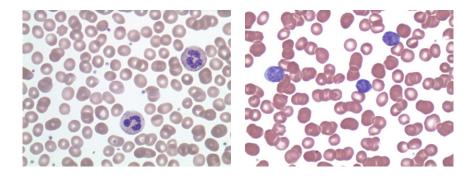
Fast sparse methods for genomics data

Jean-Philippe Vert

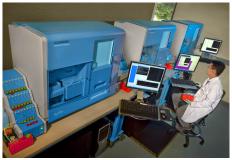
SMAI, Seignosse, May 28, 2013

Normal vs cancer cells

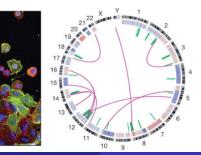


What goes wrong? How to treat?

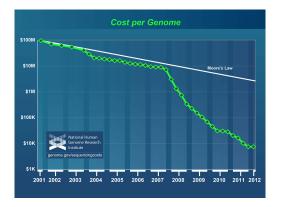
Biology is now quantitative, "high-throughput"



DOE Joint Genome Institute



Big data in biology



- "The \$1,000 genome, the \$1 million interpretation" (B. Kopf)
- High-dimensional, heterogeneous, structured data. "Large p"
- http://aws.amazon.com/1000genomes/

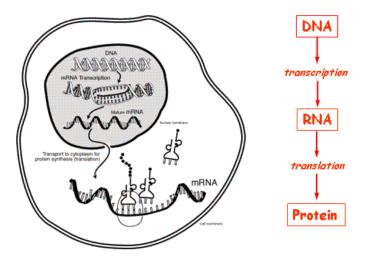
$$\min_{\boldsymbol{w}} \boldsymbol{R}(\boldsymbol{w}) + \lambda \Omega(\boldsymbol{w})$$

where:

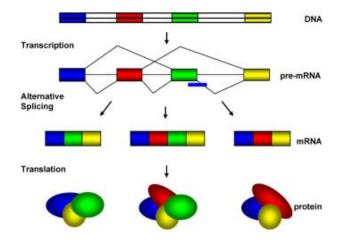
- w is the hypothesis we want to infer from data
- *R*(*w*) is a smooth convex "fitness" function
- $\Omega(w)$ is a non-smooth convex penalty, which favors particular solution

- Isoform detection from RNA-seq data
- 2 Mapping DNA breakpoints in cancer genomes

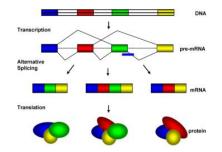
2 Mapping DNA breakpoints in cancer genomes



Alternative splicing: 1 gene = many proteins



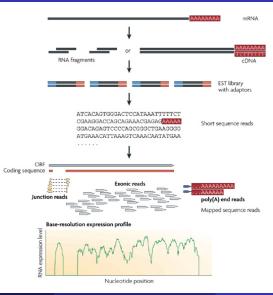
The isoform identification and quantification problem



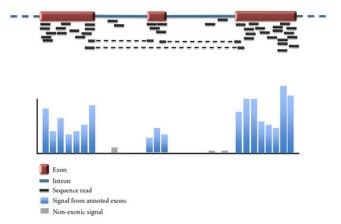
Given a biological sample (e.g., cancer tissue), can we:

- identify the isoform(s) of each gene present in the sample?
- Q quantify their abundance?

RNA-seq measures mRNA abundance by sequencing short fragments

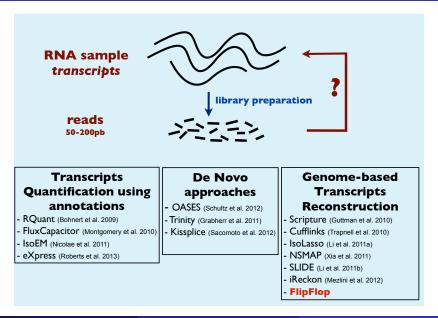


RNA-seq and alternative splicing

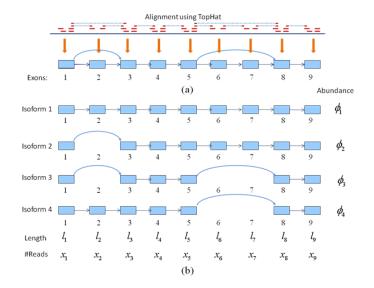


(Costa et al., 2011)

