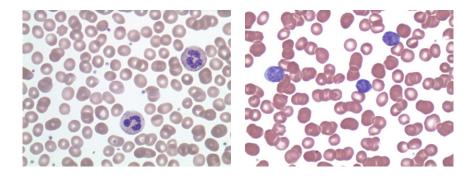
Learning with structured sparsity in computational biology

Jean-Philippe Vert

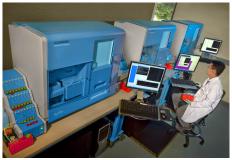
PRIB, Nice, France, June 18, 2013

Normal vs cancer cells

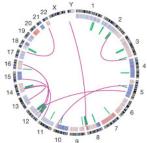


What goes wrong? How to treat?

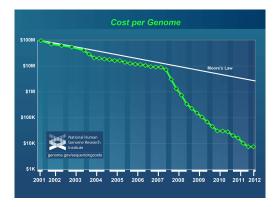
Biology is now quantitative, "high-throughput"



DOE Joint Genome Institute



Big data in biology



- "The \$1,000 genome, the \$1 million interpretation" (B. Kopf)
- High-dimensional, heterogeneous, structured data. "Large p"
- http://aws.amazon.com/1000genomes/

$$\min_{\boldsymbol{w}} \boldsymbol{R}(\boldsymbol{w}) + \lambda \Omega(\boldsymbol{w})$$

where:

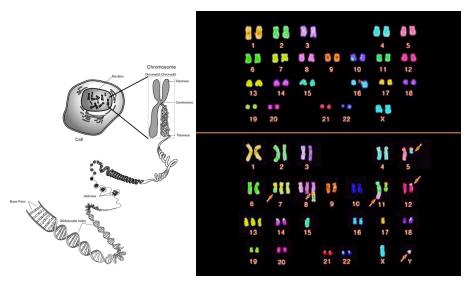
- w is the hypothesis we want to infer from data
- *R*(*w*) is a smooth convex "fitness" function
- Ω(w) is a non-smooth convex penalty, which favors particular solution

- Mapping DNA breakpoints in cancer genomes
 - 2 Isoform detection from RNA-seq data
 - Learning molecular classifiers with network information

1 Mapping DNA breakpoints in cancer genomes

3 Learning molecular classifiers with network information

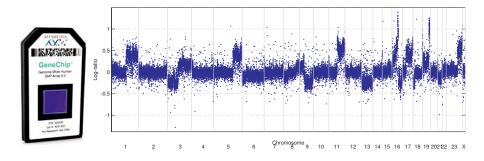
Chromosomic aberrations in cancer



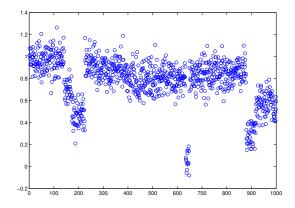
Comparative Genomic Hybridization (CGH)

Motivation

- Comparative genomic hybridization (CGH) data measure the DNA copy number along the genome
- Very useful, in particular in cancer research to observe systematically variants in DNA content

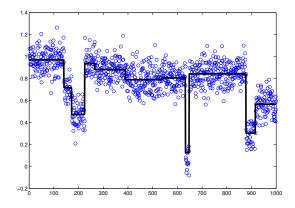


Can we identify breakpoints and "smooth" each profile?



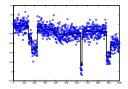
- A classical multiple change-point detection problem
- $\bullet\,$ Should scale to lengths of order $10^6\sim 10^9$

Can we identify breakpoints and "smooth" each profile?



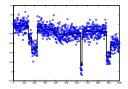
- A classical multiple change-point detection problem
- $\bullet\,$ Should scale to lengths of order $10^6\sim 10^9$

JP Vert (ParisTech)



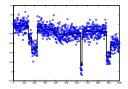
$$\min_{eta \in \mathbb{R}^p} \parallel Y - eta \parallel^2 \;\; ext{ such that } \;\; \sum_{i=1}^{p-1} \mathbf{1} \left(U_{i+1}
eq U_i
ight) \leq k$$

- This is an optimization problem over the (^P_k) partitions...
 Dynamic programming finds the solution in O(p²k) in time and O(p²) in memory
- But: does not scale to $p = 10^6 \sim 10^9$..



