right)=x^{\top} K_{G} x^{\prime}
$$

with:

- $K_{G}=(c+L)^{-1}$ leads to

$$
\Omega(\beta)=c \sum_{i=1}^{p} \beta_{i}^{2}+\sum_{i \sim j}\left(\beta_{i}-\beta_{j}\right)^{2}
$$

- The diffusion kernel:

$$
K_{G}=\exp _{M}(-2 t L)
$$

penalizes high frequencies of β in the Fourier domain.

Other penalties without kernels

- Gene selection + Piecewise constant on the graph

$$
\Omega(\beta)=\sum_{i \sim j}\left|\beta_{i}-\beta_{j}\right|+\sum_{i=1}^{p}\left|\beta_{i}\right|
$$

- Gene selection + smooth on the graph

$$
\Omega(\beta)=\sum_{i \sim j}\left(\beta_{i}-\beta_{j}\right)^{2}+\sum_{i=1}^{p}\left|\beta_{i}\right|
$$

How to select jointly genes belonging to predefined pathways?

Selecting pre-defined groups of variables

Group lasso (Yuan \& Lin, 2006)

If groups of covariates are likely to be selected together, the ℓ_{1} / ℓ_{2}-norm induces sparse solutions at the group level:

$$
\Omega_{\text {group }}(w)=\sum_{g}\left\|w_{g}\right\|_{2}
$$

What if a gene belongs to several groups?

Issue of using the group-lasso

- $\Omega_{\text {group }}(w)=\sum_{g}\left\|w_{g}\right\|_{2}$ sets groups to 0 .
- One variable is selected \Leftrightarrow all the groups to which it belongs are selected.

IGF selection \Rightarrow selection of unwanted groups

Removal of any group
containing a gene \Rightarrow the weight of the gene is 0 .

Overlap norm (Jacob et al., 2009)

An idea

Introduce latent variables v_{g} :

$$
\left\{\begin{array}{l}
\min _{w, v} L(w)+\lambda \sum_{g \in \mathcal{G}}\left\|v_{g}\right\|_{2} \\
w=\sum_{g \in \mathcal{G}} v_{g} \\
\operatorname{supp}\left(v_{g}\right) \subseteq g .
\end{array}\right.
$$

$$
\mathrm{w}=\begin{array}{|}
\mathrm{v} 1 \\
0 & \begin{array}{r}
\square \\
0 \\
0
\end{array} & \begin{array}{r}
\square \\
0
\end{array}
\end{array}
$$

Properties

- Resulting support is a union of groups in \mathcal{G}.
- Possible to select one variable without selecting all the groups containing it.
- Equivalent to group lasso when there is no overlap

A new norm

Overlap norm

$$
\left\{\begin{array}{l}
\min _{w, v} L(w)+\lambda \sum_{g \in \mathcal{G}}\left\|v_{g}\right\|_{2} \\
w=\sum_{g \in \mathcal{G}} v_{g}=\min _{w} L(w)+\lambda \Omega_{\text {overlap }}(w) \\
\operatorname{supp}\left(v_{g}\right) \subseteq g
\end{array}\right.
$$

with

$$
\Omega_{\text {overlap }}(w) \triangleq\left\{\begin{array}{l}
\min _{v} \sum_{g \in \mathcal{G}}\left\|v_{g}\right\|_{2} \\
w=\sum_{g \in \mathcal{G}} v_{g} \\
\operatorname{supp}\left(v_{g}\right) \subseteq g
\end{array}\right.
$$

Property

- $\Omega_{\text {overlap }}(w)$ is a norm of w.
- $\Omega_{\text {overlap }}($.$) associates to w$ a specific (not necessarily unique) decomposition $\left(v_{g}\right)_{g \in \mathcal{G}}$ which is the argmin of $(*)$.

Overlap and group unity balls

Balls for $\Omega_{\text {group }}^{\mathcal{G}}(\cdot)$ (middle) and $\Omega_{\text {overlap }}^{\mathcal{G}}(\cdot)$ (right) for the groups $\mathcal{G}=\{\{1,2\},\{2,3\}\}$ where w_{2} is represented as the vertical coordinate. Left: group-lasso ($\mathcal{G}=\{\{1,2\},\{3\}\}$), for comparison.