From RNA-seq to isoforms



The isoform deconvolution problem



(Xia et al., 2011)

e exons *c* candidate isoforms (up to $2^e - 1$) $\phi \in \mathbb{R}^c_+$ the vector of abundance of isoforms (unknown!) *U* binary matrix:

	exon ₁		exon _e	junction _{1,2}	• • •	junction _{e1,e}
isoform ₁	(1	•••	1	1	• • •	1)
isoform ₂	1	•••	0	1	•••	0
:						
isoform _c	0		1	0	• • •	o /

 $U^{\top}\phi$ the abundance of each exon/junction.

Goal: estimate ϕ from the observed reads on each exon/junction

Estimate ϕ sparse by solving:

$$\min_{\phi \in \mathbb{R}^{c}_{+}} \boldsymbol{R}(\boldsymbol{U}^{\top}\phi) + \lambda \| \phi \|_{1}$$

- IsoLasso (Li et al., 2011)
- NSMAP (Xia et al., 2011)
- SLIDE (Li et al., 2011)

Works well BUT computationally challenging to enumerate all candidate isoforms (up to 2^{*e*}) for large genes!

Fast isoform deconvolution with the Lasso

Theorem (Bernard, Mairal, Jacob and V., 2012)

The isoform deconvolution problem

$$\min_{\phi \in \mathbb{R}^{c}_{+}} R(U^{\top}\phi) + \lambda \|\phi\|_{1}$$

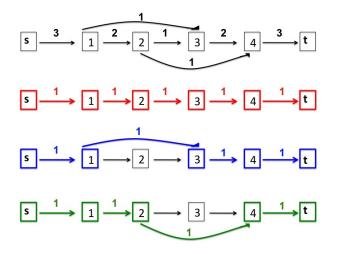
can be solved in polynomial time in the number of exon.

Key ideas

- $U^{\top}\phi$ corresponds to a flow on the graph
- Reformulation as a convex cost flow problem (Mairal and Yu, 2012)
- Recover isoforms by flow decomposition algorithm

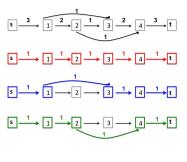
"Feature selection on an exponential number of features in polynomial time"

From isoforms to flows



- Isoforms are paths
- Linear combinations of isoforms are flows

Isoform deconvolution as convex cost flow problem



$$\min_{\phi \in \mathbb{R}^{c}_{+}} R(U^{\top}\phi) + \lambda \| \phi \|_{1}$$

is equivalent to

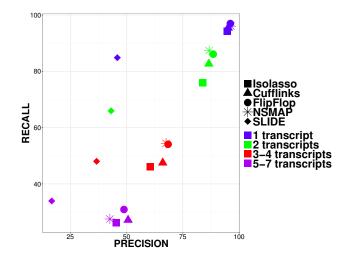
 $\min_{\text{f flow}} R(f) + \lambda f_t$

FlipFlop (Bernard, Jacob, Mairal and V., 2012)

$$\min_{\phi \in \mathbb{R}^{c}_{+}} R(U^{\top}\phi) + \lambda \| \phi \|_{1}$$

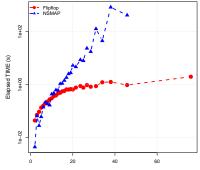
- Cufflink : a priori selection of isoforms (minimum graph cover)
- IsoLasso : pre-filtering of candidate isoforms using various heuristics
- NSMAP, SLIDE : limit the maximum number of exons
- FlipFlop : exact optimization without pre-filtering in polynomial time

Performance in isoform identification

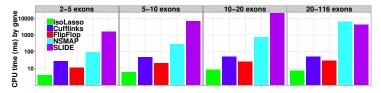


Simulated data (hg19, 1137 genes on chr1, 1million 75 bp single-end reads by transcript levels).

