Learning with structured sparsity in computational biology

Jean-Philippe Vert

Mines ParisTech and Curie Institute

IBIS'12,

Tokyo, Japan, November 8, 2012

Normal vs cancer cells

What goes wrong? How to treat?

Biology is now quantitative, "high-throughput"

DOE Joint Genome Institute

Some challenges in bioinformatics

- Signal processing, pattern detection and inference
- Which DNA modifications have happened in this cancer cell?
- Predictive modeling with interpretable models
- Which cancers have a risk to relapse, and why?
- Dig data, need for efficient algorithms
- http://aws.amazon.com/1000genomes/
- High-dimensional, structured data
- Prior knowledge

Learning with structured sparsity

$$
\min _{w} R(w)+\lambda \Omega(w)
$$

where:

- w is the hypothesis we want to infer from data
- $R(w)$ is a smooth function, which quantifies how "good" w fits the data
- $\Omega(w)$ is a non-smooth penalty, which favors particular solution

Particular choices of the penalty Ω can lead to

- Statistically sound procedures (consistency)
- Intepretable models (sparsity)
- Efficient algorithms (convex optimization)

In this talk

(1) Mapping DNA breakpoints in cancer genomes
(2) Isoform detection from RNA-seq data
(3) Learning molecular classifiers with network information

4 Inference of gene regulatory networks
(5) Conclusion

Outline

(1) Mapping DNA breakpoints in cancer genomes
(2) Isoform detection from RNA-seq data
(3) Learning molecular classifiers with network information

4 Inference of gene regulatory networks
(5) Conclusion

Chromosomic aberrations in cancer

Comparative Genomic Hybridization (CGH)

Motivation

- Comparative genomic hybridization (CGH) data measure the DNA copy number along the genome
- Very useful, in particular in cancer research to observe systematically variants in DNA content

Can we identify breakpoints and "smooth" each profile?

- A classical multiple change-point detection problem
- Should scale to lengths of order $10^{6} \sim 10^{9}$

Can we identify breakpoints and "smooth" each profile?

- A classical multiple change-point detection problem
- Should scale to lengths of order $10^{6} \sim 10^{9}$

An optimal solution

- For a signal $Y \in \mathbb{R}^{p}$, define an optimal approximation $\beta \in \mathbb{R}^{p}$ with k breakpoints as the solution of

$$
\min _{\beta \in \mathbb{R}^{p}}\|Y-\beta\|^{2} \quad \text { such that } \sum_{i=1}^{p-1} \mathbf{1}\left(U_{i+1} \neq U_{i}\right) \leq k
$$

An optimal solution

- For a signal $Y \in \mathbb{R}^{p}$, define an optimal approximation $\beta \in \mathbb{R}^{p}$ with k breakpoints as the solution of

$$
\min _{\beta \in \mathbb{R}^{p}}\|Y-\beta\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1} 1\left(U_{i+1} \neq U_{i}\right) \leq k
$$

- This is an optimization problem over the $\binom{p}{k}$ partitions...

An optimal solution

- For a signal $Y \in \mathbb{R}^{p}$, define an optimal approximation $\beta \in \mathbb{R}^{p}$ with k breakpoints as the solution of

$$
\min _{\beta \in \mathbb{R}^{p}}\|Y-\beta\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1} \mathbf{1}\left(U_{i+1} \neq U_{i}\right) \leq k
$$

- This is an optimization problem over the $\binom{p}{k}$ partitions...
- Dynamic programming finds the solution in $O\left(p^{2} k\right)$ in time and $O\left(p^{2}\right)$ in memory

An optimal solution

- For a signal $Y \in \mathbb{R}^{p}$, define an optimal approximation $\beta \in \mathbb{R}^{p}$ with k breakpoints as the solution of

$$
\min _{\beta \in \mathbb{R}^{p}}\|Y-\beta\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1} \mathbf{1}\left(U_{i+1} \neq U_{i}\right) \leq k
$$

- This is an optimization problem over the $\binom{p}{k}$ partitions...
- Dynamic programming finds the solution in $O\left(p^{2} k\right)$ in time and $O\left(p^{2}\right)$ in memory
- But: does not scale to $p=10^{6} \sim 10^{9} \ldots$

