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Cancer diagnosis
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Cancer prognosis
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Gene network inference
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Virtual screening for drug discovery
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NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Machine learning

1 Given a training set of labeled data with...
2 learn a discrimination rule...
3 ... in order to predict the label of new data
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Machine learning : tools and applications

Many applications
Multimedia, image, video, speech recognition, web, social network,
online advertising, finance, biology, chemistry

Many tools
Linear discriminant analysis, logistic regression, decision trees, neural
networks, support vector machines...
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Machine learning in bioinformatics

Challenges
Few samples
High dimension
Structured data
Heterogeneous data
Prior knowledge
Fast and scalable
implementations
Interpretable models

A strategy: penalized empirical risk minimization

min
f

R[f ] + λΩ[f ]
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Gene expression
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Gene expression regulation
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Gene regulatory network
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Gene regulatory network of E. coli
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Gene expression data
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Reconstruction of gene regulatory network from
expression data
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De novo inference

The problem
Given a set of gene expressions, infer the regulations.

How?
Connect "similar genes": correlation, mutual-information...
Model-based approaches: dynamic systems, boolean networks,
state-space models, Bayesian networks
Sparse regression: regulators as the smallest set of TF necessary
to predict the expression of the target (GENIE, TIGRESS...)
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Predicting regulation by sparse regression

Let Y ∈ Rn the expression of a gene, and X1, . . . ,Xp ∈ Rn the
expression of all TFs. We look for a model

Y =

p∑
i=1

βiXi + noise

where β is sparse, i.e., only a few βi are non-zero.
We can estimate the sparse regression model from a matrix of
expression data.
Non-zero βi ’s correspond to predicted regulators.
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Feature selection with the lasso

min
β∈Rp

‖Y − Xβ‖2 such that
p∑

i=1

|βi | ≤ t

No explicit solution, but this is just a quadratic program (Tibshirani,
1996; Chen et al., 1998).
Efficient solution with the LARS (Efron et al., 2004)
When t is not too large, the solution will usually be sparse
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TIGRESS (Haury et al., 2012)

For t = 1 to T do
Bootstrap a random sample St from the training set
Randomly reweight each feature
Select L features with the Lasso

The score of a feature is the number of times it was selected
among the T repeats (Bach, 2008; Meinshausen and Bühlmann,
2010).)
Rank features (TF-TG interactions) by decreasing area under the
score curve
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Validation
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DREAM5: GENIE and TIGRESS ranked 1st and 2nd out or 29 on the
in silico challenge
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Supervised inference

The problem
Given a set of gene expressions AND a set of known regulations, infer
missing regulations.

How?
Local models: for each TF, learn to discriminate the regulated vs
non-regulated genes
Global models: learn to discriminate connected vs non-connected
TF-target pairs
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Example: one-class learning approach for local model

For a given TF, let P ⊂ [1,n] be the set of genes known to be
regulated by it
From the expression profiles (Xi)i∈P , estimate a score s(X ) to
assess which expression profiles X are similar
Then classify the genes not in P by decreasing score
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Validation (Mordelet and V., 2008)
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Method Recall at 60% Recall at 80%
SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)
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Application: predicted regulatory network (E. coli)
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Chromosomic aberrations in cancer

Jean-Philippe Vert (ParisTech) Machine learning in genomics UCLA 2012 28 / 55



Comparative Genomic Hybridization (CGH)

Motivation
Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome
Very useful, in particular in cancer research to observe
systematically variants in DNA content
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Cancer prognosis: can we predict the future evolution?
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CGH array classification

Prior knowledge
For a CGH profile x ∈ Rp, we focus on linear classifiers, i.e., the
sign of :

fβ(x) = β>x .

We expect β to be
sparse : not all positions should be discriminative
piecewise constant : within a selected region, all probes should
contribute equally
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Promoting piecewise constant profiles with

Total variation (Rudin et al., 1992; Land and Friedman, 1996):

min
β∈Rp

R(β) + λ

p−1∑
i=1

|βi+1 − βi |

Fused lasso (Tibshirani et al., 2005; Tibshirani and Wang, 2008)

min
β∈Rp

‖Y − β ‖2 + λ1‖β ‖1 + λ2‖β ‖TV
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Fused lasso for supervised classification