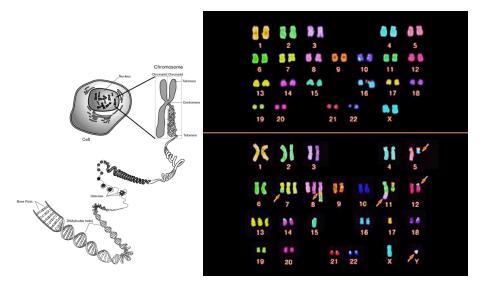
Speed trial



Number of EXONS



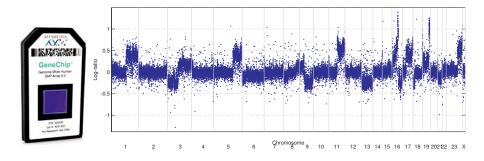
Chromosomic aberrations in cancer



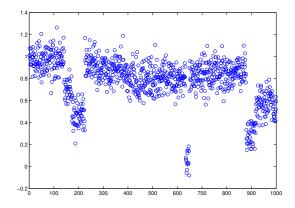
Comparative Genomic Hybridization (CGH)

Motivation

- Comparative genomic hybridization (CGH) data measure the DNA copy number along the genome
- Very useful, in particular in cancer research to observe systematically variants in DNA content

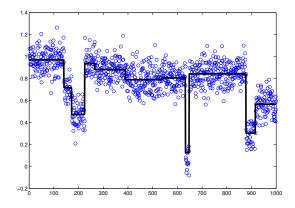


Can we identify breakpoints and "smooth" each profile?

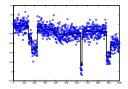


A classical multiple change-point detection problem
 Should scale to lengths of order $10^6 \sim 10^9$

Can we identify breakpoints and "smooth" each profile?



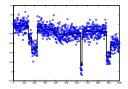
A classical multiple change-point detection problem
 Should scale to lengths of order $10^6 \sim 10^9$



For a signal Y ∈ ℝ^p, define an optimal approximation β ∈ ℝ^p with k breakpoints as the solution of

$$\min_{\beta \in \mathbb{R}^p} \| \mathbf{Y} - \beta \|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} \mathbf{1} \left(\beta_{i+1} \neq \beta_i \right) \le k$$

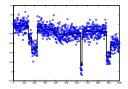
- This is an optimization problem over the (^P_k) partitions...
 Dynamic programming finds the solution in O(p²k) in time and O(p²) in memory
- But: does not scale to $p = 10^6 \sim 10^9$.



For a signal Y ∈ ℝ^p, define an optimal approximation β ∈ ℝ^p with k breakpoints as the solution of

$$\min_{\beta \in \mathbb{R}^p} \| Y - \beta \|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} \mathbf{1} \left(\beta_{i+1} \neq \beta_i \right) \le k$$

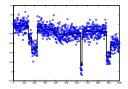
- This is an optimization problem over the $\binom{p}{k}$ partitions...
 - But: does not scale to $p = 10^6 \sim 10^9$.



For a signal Y ∈ ℝ^ρ, define an optimal approximation β ∈ ℝ^ρ with k breakpoints as the solution of

$$\min_{\beta \in \mathbb{R}^p} \| \mathbf{Y} - \beta \|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} \mathbf{1} \left(\beta_{i+1} \neq \beta_i \right) \leq k$$

- This is an optimization problem over the $\binom{p}{k}$ partitions...
- Dynamic programming finds the solution in $O(p^2k)$ in time and $O(p^2)$ in memory
- But: does not scale to $p = 10^6 \sim 10^9$...



For a signal Y ∈ ℝ^ρ, define an optimal approximation β ∈ ℝ^ρ with k breakpoints as the solution of

$$\min_{\beta \in \mathbb{R}^p} \| \mathbf{Y} - \beta \|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} \mathbf{1} \left(\beta_{i+1} \neq \beta_i \right) \leq k$$

- This is an optimization problem over the $\binom{p}{k}$ partitions...
- Dynamic programming finds the solution in $O(p^2k)$ in time and $O(p^2)$ in memory
- But: does not scale to $p = 10^6 \sim 10^9$...