Promoting sparsity with the ℓ_{1} penalty

The ℓ_{1} penalty (Tibshirani, 1996; Chen et al., 1998)
If $R(\beta)$ is convex and "smooth", the solution of

$$
\min _{\beta \in \mathbb{R}^{p}} R(\beta)+\lambda \sum_{i=1}^{p}\left|\beta_{i}\right|
$$

is usually sparse.
Geometric interpretation with $p=2$

Promoting piecewise constant profiles penalty

The total variation / variable fusion penalty
If $R(\beta)$ is convex and "smooth", the solution of

$$
\min _{\beta \in \mathbb{R}^{p}} R(\beta)+\lambda \sum_{i=1}^{p-1}\left|\beta_{i+1}-\beta_{i}\right|
$$

is usually piecewise constant (Rudin et al., 1992; Land and Friedman, 1996).

Proof:

- Change of variable $u_{i}=\beta_{i+1}-\beta_{i}, u_{0}=\beta_{1}$
- We obtain a Lasso problem in $u \in \mathbb{R}^{p-1}$
- u sparse means β piecewise constant

TV signal approximator

$$
\min _{\beta \in \mathbb{R}^{p}}\|Y-\beta\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1}\left|\beta_{i+1}-\beta_{i}\right| \leq \mu
$$

Adding additional constraints does not change the change-points:

- $\sum_{i=1}^{p}\left|\beta_{i}\right| \leq \nu$ (Tibshirani et al., 2005; Tibshirani and Wang, 2008)
- $\sum_{i=1}^{p} \beta_{i}^{2} \leq \nu$ (Mairal et al. 2010)

Solving TV signal approximator

$$
\min _{\beta \in \mathbb{R}^{p}}\|Y-\beta\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1}\left|\beta_{i+1}-\beta_{i}\right| \leq \mu
$$

- QP with sparse linear constraints in $O\left(p^{2}\right)->135 \mathrm{~min}$ for $p=10^{5}$ (Tibshirani and Wang, 2008)
- Coordinate descent-like method $O(p)$? -> 3 s s for $p=10^{5}$ (Friedman et al., 2007)
- For all μ with the LARS in $O(p K)$ (Harchaoui and Levy-Leduc, 2008)
- For all μ in $O(p \ln p)(H o e f l i n g, 2009)$
- For the first K change-points in $O(p \ln K)$ (Bleakley and V., 2010)

TV signal approximator as dichotomic segmentation

```
Algorithm 1 Greedy dichotomic segmentation
Require: \(k\) number of intervals, \(\gamma(I)\) gain function to split an interval \(I\) into \(I_{L}(I), I_{R}(I)\)
    1: \(I_{0}\) represents the interval \([1, n]\)
    2: \(\mathcal{P}=\left\{I_{0}\right\}\)
    for \(i=1\) to \(k\) do
        \(I^{*} \leftarrow \arg \max \gamma\left(I^{*}\right)\)
            \(I \in \mathcal{P}\)
        \(\mathcal{P} \leftarrow \mathcal{P} \backslash\left\{I^{*}\right\}\)
        \(\mathcal{P} \leftarrow \mathcal{P} \cup\left\{I_{L}\left(I^{*}\right), I_{R}\left(I^{*}\right)\right\}\)
    end for
    8: return \(\mathcal{P}\)
```


Theorem (V. and Bleakley, 2010; see also Hoefling, 2009)

TV signal approximator performs "greedy" dichotomic segmentation

TV signal approximator as dichotomic segmentation

```
Algorithm 1 Greedy dichotomic segmentation
Require: \(k\) number of intervals, \(\gamma(I)\) gain function to split an interval \(I\) into \(I_{L}(I), I_{R}(I)\)
    1: \(I_{0}\) represents the interval \([1, n]\)
    2: \(\mathcal{P}=\left\{I_{0}\right\}\)
    for \(i=1\) to \(k\) do
        \(I^{*} \leftarrow \arg \max \gamma\left(I^{*}\right)\)
            \(I \in \mathcal{P}\)
        \(\mathcal{P} \leftarrow \mathcal{P} \backslash\left\{I^{*}\right\}\)
        \(\mathcal{P} \leftarrow \mathcal{P} \cup\left\{I_{L}\left(I^{*}\right), I_{R}\left(I^{*}\right)\right\}\)
    end for
    8: return \(\mathcal{P}\)
```


Theorem (V. and Bleakley, 2010; see also Hoefling, 2009)

TV signal approximator performs "greedy" dichotomic segmentation

Apparently greedy algorithm finds the global optimum!