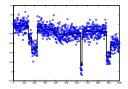
$$\min_{\beta \in \mathbb{R}^p} \| Y - \beta \|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} \mathbf{1} \left(U_{i+1} \neq U_i \right) \le k$$

- This is an optimization problem over the $\binom{p}{k}$ partitions...
- Dynamic programming finds the solution in O(p²k) in time and O(p²) in memory
- But: does not scale to $p = 10^6 \sim 10^9$..



$$\min_{eta \in \mathbb{R}^p} \parallel Y - eta \parallel^2 \;\; ext{ such that } \;\; \sum_{i=1}^{p-1} \mathbf{1} \left(U_{i+1}
eq U_i
ight) \leq k$$

- This is an optimization problem over the $\binom{p}{k}$ partitions...
- Dynamic programming finds the solution in $O(p^2k)$ in time and $O(p^2)$ in memory
- But: does not scale to $p = 10^6 \sim 10^9$...



$$\min_{eta \in \mathbb{R}^p} \parallel Y - eta \parallel^2 \;\; ext{ such that } \;\; \sum_{i=1}^{p-1} \mathbf{1} \left(U_{i+1}
eq U_i
ight) \leq k$$

- This is an optimization problem over the $\binom{p}{k}$ partitions...
- Dynamic programming finds the solution in O(p²k) in time and O(p²) in memory
- But: does not scale to $p = 10^6 \sim 10^9$...

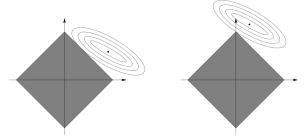
Promoting sparsity with the ℓ_1 penalty

The ℓ_1 penalty (Tibshirani, 1996; Chen et al., 1998)

If $R(\beta)$ is convex and "smooth", the solution of

$$\min_{\beta \in \mathbb{R}^p} \boldsymbol{R}(\beta) + \lambda \sum_{i=1}^p |\beta_i|$$

Geometric interpretation with p = 2



Promoting piecewise constant profiles penalty

The total variation / variable fusion penalty

If $R(\beta)$ is convex and "smooth", the solution of

$$\min_{\beta \in \mathbb{R}^p} R(\beta) + \lambda \sum_{i=1}^{p-1} |\beta_{i+1} - \beta_i|$$

is usually piecewise constant (Rudin et al., 1992; Land and Friedman, 1996).

Proof:

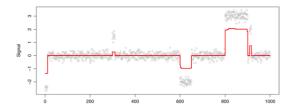
- Change of variable $u_i = \beta_{i+1} \beta_i$, $u_0 = \beta_1$
- We obtain a Lasso problem in $u \in \mathbb{R}^{p-1}$
- u sparse means β piecewise constant

TV signal approximator

$$\min_{\beta \in \mathbb{R}^p} \| Y - \beta \|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} |\beta_{i+1} - \beta_i| \le \mu$$

Adding additional constraints does not change the change-points:

• $\sum_{i=1}^{p} |\beta_i| \le \nu$ (Tibshirani et al., 2005; Tibshirani and Wang, 2008) • $\sum_{i=1}^{p} \beta_i^2 \le \nu$ (Mairal et al. 2010)



$$\min_{\beta \in \mathbb{R}^p} \| Y - \beta \|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} |\beta_{i+1} - \beta_i| \le \mu$$

- QP with sparse linear constraints in O(p²) -> 135 min for p = 10⁵ (Tibshirani and Wang, 2008)
- Coordinate descent-like method O(p)? -> 3s s for p = 10⁵ (Friedman et al., 2007)
- For all μ with the LARS in O(pK) (Harchaoui and Levy-Leduc, 2008)
- For all μ in $O(p \ln p)$ (Hoefling, 2009)
- For the first K change-points in O(p ln K) (Bleakley and V., 2010)

Algorithm 1 Greedy dichotomic segmentation

Require: k number of intervals, $\gamma(I)$ gain function to split an interval I into $I_L(I), I_R(I)$ 1: I_0 represents the interval [1, n]2: $\mathcal{P} = \{I_0\}$ 3: **for** i = 1 to k **do** 4: $I^* \leftarrow \arg \max \gamma (I^*)$ 5: $\mathcal{P} \leftarrow \mathcal{P} \setminus \{I^*\}$ 6: $\mathcal{P} \leftarrow \mathcal{P} \cup \{I_L(I^*), I_R(I^*)\}$ 7: **end for** 8: **return** \mathcal{P}

Theorem (V. and Bleakley, 2010; see also Hoefling, 2009)

TV signal approximator performs "greedy" dichotomic segmentation

Apparently greedy algorithm finds the global optimum!