Promoting sparsity with the ℓ_1 penalty

The ℓ_1 penalty (Tibshirani, 1996; Chen et al., 1998)

If $R(\beta)$ is convex and "smooth", the solution of

$$\min_{\beta \in \mathbb{R}^p} \boldsymbol{R}(\beta) + \lambda \sum_{i=1}^p |\beta_i|$$

Geometric interpretation with p = 2

The total variation / variable fusion penalty

If $R(\beta)$ is convex and "smooth", the solution of

$$\min_{\beta \in \mathbb{R}^p} R(\beta) + \lambda \sum_{i=1}^{p-1} |\beta_{i+1} - \beta_i|$$

is usually piecewise constant (Rudin et al., 1992; Land and Friedman, 1996).

Proof:

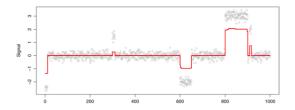
- Change of variable $u_i = \beta_{i+1} \beta_i$, $u_0 = \beta_1$
- We obtain a Lasso problem in $u \in \mathbb{R}^{p-1}$
- u sparse means β piecewise constant

TV signal approximator

$$\min_{\beta \in \mathbb{R}^p} \| Y - \beta \|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} |\beta_{i+1} - \beta_i| \le \mu$$

Adding additional constraints does not change the change-points:

• $\sum_{i=1}^{p} |\beta_i| \le \nu$ (Tibshirani et al., 2005; Tibshirani and Wang, 2008) • $\sum_{i=1}^{p} \beta_i^2 \le \nu$ (Mairal et al. 2010)



$$\min_{\beta \in \mathbb{R}^p} \| Y - \beta \|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} |\beta_{i+1} - \beta_i| \le \mu$$

- QP with sparse linear constraints in O(p²) -> 135 min for p = 10⁵ (Tibshirani and Wang, 2008)
- Coordinate descent-like method O(p)? -> 3s s for p = 10⁵ (Friedman et al., 2007)
- With the LARS in *O*(*pk*) (Harchaoui and Levy-Leduc, 2008)
- For all μ in $O(p \ln p)$ (Hoefling, 2009)
- For the first k change-points in $O(p \ln k)$ (Bleakley and V., 2010)

Solving TV signal approximator in $O(p \ln k)$

Theorem (V. and Bleakley, 2010; see also Hoefling, 2009)

TV signal approximator performs "greedy" dichotomic segmentation

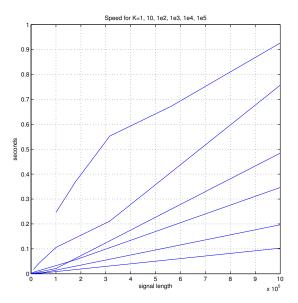
Algorithm 1 Greedy dichotomic segmentation

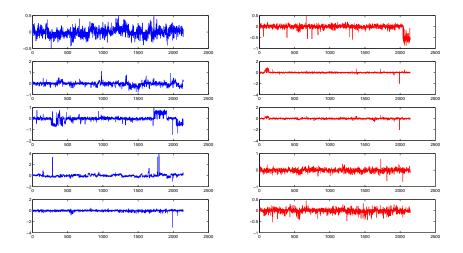
Require: k number of intervals, $\gamma(I)$ gain function to split an interval I into $I_L(I)$, $I_R(I)$

1: I_0 represents the interval [1, n]2: $\mathcal{P} = \{I_0\}$ 3: for i = 1 to k do 4: $I^* \leftarrow \arg \max \gamma (I^*)$ 5: $\mathcal{P} \leftarrow \mathcal{P} \setminus \{I^*\}$ 6: $\mathcal{P} \leftarrow \mathcal{P} \cup \{I_L (I^*), I_R (I^*)\}$ 7: end for 8: return \mathcal{P}

Apparently greedy algorithm finds the global optimum!

Speed trial : 2 s. for k = 100, $p = 10^7$



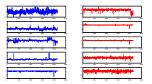


Aggressive (left) vs non-aggressive (right) melanoma

JP Vert (ParisTech)

Sparse methods in genomics

Fused lasso for supervised classification



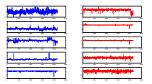
 Idea: find a linear predictor f(Y) = β^T Y that best discriminates the aggressive vs non-aggressive samples, subject to the constraints that it should be sparse and piecewise constant

• Mathematically:

$$\min_{\beta \in \mathbb{R}^{p}} R(\beta) + \lambda_{1} \|\beta\|_{1} + \lambda_{2} \|\beta\|_{TV}$$