Idea: find the vector of weights β that best discriminates the
aggressive vs non-aggressive, subject to the constraints that it
should be sparse and piecewise constant
Mathematically:

min
β∈Rp

R(β) + λ1

p∑
i=1

|βi |+ λ2

p−1∑
i=1

|βi+1 − βi |

Computationnally: this is convex optimization problem that can be
solved very efficiently (V. and Bleakley, 2012)
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Prognostic in melanoma (Rapaport et al., 2008)
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Extension: finding multiple change points shared by
several profiles
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"Optimal" segmentation by dynamic programming
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Define the "optimal" piecewise constant approximation Û ∈ Rp×n

of Y as the solution of

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑
i=1

1
(
Ui+1,• 6= Ui,•

)
≤ k

DP finds the solution in O(p2kn) in time and O(p2) in memory
But: does not scale to p = 106 ∼ 109...
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)
If groups of covariates are likely to be selected together, the
`1/`2-norm induces sparse solutions at the group level:

Ωgroup(w) =
∑

g

‖wg‖2

Ω(w1,w2,w3) = ‖(w1,w2)‖2 + ‖w3‖2
=
√

w2
1 + w2

2 +
√

w2
3
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GFLseg (Bleakley and V., 20011)

Replace

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑
i=1

1
(
Ui+1,• 6= Ui,•

)
≤ k

by

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑
i=1

wi‖Ui+1,• − Ui,•‖ ≤ µ

We can solve it efficiently in O(np)

It converges to the true segmentation when the number of profiles
increases
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Speed trial

so the slope gives the exponent of the complexity (resp. n, p and k). For the weighted group fused LARS,
linearity is clearest for k, whereas for n and p, the curves are initially sub-linear, then slightly super-linear for
extremely large values of n and p. As these time trials reach out to the practical limits of current technology,
we see that this is not critical - on average, even the longest trials here took less than 200 seconds. The
weighted fused group Lasso results are perhaps more interesting, as it is harder to predict in advance the
practical time performance of the algorithm. Surprisingly, when increasing n (p and k fixed) or increasing
p (n and k fixed), the group fused Lasso eventually becomes as fast the iterative, deterministic group fused
LARS. This suggests that at the limits of current technology, if k is small (say, less than 10), the potentially
superior performance of the Lasso version (see later) may not even be punished by a slower run-time with
respect to the LARS version. We suggest that this may be due to the Lasso optimization problem becoming
relatively “easier” to solve when n or p increases, as we observed that the Lasso algorithm converged quickly
to its final set of change-points. The main difference between the Lasso and LARS performance appears
when the number of change-points increases: with respective empirical complexities cubic and linear in k,
as predicted by the theoretical analysis, Lasso is already 1,000 times slower than LARS when we seek 100
change-points.

100 102 104 106 108
10−3

10−2

10−1

100

101

102

103

n

tim
e 

(s
)

 

 

GFLars
GFLasso

100 105
10−3

10−2

10−1

100

101

102

p

tim
e 

(s
)

 

 

GFLars
GFLasso

100 101 102 103
10−3

10−2

10−1

100

101

102

103

k

tim
e 

(s
)

 

 

GFLars
GFLasso

Figure 2: Speed trials for group fused LARS (top row) and Lasso (bottom row). Left column: varying
n, with fixed p = 10 and k = 10; center column: varying p, with fixed n = 1000 and k = 10; right column:
varying k, with fixed n = 1000 and p = 10. Figure axes are log-log. Results are averaged over 100 trials.

6.2 Accuracy for detection of a single change-point

Next, we tested empirically the accuracy the group fused Lasso for detecting a single change-point. We
first generated multidimensional profiles of dimension p, with a single jump of height 1 at a position u, for
different values of p and u. We added to the signals an i.i.d. Gaussian noise with variance σ̃2

α = 10.78,
the critical value corresponding to α = 0.8 in Theorem 2. We ran 1000 trials for each value of u and p,
and recorded how often the group fused Lasso with or without weights correctly identified the change-point.
According to Theorem 2, we expect that, for the unweighted group fused Lasso, for 50 ≤ u < 80 there is
convergence in accuracy to 1 when p increases, and for u > 80, convergence in accuracy to zero. This is
indeed what is seen in Figure 3 (left panel), with u = 80 the limit case between the two different modes of
convergence. The center panel of Figure 3 shows that when the default weights (5) are added, convergence
in accuracy to 1 occurs across all u, as predicted by Theorem 3. In addition, the right-hand-side panel
of Figure 3 shows results for the same trials except that change-point locations can vary uniformly in the
interval u ± 2. We see that, as predicted by Theorem 4, the accuracy of the weighted group fused Lasso

12
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Performance

0 200 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

Ac
cu

ra
cy

 

 

U−LARS
W−LARS
U−Lasso
W−Lasso

0 200 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

Ac
cu

ra
cy

0 200 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

Ac
cu

ra
cy

Figure 4: Multiple change-point accuracy. Accuracy as a function of the number of profiles p when
change-points are placed at the nine positions {10, 20, . . . , 90} and the variance σ2 of the centered Gaussian
noise is either 0.05 (left), 0.2 (center) and 1 (right). The profile length is 100.

loss on each interval of the segmentation by summarizing each profile by its average value on the interval.
Note that we do not assume that all profiles share exactly the same change-points, but merely see the joint
segmentation as an adaptive way to reduce the dimension and remove noise from data.