Speed trial : 2 s . for $K=100, p=10^{7}$

Speed for $K=1,10$, 1e2, 1e3, 1e4, 1e5

Extension: cancer prognosis

Aggressive (left) vs non-aggressive (right) melanoma

Fused lasso for supervised classification

- Idea: find a linear predictor $f(Y)=\beta^{\top} Y$ that best discriminates the aggressive vs non-aggressive samples, subject to the constraints that it should be sparse and piecewise constant
- Computationnally: this is convex optimization problem that can be solved very efficiently with proximal optimization methods (V. and Bleakley, 2012)

Fused lasso for supervised classification

- Idea: find a linear predictor $f(Y)=\beta^{\top} Y$ that best discriminates the aggressive vs non-aggressive samples, subject to the constraints that it should be sparse and piecewise constant
- Mathematically:

$$
\min _{\beta \in \mathbb{R}^{p}} R(\beta)+\lambda_{1}\|\beta\|_{1}+\lambda_{2}\|\beta\|_{T V}
$$

- Computationnally: this is convex optimization problem that can be solved very efficiently with proximal optimization methods (V. and Bleakley, 2012)

Fused lasso for supervised classification

- Idea: find a linear predictor $f(Y)=\beta^{\top} Y$ that best discriminates the aggressive vs non-aggressive samples, subject to the constraints that it should be sparse and piecewise constant
- Mathematically:

$$
\min _{\beta \in \mathbb{R}^{p}} R(\beta)+\lambda_{1}\|\beta\|_{1}+\lambda_{2}\|\beta\|_{T V}
$$

- Computationnally: this is convex optimization problem that can be solved very efficiently with proximal optimization methods (V. and Bleakley, 2012)

Prognostic in melanoma (Rapaport et al., 2008)

Extension: finding multiple change points shared by several profiles

Extension: finding multiple change points shared by several profiles

"Optimal" segmentation by dynamic programming

- Define the "optimal" piecewise constant approximation $\hat{U} \in \mathbb{R}^{p \times n}$ of Y as the solution of

$$
\min _{U \in \mathbb{R}^{p \times n}}\|Y-U\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1} 1\left(U_{i+1, \bullet} \neq U_{i, \bullet}\right) \leq k
$$

- DP finds the solution in $O\left(p^{2} k n\right)$ in time and $O\left(p^{2}\right)$ in memory
- But: does not scale to $p=10^{6} \sim 10^{9} \ldots$

Selecting pre-defined groups of variables

Group lasso (Yuan \& Lin, 2006)

If groups of covariates are likely to be selected together, the ℓ_{1} / ℓ_{2}-norm induces sparse solutions at the group level:

$$
\Omega_{\text {group }}(w)=\sum_{g}\left\|w_{g}\right\|_{2}
$$

$$
\begin{aligned}
\Omega\left(w_{1}, w_{2}, w_{3}\right) & =\left\|\left(w_{1}, w_{2}\right)\right\|_{2}+\left\|w_{3}\right\|_{2} \\
& =\sqrt{w_{1}^{2}+w_{2}^{2}}+\sqrt{w_{3}^{2}}
\end{aligned}
$$

GFLseg (Bleakley and V., 2011)

Replace

$$
\min _{U \in \mathbb{R}^{p \times n}}\|Y-U\|^{2} \text { such that } \sum_{i=1}^{p-1} \mathbf{1}\left(U_{i+1, \bullet} \neq U_{i, \bullet}\right) \leq k
$$

by

$$
\min _{U \in \mathbb{R}^{p \times n}}\|Y-U\|^{2} \text { such that } \sum_{i=1}^{p-1} w_{i}\left\|U_{i+1, \bullet}-U_{i, \bullet}\right\| \leq \mu
$$

GFLseg = Group Fused Lasso segmentation

Questions

- Practice: can we solve it efficiently?
- Theory: does it recover the correct seamentation?

GFLseg (Bleakley and V., 2011)

Replace

$$
\min _{U \in \mathbb{R}^{p \times n}}\|Y-U\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1} \mathbf{1}\left(U_{i+1, \bullet} \neq U_{i, \bullet}\right) \leq k
$$

by

$$
\min _{U \in \mathbb{R}^{p \times n}}\|Y-U\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1} w_{i}\left\|U_{i+1, \bullet}-U_{i, \bullet}\right\| \leq \mu
$$

GFLseg = Group Fused Lasso segmentation

Questions

- Practice: can we solve it efficiently?
- Theory: does it recover the correct segmentation?