Computationnally: proximal methods

Fused lasso for supervised classification

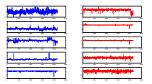


- Idea: find a linear predictor f(Y) = β^T Y that best discriminates the aggressive vs non-aggressive samples, subject to the constraints that it should be sparse and piecewise constant
- Mathematically:

$$\min_{\beta \in \mathbb{R}^{p}} R(\beta) + \lambda_{1} \| \beta \|_{1} + \lambda_{2} \| \beta \|_{TV}$$

Computationnally: proximal methods

Fused lasso for supervised classification



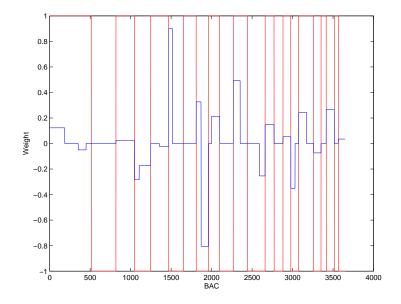
- Idea: find a linear predictor f(Y) = β^T Y that best discriminates the aggressive vs non-aggressive samples, subject to the constraints that it should be sparse and piecewise constant
- Mathematically:

$$\min_{\beta \in \mathbb{R}^{p}} R(\beta) + \lambda_{1} \| \beta \|_{1} + \lambda_{2} \| \beta \|_{TV}$$

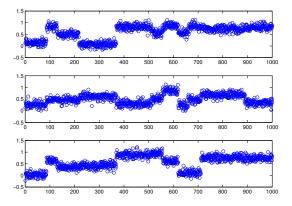
Computationnally: proximal methods

JP Vert (ParisTech)

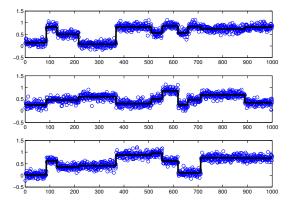
Prognosis in melanoma (Rapaport et al., 2008)



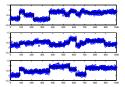
Extension 2: finding multiple change points shared by several profiles



Extension 2: finding multiple change points shared by several profiles



"Optimal" segmentation by dynamic programming



• Define the "optimal" piecewise constant approximation $\hat{U} \in \mathbb{R}^{p \times n}$ of *Y* as the solution of

$$\min_{U \in \mathbb{R}^{p \times n}} \| Y - U \|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} \mathbf{1} \left(U_{i+1, \bullet} \neq U_{i, \bullet} \right) \le k$$

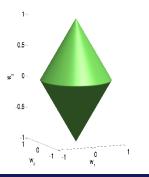
- DP finds the solution in $O(p^2 kn)$ in time and $O(p^2)$ in memory
- But: does not scale to $p = 10^6 \sim 10^9$...

Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the ℓ_1/ℓ_2 -norm induces sparse solutions *at the group level*:

$$\Omega_{group}(w) = \sum_{g} \|w_g\|_2$$



$$\Omega(w_1, w_2, w_3) = \|(w_1, w_2)\|_2 + \|w_3\|_2$$
$$= \sqrt{w_1^2 + w_2^2} + \sqrt{w_3^2}$$

GFLseg (Bleakley and V., 2011)

Replace

$$\min_{U\in\mathbb{R}^{p\times n}} \|Y-U\|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} \mathbf{1} \left(U_{i+1,\bullet} \neq U_{i,\bullet} \right) \leq k$$

by

$$\min_{U \in \mathbb{R}^{p \times n}} \|Y - U\|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} w_i \|U_{i+1,\bullet} - U_{i,\bullet}\| \le \mu$$

GFLseg = Group Fused Lasso segmentation

Questions

- Practice: can we solve it efficiently?
- Theory: does it recover the correct segmentation?

GFLseg (Bleakley and V., 2011)

Replace

$$\min_{U\in\mathbb{R}^{p\times n}} \parallel Y-U \parallel^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} \mathbf{1} \left(U_{i+1,\bullet} \neq U_{i,\bullet} \right) \leq k$$

by

$$\min_{U \in \mathbb{R}^{p \times n}} \|Y - U\|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} w_i \|U_{i+1,\bullet} - U_{i,\bullet}\| \le \mu$$

GFLseg = Group Fused Lasso segmentation

Questions

- Practice: can we solve it efficiently?
- Theory: does it recover the correct segmentation?