In practice, we used group fused LARS on each chromosome to identify a set of 100 candidate change-
points, and selected a subset of them by post-processing as described in Section 5.4. Then, in each piecewise-
constant interval between successive shared change-points, we calculate the mean of the positive segments
(shown in green in Figures 5(a) and 6(c)) and the mean of the negative segments (shown in red). The larger
the mean of the positive segments, the more likely we are to believe that a region harbors an important
common gain; the reasoning is analogous for important common losses and the mean of the negative seg-
ments. Obviously, many other statistical tests could be carried out to detect frequent gains and losses on
each segment, once the joint segmentation is performed.

We compare this method for detecting regions of gain and loss with the state-of-the-art H-HMMmethod
[27], which has been shown to outperform several other methods in this setting. As [27] have provided their
algorithm online with several of their data sets tested in their article, we implemented our method and theirs
(H-HMM) on their benchmark data sets.

In the first data set in [27], the goal is to recover two regions – one amplified, one deleted, that are shared
in 8 short profiles, though only 6 of the profiles exhibit each of the amplified or deleted regions. Performance
is measured by area under ROC curve (AUC), following [27]. Running H-HMMwith the default parameters,
we obtained an AUC (averaged over 10 trials) of 0.96± .01, taking on average 60.20 seconds. The weighted
group fused LARS, asked to select 100 breakpoints and followed by dynamic programming, took 0.06
seconds and had an AUC of 0.97. Thus, the performance of both methods was similar, though weighted
group fused LARS was around 1000 times faster.

The second data set was a cohort of lung cancer cell lines originally published in [28, 29]. As in [27], we
concentrated on the 18 NSCLC adenocarcinoma (NA) cell lines. Figure 5 shows the score statistics obtained
on Chromosome 8 when using either weighted group fused LARS or H-HMM.Weighted group fused LARS

14
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Molecular diagnosis / prognosis / theragnosis

Jean-Philippe Vert (ParisTech) Machine learning in genomics UCLA 2012 42 / 55



Gene selection, molecular signature

The idea
We look for a limited set of genes that are sufficient for prediction.
Selected genes should inform us about the underlying biology
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Lack of stability of signatures
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Gene networks
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Gene networks and expression data

Motivation
Basic biological functions usually involve the coordinated action of
several proteins:

Formation of protein complexes
Activation of metabolic, signalling or regulatory pathways

We know these groups through functional groups and protein
networks

Shrinkage estimators with prior knowledge

min
β

R(β) + λΩ(β)

How to design penalties Ω(β) to encode the following hypotheses:
1 Connected genes on a network should have similar weights
2 Select few genes that are connected or belong to same

predefined functional groups
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Hypothesis 1: connected genes on a network should
have similar weights

Smooth weights on the graph (or more generally graph kernels)

Ω(β) =
∑
i∼j

(
βi − βj

)2

Gene selection + smooth on the graph

Ω(β) =
∑
i∼j

(
βi − βj

)2
+

p∑
i=1

|βi |

Gene selection + Piecewise constant on the graph (total variation)

Ω(β) =
∑
i∼j

∣∣βi − βj
∣∣+

p∑
i=1

|βi |
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Example (Rapaport et al., 2008)Rapaport et al
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Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-

8
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Hypothesis 2: select connected genes

A difficult combinatorial problem
A convex solution: the latent group Lasso (Jacob et al., 2009)

Ω(β) = sup
α∈Rp:∀i∼j,‖α2

i +α
2
j ‖≤1

α>β .

1
2

3
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Preliminary results

Breast cancer data
Gene expression data for 8,141 genes in 295 breast cancer
tumors.
Performance

METHOD `1 Ωgraph(.)
ERROR 0.39± 0.04 0.36± 0.01
AV. SIZE C.C. 1.03 1.30
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Classical lasso signature
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Graph Lasso signature
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Conclusion

Machine learning offers many powerful tools to learn predictive
models from large sets of complex data
Specific developments are required to solve complex problems
that arise in bio-informatics
Dedicated convex penalties in empirical risk minimisation offer a
theoretically sound and computationally efficient framework
Many other applications not covered in this presentation!
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