GFLseg as a group Lasso problem

- Make the change of variables:

$$
\begin{aligned}
\gamma & =U_{1, \bullet} \\
\beta_{i, \bullet} & =w_{i}\left(U_{i+1, \bullet}-U_{i, \bullet}\right) \quad \text { for } i=1, \ldots, p-1 .
\end{aligned}
$$

- TV approximator is then equivalent to the following group Lasso problem (Yuan and Lin, 2006):

$$
\min _{\beta \in \mathbb{R}^{(p-1) \times n}}\|\bar{Y}-\bar{X} \beta\|^{2}+\lambda \sum_{i=1}^{p-1}\left\|\beta_{i, \bullet}\right\|
$$

where \bar{Y} is the centered signal matrix and \bar{X} is a particular $(p-1) \times(p-1)$ design matrix.

TV approximator implementation

$$
\min _{\beta \in \mathbb{R}^{(p-1) \times n}}\|\bar{Y}-\bar{X} \beta\|^{2}+\lambda \sum_{i=1}^{p-1}\left\|\beta_{i, \bullet}\right\|,
$$

Theorem

The TV approximator can be solved efficiently:

- approximately with the group LARS in $O(n p k)$ in time and $O(n p)$ in memory
- exactly with a block coordinate descent + active set method in $O(n p)$ in memory

Proof: computational tricks...

Although \bar{X} is $(p-1) \times(p-1)$:

- For any $R \in \mathbb{R}^{p \times n}$, we can compute $C=\bar{X}^{\top} R$ in $O(n p)$ operations and memory
- For any two subset of indices $A=\left(a_{1}, \ldots, a_{|A|}\right)$ and $B=\left(b_{1}, \ldots, b_{|B|}\right)$ in $[1, p-1]$, we can compute $\bar{X}_{\bullet, A}^{\top} \bar{X}_{\bullet, B}$ in $O(|A||B|)$ in time and memory
- For any $A=\left(a_{1}, \ldots, a_{|A|}\right)$, set of distinct indices with $1 \leq a_{1}<\ldots<a_{|A|} \leq p-1$, and for any $|A| \times n$ matrix R, we can compute $C=\left(\bar{X}_{\bullet, A}^{\top} \bar{X}_{\bullet, A}\right)^{-1} R$ in $O(|A| n)$ in time and memory

Speed trial

Figure 2: Speed trials for group fused LARS (top row) and Lasso (bottom row). Left column: varying n, with fixed $p=10$ and $k=10$; center column: varying p, with fixed $n=1000$ and $k=10$; right column: varying k, with fixed $n=1000$ and $p=10$. Figure axes are log-log. Results are averaged over 100 trials.

Consistency

Suppose a single change-point:

- at position $u=\alpha p$
- with increments $\left(\beta_{i}\right)_{i=1, \ldots, n}$ s.t. $\bar{\beta}^{2}=\lim _{k \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \beta_{i}^{2}$
- corrupted by i.i.d. Gaussian noise of variance σ^{2}

Does the TV approximator correctly estimate the first change-point as p increases?

Consistency of the unweighted TV approximator

$$
\min _{U \in \mathbb{R}^{p \times n}}\|Y-U\|^{2} \quad \text { such that } \sum_{i=1}^{p-1}\left\|U_{i+1, \bullet}-U_{i, \bullet}\right\| \leq \mu
$$

Theorem

The unweighted TV approximator finds the correct change-point with probability tending to 1 (resp. 0) as $n \rightarrow+\infty$ if $\sigma^{2}<\tilde{\sigma}_{\alpha}^{2}$ (resp. $\left.\sigma^{2}>\tilde{\sigma}_{\alpha}^{2}\right)$, where

$$
\tilde{\sigma}_{\alpha}^{2}=p \bar{\beta}^{2} \frac{(1-\alpha)^{2}\left(\alpha-\frac{1}{2 p}\right)}{\alpha-\frac{1}{2}-\frac{1}{2 p}}
$$