Theoretical results

Consistency in group support (Jacob et al., 2009)

- Let \bar{w} be the true parameter vector.
- Assume that there exists a unique decomposition \bar{v}_{g} such that $\bar{w}=\sum_{g} \bar{v}_{g}$ and $\Omega_{\text {overlap }}^{\mathcal{G}}(\bar{w})=\sum\left\|\bar{v}_{g}\right\|_{2}$.
- Consider the regularized empirical risk minimization problem $L(w)+\lambda \Omega_{\text {overlap }}^{\mathcal{G}}(w)$.

Theoretical results

Consistency in group support (Jacob et al., 2009)

- Let \bar{w} be the true parameter vector.
- Assume that there exists a unique decomposition \bar{v}_{g} such that $\bar{w}=\sum_{g} \bar{v}_{g}$ and $\Omega_{\text {overlap }}^{\mathcal{G}}(\bar{w})=\sum\left\|\bar{v}_{g}\right\|_{2}$.
- Consider the regularized empirical risk minimization problem $L(w)+\lambda \Omega_{\text {overlap }}^{\mathcal{G}}(w)$.
Then
- under appropriate mutual incoherence conditions on X,
- as $n \rightarrow \infty$,
- with very high probability,
the optimal solution \hat{w} admits a unique decomposition $\left(\hat{v}_{g}\right)_{g \in \mathcal{G}}$ such that

$$
\left\{g \in \mathcal{G} \mid \hat{v}_{g} \neq 0\right\}=\left\{g \in \mathcal{G} \mid \bar{v}_{g} \neq 0\right\}
$$

Experiments

Synthetic data: overlapping groups

- 10 groups of 10 variables with 2 variables of overlap between two successive groups : $\{1, \ldots, 10\},\{9, \ldots, 18\}, \ldots,\{73, \ldots, 82\}$.
- Support: union of 4 th and 5 th groups.
- Learn from 100 training points.

Frequency of selection of each variable with the lasso (left) and $\Omega_{\text {overlap }}^{\mathcal{G}}$ (.) (middle), comparison of the RMSE of both methods (right).

Graph lasso

Two solutions

$$
\begin{gathered}
\Omega_{\text {intersection }}(\beta)=\sum_{i \sim j} \sqrt{\beta_{i}^{2}+\beta_{j}^{2}}, \\
\Omega_{\text {union }}(\beta)=\sup _{\alpha \in \mathbb{R}^{p}: \forall i \sim j,\left\|\alpha_{i}^{2}+\alpha_{j}^{2}\right\| \leq 1} \alpha^{\top} \beta .
\end{gathered}
$$

Graph lasso vs kernel on graph

- Graph lasso:

$$
\Omega_{\text {graph lasso }}(w)=\sum_{i \sim j} \sqrt{w_{i}^{2}+w_{j}^{2}} .
$$

constrains the sparsity, not the values

- Graph kernel

$$
\Omega_{\text {graph kernel }}(w)=\sum_{i \sim j}\left(w_{i}-w_{j}\right)^{2} .
$$

constrains the values (smoothness), not the sparsity

Preliminary results

Breast cancer data

- Gene expression data for 8, 141 genes in 295 breast cancer tumors.
- Canonical pathways from MSigDB containing 639 groups of genes, 637 of which involve genes from our study.

METHOD	ℓ_{1}	$\Omega_{\text {OVERLAP }}^{\mathcal{G}}()$.
ERROR	0.38 ± 0.04	0.36 ± 0.03
MEAN $\#$ PATH.	130	30

- Graph on the genes.

METHOD	ℓ_{1}	$\Omega_{\text {graph }}()$.
ERROR	0.39 ± 0.04	0.36 ± 0.01
Av. SIZE C.C.	1.03	1.30

Lasso signature

Graph Lasso signature

Outline

(9) Motivations

(2) Finding multiple change-points in a single profile
(3) Finding multiple change-points shared by many signals

4 Learning molecular classifiers with network information
(5) Conclusion

Conclusions

- Feature / pattern selection in high dimension is central for many applications
- Convex sparsity-inducing penalties (e.g., group lasso) are promising; efficient implementations + consistency results

Kevin Bleakley (INRIA), Laurent Jacob (UC Berkeley) Guillaume Obozinski (INRIA)