• Make the change of variables:

$$\gamma = U_{1,\bullet},$$

$$\beta_{i,\bullet} = w_i \left(U_{i+1,\bullet} - U_{i,\bullet} \right) \quad \text{for } i = 1, \dots, p-1.$$

• TV approximator is then equivalent to the following group Lasso problem (Yuan and Lin, 2006):

$$\min_{\beta \in \mathbb{R}^{(p-1) \times n}} \| \bar{Y} - \bar{X}\beta \|^2 + \lambda \sum_{i=1}^{p-1} \| \beta_{i,\bullet} \|,$$

where \overline{Y} is the centered signal matrix and \overline{X} is a particular $(p-1) \times (p-1)$ design matrix.

TV approximator implementation

$$\min_{\beta \in \mathbb{R}^{(p-1) \times n}} \| \bar{Y} - \bar{X}\beta \|^2 + \lambda \sum_{i=1}^{p-1} \| \beta_{i,\bullet} \|,$$

Theorem

The TV approximator can be solved efficiently:

- "approximately" with the group LARS in *O*(*npk*) in time and *O*(*np*) in memory
- "exactly" with a block coordinate descent + active set method in O(np) in memory

Although \bar{X} is $(p-1) \times (p-1)$:

- For any *R* ∈ ℝ^{p×n}, we can compute *C* = X^T*R* in *O*(*np*) operations and memory
- For any two subset of indices $A = (a_1, \dots, a_{|A|})$ and $B = (b_1, \dots, b_{|B|})$ in [1, p-1], we can compute $\bar{X}_{\bullet,A}^{\top} \bar{X}_{\bullet,B}$ in O(|A||B|) in time and memory
- For any $A = (a_1, \ldots, a_{|A|})$, set of distinct indices with $1 \le a_1 < \ldots < a_{|A|} \le p 1$, and for any $|A| \times n$ matrix R, we can compute $C = (\bar{X}_{\bullet,A}^{\top} \bar{X}_{\bullet,A})^{-1} R$ in O(|A|n) in time and memory

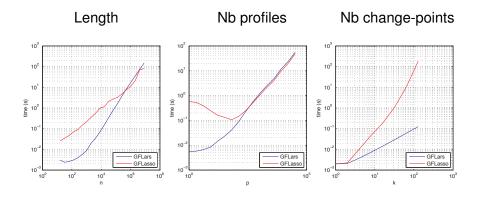
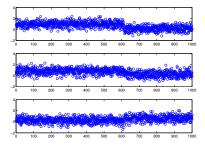


Figure 2: Speed trials for group fused LARS (top row) and Lasso (bottom row). Left column: varying n, with fixed p = 10 and k = 10; center column: varying p, with fixed n = 1000 and k = 10; right column: varying k, with fixed n = 1000 and p = 10. Figure axes are log-log. Results are averaged over 100 trials.

Consistency

Suppose a single change-point:

- at position $u = \alpha p$
- with increments $(\beta_i)_{i=1,...,n}$ s.t. $\bar{\beta}^2 = \lim_{k \to \infty} \frac{1}{n} \sum_{i=1}^n \beta_i^2$
- corrupted by i.i.d. Gaussian noise of variance σ^2



Does the TV approximator correctly estimate the first change-point as *p* increases?

JP Vert (ParisTech)

Consistency of the unweighted TV approximator

$$\min_{U \in \mathbb{R}^{p \times n}} \|Y - U\|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} \|U_{i+1,\bullet} - U_{i,\bullet}\| \le \mu$$

Theorem

The unweighted TV approximator finds the correct change-point with probability tending to 1 (resp. 0) as $n \to +\infty$ if $\sigma^2 < \tilde{\sigma}_{\alpha}^2$ (resp. $\sigma^2 > \tilde{\sigma}_{\alpha}^2$), where

$$\tilde{\sigma}_{\alpha}^{2} = p \bar{\beta}^{2} \frac{(1-\alpha)^{2} (\alpha - \frac{1}{2p})}{\alpha - \frac{1}{2} - \frac{1}{2p}}$$