- correct estimation on $[p \epsilon, p(1-\epsilon)]$ with $\epsilon=\sqrt{\frac{\sigma^{2}}{2 p \bar{\beta}^{2}}}+o\left(p^{-1 / 2}\right)$.
- wrong estimation near the boundaries

Consistency of the weighted TV approximator

$$
\min _{U \in \mathbb{R}^{\mathbb{P}} \times}\|Y-U\|^{2} \text { such that } \sum_{i=1}^{p-1} w_{i}\left\|U_{i+1}, \bullet-U_{i, \bullet}\right\| \leq \mu
$$

Theorem

The weighted TV approximator with weights

$$
\forall i \in[1, p-1], \quad w_{i}=\sqrt{\frac{i(p-i)}{p}}
$$

correctly finds the first change-point with probability tending to 1 as $n \rightarrow+\infty$.

- we see the benefit of increasing n
- we see the benefit of adding weights to the TV penalty

Proof sketch

- The first change-point \hat{i} found by TV approximator maximizes $F_{i}=\left\|\hat{c}_{i, \bullet}\right\|^{2}$, where

$$
\hat{c}=\bar{X}^{\top} \bar{Y}=\bar{X}^{\top} \bar{X} \beta^{*}+\bar{X}^{\top} W .
$$

- \hat{c} is Gaussian, and F_{i} is follows a non-central χ^{2} distribution with

$$
G_{i}=\frac{E F_{i}}{p}=\frac{i(p-i)}{p w_{i}^{2}} \sigma^{2}+\frac{\bar{\beta}^{2}}{w_{i}^{2} w_{u}^{2} p^{2}} \times \begin{cases}i^{2}(p-u)^{2} & \text { if } i \leq u \\ u^{2}(p-i)^{2} & \text { otherwise }\end{cases}
$$

- We then just check when $G_{u}=\max _{i} G_{i}$

Consistency for a single change-point

Figure 3: Single change-point accuracy for the group fused Lasso. Accuracy as a function of the number of profiles p when the change-point is placed in a variety of positions $u=50$ to $u=90$ (left and centre plots, resp. unweighted and weighted group fused Lasso), or: $u=50 \pm 2$ to $u=90 \pm 2$ (right plot, weighted with varying change-point location), for a signal of length 100.

Estimation of several change-points

Figure 4: Multiple change-point accuracy. Accuracy as a function of the number of profiles p when change-points are placed at the nine positions $\{10,20, \ldots, 90\}$ and the variance σ^{2} of the centered Gaussian noise is either 0.05 (left), 0.2 (center) and 1 (right). The profile length is 100 .

Application: detection of frequent abnormalities

Outline

(1) Mapping DNA breakpoints in cancer genomes
(2) Isoform detection from RNA-seq data
(3) Learning molecular classifiers with network information

4 Inference of gene regulatory networks
(5) Conclusion

Alternative splicing: 1 gene = many proteins

RNA-seq measures RNA abundance

Nature Reviews | Genetics

RNA-seq and alternative splicing

(Costa et al., 2011)

The isoform deconvolution problem

More formally

e exons
c candidate isoforms (up to $2^{e}-1$)
$\phi \in \mathbb{R}_{+}^{c}$ the vector of abundance of isoforms (unknown!)
U binary matrix:
exon $_{1} \quad \cdots$ exon $_{e}$ junction $_{1,2} \quad \cdots$ junction $_{e_{1}, e}$
isoform $_{1}$
isoform $_{2}$
\vdots
isoform $_{c}$$\left(\begin{array}{llllll}1 & \cdots & 1 & 1 & \cdots & 1 \\ 1 & \cdots & 0 & 1 & \cdots & 0 \\ & \cdots & & & \cdots & \\ 0 & \cdots & 1 & 0 & \cdots & 0\end{array}\right)$
$U^{\top} \phi$ the abundance of each exon/junction.

Goal: estimate ϕ from the observed reads on each exon/junction

Isoform deconvolution with the Lasso

Estimate ϕ sparse by solving:

$$
\min _{\phi \in \mathbb{R}_{+}^{c}} R\left(U^{\top} \phi\right)+\lambda\|\phi\|_{1}
$$

- IsoLasso (Li et al., 2011)
- NSMAP (Xia et al., 2011)
- SLIDE (Li et al., 2011)

Works well BUT computationally challenging to enumerate all candidate isoforms (up to 2^{e}) for large genes!

Fast isoform deconvolution with the Lasso

Theorem (Bernard, Mairal, Jacob and V., 2012)
The isoform deconvolution problem

$$
\min _{\phi \in \mathbb{R}_{+}^{c}} R\left(U^{\top} \phi\right)+\lambda\|\phi\|_{1}
$$

can be solved in polynomial time in the number of exon.
Key ideas
(1) 1-to-1 correspondence between isoforms and paths on the junction graph
(2) $U^{\top} \phi$ corresponds to a flow on the graph
(3) Reformulation as a convex cost flow problem (Mairal and Yu, 2012)

Trick 2: Isoforms are paths of a graph

Splicing Graph

G

Combinations of isoforms are flows

$$
\begin{aligned}
& s+\sqrt{3} \xrightarrow{2} \xrightarrow{1} \xrightarrow{1} \xrightarrow{2} \xrightarrow{2} \xrightarrow{3} \\
& \Delta \xrightarrow{1} 4 \xrightarrow{1} 2 \xrightarrow{1} 4 \xrightarrow{1} 4 \\
& \text { st } \xrightarrow{1} \xrightarrow{1} \longrightarrow 2 \longrightarrow 4 \xrightarrow{1} \xrightarrow{1}
\end{aligned}
$$

Isoform deconvolution as convex cost flow problem

$$
\min _{\phi \in \mathbb{R}_{+}^{+}} R\left(U^{\top} \phi\right)+\lambda\|\phi\|_{1}
$$

is equivalent to

$$
\min _{\text {fflow }} R(f)+\lambda f_{t}
$$

$$
\begin{aligned}
& \text { 回 } \rightarrow \text { 回一回 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 回一回•回一男一回一回 }
\end{aligned}
$$

Speed trial

Outline

(1) Mapping DNA breakpoints in cancer genomes
(2) Isoform detection from RNA-seq data
(3) Learning molecular classifiers with network information

4 Inference of gene regulatory networks
(5) Conclusion

DNA \rightarrow RNA \rightarrow protein

- CGH shows the (static) DNA
- Cancer cells have also abnormal (dynamic) gene expression (= transcription)

Breast cancer prognosis

Gene selection, molecular signature

The idea

- We look for a limited set of genes that are sufficient for prediction.
- Selected genes should inform us about the underlying biology

Lack of stability of signatures

Haury et al. (2011)

Gene networks, gene groups

Structured feature selection

- Basic biological functions usually involve the coordinated action of several proteins:
- Formation of protein complexes
- Activation of metabolic, signalling or regulatory pathways
- How to perform structured feature selection, such that selected genes
- belong to only a few groups?
- form a small number of connected components on the graph?

Selecting pre-defined groups of variables

Group lasso (Yuan \& Lin, 2006)

If groups of covariates are likely to be selected together, the ℓ_{1} / ℓ_{2}-norm induces sparse solutions at the group level:

$$
\Omega_{\text {group }}(w)=\sum_{g}\left\|w_{g}\right\|_{2}
$$

Group lasso with overlapping groups

Idea 1: shrink groups to zero (Jenatton et al., 2009)

- $\Omega_{\text {group }}(w)=\sum_{g}\left\|w_{g}\right\|_{2}$ sets groups to 0 .
- One variable is selected \Leftrightarrow all the groups to which it belongs are selected.

$$
\left\|w_{g_{1}}\right\|_{2}=\left\|w_{g_{3}}\right\|_{2}=0
$$

IGF selection \Rightarrow selection of unwanted groups

Removal of any group
containing a gene \Rightarrow the weight of the gene is 0 .

Group lasso with overlapping groups

Idea 2: latent group Lasso (Jacob et al., 2009)

$$
\Omega_{\text {latent }}^{\mathcal{G}}(w) \triangleq\left\{\begin{array}{l}
\min _{v} \sum_{g \in \mathcal{G}}\left\|v_{g}\right\|_{2} \\
w=\sum_{g \in \mathcal{G}} v_{g} \\
\operatorname{supp}\left(v_{g}\right) \subseteq g
\end{array}\right.
$$

$$
w=\begin{array}{|}
\mathrm{v} 1 & 0 \\
0 & \begin{array}{|}
0 \\
0 & \mathrm{v} 3
\end{array}
\end{array}
$$

Properties

- Resulting support is a union of groups in \mathcal{G}.
- Possible to select one variable without selecting all the groups containing it.
- Equivalent to group lasso when there is no overlap

Overlap and group unity balls

Balls for $\Omega_{\text {group }}^{\mathcal{G}}(\cdot)$ (middle) and $\Omega_{\text {latent }}^{\mathcal{G}}(\cdot)$ (right) for the groups $\mathcal{G}=\{\{1,2\},\{2,3\}\}$ where w_{2} is represented as the vertical coordinate. Left: group-lasso ($\mathcal{G}=\{\{1,2\},\{3\}\}$), for comparison.