• correct estimation on $[p\epsilon, p(1-\epsilon)]$ with $\epsilon = \sqrt{\frac{\sigma^2}{2p\beta^2}} + o(p^{-1/2})$.

wrong estimation near the boundaries

Consistency of the weighted TV approximator

$$\min_{\boldsymbol{U}\in\mathbb{R}^{p\times n}} \|\boldsymbol{Y}-\boldsymbol{U}\|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} w_i \|\boldsymbol{U}_{i+1,\bullet}-\boldsymbol{U}_{i,\bullet}\| \leq \mu$$

Theorem

The weighted TV approximator with weights

$$\forall i \in [1, p-1], \quad w_i = \sqrt{rac{i(p-i)}{p}}$$

correctly finds the first change-point with probability tending to 1 as $n \rightarrow +\infty$.

- we see the benefit of increasing n
- we see the benefit of adding weights to the TV penalty

JP Vert (ParisTech)

• The first change-point \hat{i} found by TV approximator maximizes $F_i = \|\hat{c}_{i,\bullet}\|^2$, where

$$\hat{\boldsymbol{c}} = ar{\boldsymbol{X}}^{ op} \, ar{\boldsymbol{Y}} = ar{\boldsymbol{X}}^{ op} ar{\boldsymbol{X}} eta^* + ar{\boldsymbol{X}}^{ op} oldsymbol{W} \, .$$

• \hat{c} is Gaussian, and F_i is follows a non-central χ^2 distribution with

$$G_i = \frac{EF_i}{p} = \frac{i(p-i)}{pw_i^2}\sigma^2 + \frac{\bar{\beta}^2}{w_i^2w_u^2p^2} \times \begin{cases} i^2(p-u)^2 & \text{if } i \leq u \,, \\ u^2(p-i)^2 & \text{otherwise.} \end{cases}$$

• We then just check when $G_u = \max_i G_i$

Consistency for a single change-point

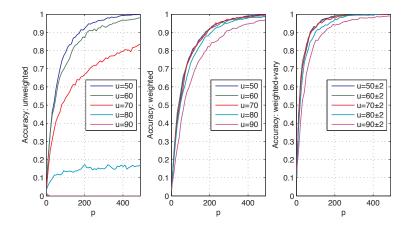


Figure 3: Single change-point accuracy for the group fused Lasso. Accuracy as a function of the number of profiles p when the change-point is placed in a variety of positions u = 50 to u = 90 (left and centre plots, resp. unweighted and weighted group fused Lasso), or: $u = 50 \pm 2$ to $u = 90 \pm 2$ (right plot, weighted with varying change-point location), for a signal of length 100.

Estimation of several change-points

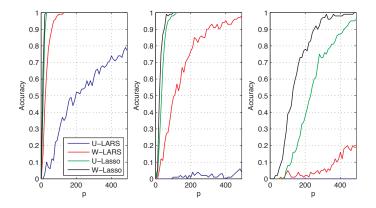
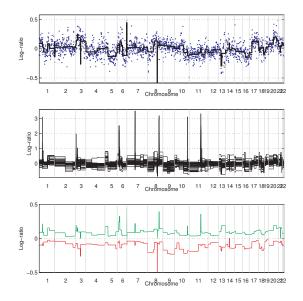


Figure 4: Multiple change-point accuracy. Accuracy as a function of the number of profiles p when change-points are placed at the nine positions $\{10, 20, \ldots, 90\}$ and the variance σ^2 of the centered Gaussian noise is either 0.05 (left), 0.2 (center) and 1 (right). The profile length is 100.

Application: detection of frequent abnormalities



- Convex sparsity-inducing penalties as a way to incorporate prior knowledge
- Specific implementations for specific problems:
 - greedy dichotomic segmentation for fused lasso
 - fast group Lasso for joint segmentation
 - network flow optimization of lasso over the paths of a graph
- Often, feature selection is consistent (although we pay a price when features are very correlated), stability selection may help
- Numerous applications in bioinformatics and beyond!

Kevin Bleakley (INRIA), Elsa Bernard (ParisTech/Institut Curie), Laurent Jacob (UC Berkeley/CNRS), Julien Mairal (UC Berkeley/INRIA))