Theoretical results

Consistency in group support (Jacob et al., 2009)

- Let \bar{w} be the true parameter vector.
- Assume that there exists a unique decomposition \bar{v}_{g} such that $\bar{w}=\sum_{g} \bar{v}_{g}$ and $\Omega_{\text {latent }}^{\mathcal{G}}(\bar{w})=\sum\left\|\bar{v}_{g}\right\|_{2}$.
- Consider the regularized empirical risk minimization problem $L(w)+\lambda \Omega_{\text {latent }}^{\mathcal{G}}(w)$.

Theoretical results

Consistency in group support (Jacob et al., 2009)

- Let \bar{w} be the true parameter vector.
- Assume that there exists a unique decomposition \bar{v}_{g} such that $\bar{w}=\sum_{g} \bar{v}_{g}$ and $\Omega_{\text {latent }}^{\mathcal{G}}(\bar{w})=\sum\left\|\bar{v}_{g}\right\|_{2}$.
- Consider the regularized empirical risk minimization problem $L(w)+\lambda \Omega_{\text {latent }}^{\mathcal{G}}(w)$.
Then
- under appropriate mutual incoherence conditions on X,
- as $n \rightarrow \infty$,
- with very high probability,
the optimal solution \hat{w} admits a unique decomposition $\left(\hat{v}_{g}\right)_{g \in \mathcal{G}}$ such that

$$
\left\{g \in \mathcal{G} \mid \hat{v}_{g} \neq 0\right\}=\left\{g \in \mathcal{G} \mid \bar{v}_{g} \neq 0\right\}
$$

Experiments

Synthetic data: overlapping groups

- 10 groups of 10 variables with 2 variables of overlap between two successive groups : $\{1, \ldots, 10\},\{9, \ldots, 18\}, \ldots,\{73, \ldots, 82\}$.
- Support: union of 4 th and 5 th groups.
- Learn from 100 training points.

Frequency of selection of each variable with the lasso (left) and $\Omega_{\text {latent }}^{\mathcal{G}}$ (.) (middle), comparison of the RMSE of both methods (right).

Graph lasso

Two solutions

$$
\begin{gathered}
\Omega_{\text {group }}^{\mathcal{G}}(\beta)=\sum_{i \sim j} \sqrt{\beta_{i}^{2}+\beta_{j}^{2}}, \\
\Omega_{\text {latent }}^{\mathcal{G}}(\beta)=\sup _{\alpha \in \mathbb{R}^{\mathbb{P}}: \forall i \sim j,\left\|\alpha_{i}^{2}+\alpha_{j}^{2}\right\| \leq 1} \alpha^{\top} \beta .
\end{gathered}
$$

Preliminary results

Breast cancer data

- Gene expression data for 8, 141 genes in 295 breast cancer tumors.
- Canonical pathways from MSigDB containing 639 groups of genes, 637 of which involve genes from our study.

METHOD	ℓ_{1}	$\Omega_{\text {Latent }}^{\mathcal{G}}()$.
ERROR	0.38 ± 0.04	0.36 ± 0.03
MEAN $\#$ PATH.	130	30

- Graph on the genes.

METHOD	ℓ_{1}	$\Omega_{\text {graph }}()$.
ERROR	0.39 ± 0.04	0.36 ± 0.01
Av. SIZE C.C.	1.03	1.30

Lasso signature

Graph Lasso signature

Outline

(1) Mapping DNA breakpoints in cancer genomes
(2) Isoform detection from RNA-seq data
(3) Learning molecular classifiers with network information

4 Inference of gene regulatory networks
(5) Conclusion

Gene expression

Image adapted from: National Human Genome Research Institute.

Gene expression regulation

Gene regulatory network

Gene regulatory network of E. coli

Gene expression data

Reconstruction of gene regulatory network from expression data

De novo inference

The problem

Given a set of gene expressions, infer the regulations.

How?

- Connect "similar genes": correlation, mutual-information.
- Model-based approaches: dynamic systems, boolean networks, state-space models, Bayesian networks
- Sparse regression: regulators as the smallest set of TF necessary to predict the expression of the target (GENIE, TIGRESS...)

De novo inference

The problem

Given a set of gene expressions, infer the regulations.

How?

- Connect "similar genes": correlation, mutual-information...
- Model-based approaches: dynamic systems, boolean networks, state-space models, Bayesian networks
- Sparse regression: regulators as the smallest set of TF necessary to predict the expression of the target (GENIE, TIGRESS...)

Predicting regulation by sparse regression

- Let $Y \in \mathbb{R}^{n}$ the expression of a gene, and $X_{1}, \ldots, X_{p} \in \mathbb{R}^{n}$ the expression of all TFs. We look for a model

$$
Y=\sum_{i=1}^{p} \beta_{i} X_{i}+\text { noise }
$$

where β is sparse, i.e., only a few β_{i} are non-zero.

- We can estimate the sparse regression model from a matrix of expression data.
- Non-zero β_{i} 's correspond to predicted regulators.

Feature selection with the lasso

$$
\min _{\beta \in \mathbb{R}^{P}}\|Y-X \beta\|^{2}+\lambda\|\beta\|_{1} \quad \text { where }\|\beta\|_{1}=\sum_{i=1}^{p}\left|\beta_{i}\right|
$$

- No explicit solution, but this is just a quadratic program (Tibshirani, 1996; Chen et al., 1998).
- Efficient solution with the LARS (Efron et al., 2004)
- When t is not too large, the solution will usually be sparse

Geometric interpretation with $p=2$

TIGRESS (Haury, Mordelet, Vera-Licona and V., 2012)

- For $t=1$ to T do
- Bootstrap a random sample S_{t} from the training set
- Randomly reweight each feature (uniform on [$\alpha, 1]$)
- Select L features with the Lasso
- The score of a feature is the number of times it was selected among the T repeats (Meinshausen and Bühlmann, 2010).
- Rank features (TF-TG interactions) by decreasing area under the score curve

Performance

DREAM5: GENIE and TIGRESS ranked 1st and 2nd out or 29 on the in silico challenge

TIGRESS vs ...

Algorithm	AUPR	$p_{\text {AUPR }}$	AUROC	$p_{A U R O C}$
TIGRESS	0.3152	$8.01 \mathrm{e}-139$	0.7829	$5.43 \mathrm{e}-60$
GENIE3	0.2915	$2.91 \mathrm{e}-105$	0.8155	$2.30 \mathrm{e}-107$
CLR	0.2654	$1.82 \mathrm{e}-73$	0.7817	$1.41 \mathrm{e}-58$
Pearson	0.1887	$3.71 \mathrm{e}-13$	0.7568	$1.44 \mathrm{e}-32$
ARACNE	0.2758	$1.73 \mathrm{e}-85$	0.6715	$9.82 \mathrm{e}-01$
Lasso	0.2079	$1.38 \mathrm{e}-23$	0.7280	$1.06 \mathrm{e}-12$

Table: AUPR, AUROC and p-values obtained by several methods on the in silico dataset.

Influence of α and scoring method

DREAM5 in silico network.

Outline

(1) Mapping DNA breakpoints in cancer genomes
(2) Isoform detection from RNA-seq data
(3) Learning molecular classifiers with network information

4 Inference of gene regulatory networks
(5) Conclusion

Conclusions

- Convex sparsity-inducing penalties as a way to incorporate prior knowledge
- Specific implementations for specific problems:
- greedy dichotomic segmentation for fused lasso
- fast group Lasso for joint segmentation
- network flow optimization of lasso over the paths of a graph
- efficient proximity operator computation of latent group lasso
- Often, feature selection is consistent (although we pay a price when features are very correlated), stability selection may help
- Numerous applications in bioinformatics and beyond!

Acknowledgements

Kevin Bleakley (INRIA), Laurent Jacob (UC Berkeley) Guillaume Obozinski (INRIA), Anne-Claire Haury (ParisTech), Julien Mairal (UC Berkeley/INRIA), Elsa Bernard (ParisTech), Fantine Mordelet (Duke), Paola Vera-Licona (Institut Curie)

Post-docs available in Paris!