Algorithm 1 Greedy dichotomic segmentation

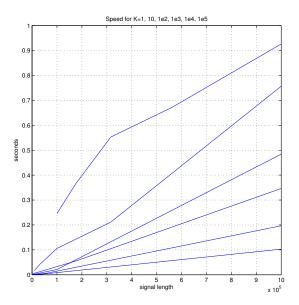
Require: k number of intervals, $\gamma(I)$ gain function to split an interval I into $I_L(I), I_R(I)$ 1: I_0 represents the interval [1, n]2: $\mathcal{P} = \{I_0\}$ 3: **for** i = 1 to k **do** 4: $I^* \leftarrow \arg \max_{I \in \mathcal{P}} \gamma(I^*)$ 5: $\mathcal{P} \leftarrow \mathcal{P} \setminus \{I^*\}$ 6: $\mathcal{P} \leftarrow \mathcal{P} \cup \{I_L(I^*), I_R(I^*)\}$ 7: **end for** 8: **return** \mathcal{P}

Theorem (V. and Bleakley, 2010; see also Hoefling, 2009)

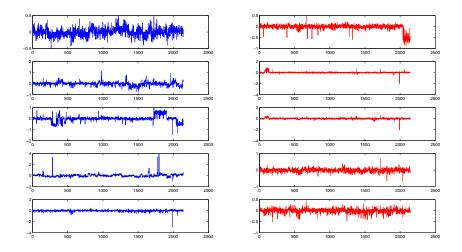
TV signal approximator performs "greedy" dichotomic segmentation

Apparently greedy algorithm finds the global optimum!

Speed trial : 2 s. for K = 100, $p = 10^7$



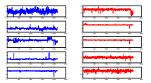
JP Vert (ParisTech)



Aggressive (left) vs non-aggressive (right) melanoma

JP Vert (ParisTech)

Fused lasso for supervised classification



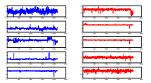
 Idea: find a linear predictor f(Y) = β^T Y that best discriminates the aggressive vs non-aggressive samples, subject to the constraints that it should be sparse and piecewise constant

Mathematically:

 $\min_{\beta \in \mathbb{R}^{p}} R(\beta) + \lambda_{1} \| \beta \|_{1} + \lambda_{2} \| \beta \|_{TV}$

• Computationnally: this is convex optimization problem that can be solved very efficiently with proximal optimization methods (V. and Bleakley, 2012)

Fused lasso for supervised classification

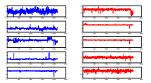


- Idea: find a linear predictor f(Y) = β^T Y that best discriminates the aggressive vs non-aggressive samples, subject to the constraints that it should be sparse and piecewise constant
- Mathematically:

 $\min_{\beta \in \mathbb{R}^{p}} R(\beta) + \lambda_{1} \| \beta \|_{1} + \lambda_{2} \| \beta \|_{TV}$

• Computationnally: this is convex optimization problem that can be solved very efficiently with proximal optimization methods (V. and Bleakley, 2012)

Fused lasso for supervised classification

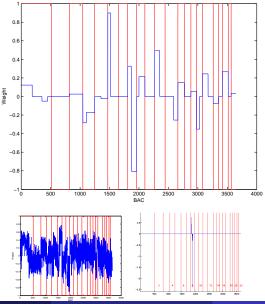


- Idea: find a linear predictor f(Y) = β^T Y that best discriminates the aggressive vs non-aggressive samples, subject to the constraints that it should be sparse and piecewise constant
- Mathematically:

 $\min_{\beta \in \mathbb{R}^{\rho}} R(\beta) + \lambda_{1} \| \beta \|_{1} + \lambda_{2} \| \beta \|_{TV}$

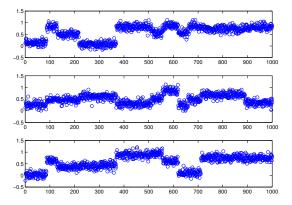
 Computationnally: this is convex optimization problem that can be solved very efficiently with proximal optimization methods (V. and Bleakley, 2012)

Prognostic in melanoma (Rapaport et al., 2008)

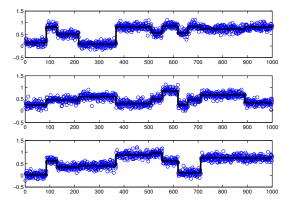


JP Vert (ParisTech)

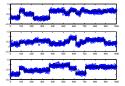
Extension: finding multiple change points shared by several profiles



Extension: finding multiple change points shared by several profiles



"Optimal" segmentation by dynamic programming



Define the "optimal" piecewise constant approximation Û ∈ ℝ^{p×n} of Y as the solution of

$$\min_{U \in \mathbb{R}^{p \times n}} \| Y - U \|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} \mathbf{1} \left(U_{i+1, \bullet} \neq U_{i, \bullet} \right) \le k$$

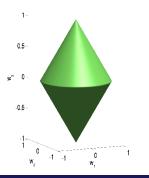
- DP finds the solution in $O(p^2 kn)$ in time and $O(p^2)$ in memory
- But: does not scale to $p = 10^6 \sim 10^9$...

Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the ℓ_1/ℓ_2 -norm induces sparse solutions *at the group level*:

$$\Omega_{group}(w) = \sum_{g} \|w_g\|_2$$



$$\Omega(w_1, w_2, w_3) = \|(w_1, w_2)\|_2 + \|w_3\|_2$$
$$= \sqrt{w_1^2 + w_2^2} + \sqrt{w_3^2}$$

JP Vert (ParisTech)

GFLseg (Bleakley and V., 2011)

Replace

$$\min_{U \in \mathbb{R}^{p \times n}} \| Y - U \|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} \mathbf{1} \left(U_{i+1,\bullet} \neq U_{i,\bullet} \right) \le k$$

by

$$\min_{U \in \mathbb{R}^{p \times n}} \|Y - U\|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} w_i \|U_{i+1,\bullet} - U_{i,\bullet}\| \le \mu$$

GFLseg = Group Fused Lasso segmentation

Questions

- Practice: can we solve it efficiently?
- Theory: does it recover the correct segmentation?

GFLseg (Bleakley and V., 2011)

Replace

$$\min_{U\in\mathbb{R}^{p imes n}} \parallel Y-U \parallel^2 \;\; ext{ such that } \;\; \sum_{i=1}^{p-1} \mathbf{1}\left(U_{i+1,ullet}
eq U_{i,ullet}
ight) \leq k$$

by

$$\min_{U \in \mathbb{R}^{p \times n}} \|Y - U\|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} w_i \|U_{i+1,\bullet} - U_{i,\bullet}\| \le \mu$$

GFLseg = Group Fused Lasso segmentation

Questions

- Practice: can we solve it efficiently?
- Theory: does it recover the correct segmentation?

• Make the change of variables:

$$\gamma = U_{1,\bullet},$$

$$\beta_{i,\bullet} = w_i \left(U_{i+1,\bullet} - U_{i,\bullet} \right) \quad \text{for } i = 1, \dots, p-1.$$

• TV approximator is then equivalent to the following group Lasso problem (Yuan and Lin, 2006):

$$\min_{\beta \in \mathbb{R}^{(p-1) \times n}} \| \bar{Y} - \bar{X}\beta \|^2 + \lambda \sum_{i=1}^{p-1} \| \beta_{i,\bullet} \|,$$

where \bar{Y} is the centered signal matrix and \bar{X} is a particular $(p-1) \times (p-1)$ design matrix.

TV approximator implementation

$$\min_{\beta \in \mathbb{R}^{(p-1) \times n}} \| \bar{Y} - \bar{X}\beta \|^2 + \lambda \sum_{i=1}^{p-1} \| \beta_{i,\bullet} \|,$$

Theorem

The TV approximator can be solved efficiently:

- approximately with the group LARS in *O*(*npk*) in time and *O*(*np*) in memory
- exactly with a block coordinate descent + active set method in O(np) in memory

Although \bar{X} is $(p-1) \times (p-1)$:

- For any *R* ∈ ℝ^{p×n}, we can compute *C* = X^T*R* in *O*(*np*) operations and memory
- For any two subset of indices $A = (a_1, ..., a_{|A|})$ and $B = (b_1, ..., b_{|B|})$ in [1, p 1], we can compute $\bar{X}_{\bullet,A}^{\top} \bar{X}_{\bullet,B}$ in O(|A||B|) in time and memory
- For any $A = (a_1, \ldots, a_{|A|})$, set of distinct indices with $1 \le a_1 < \ldots < a_{|A|} \le p 1$, and for any $|A| \times n$ matrix R, we can compute $C = (\bar{X}_{\bullet,A}^{\top} \bar{X}_{\bullet,A})^{-1} R$ in O(|A|n) in time and memory

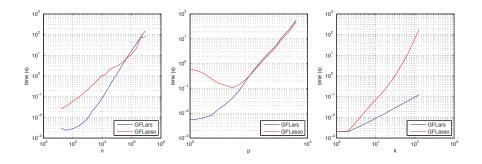
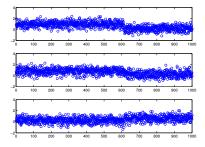


Figure 2: Speed trials for group fused LARS (top row) and Lasso (bottom row). Left column: varying n, with fixed p = 10 and k = 10; center column: varying p, with fixed n = 1000 and k = 10; right column: varying k, with fixed n = 1000 and p = 10. Figure axes are log-log. Results are averaged over 100 trials.

Consistency

Suppose a single change-point:

- at position $u = \alpha p$
- with increments $(\beta_i)_{i=1,\dots,n}$ s.t. $\bar{\beta}^2 = \lim_{k \to \infty} \frac{1}{n} \sum_{i=1}^n \beta_i^2$
- corrupted by i.i.d. Gaussian noise of variance σ^2



Does the TV approximator correctly estimate the first change-point as *p* increases?

Consistency of the unweighted TV approximator

$$\min_{U \in \mathbb{R}^{p \times n}} \|Y - U\|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} \|U_{i+1,\bullet} - U_{i,\bullet}\| \le \mu$$

Theorem

The unweighted TV approximator finds the correct change-point with probability tending to 1 (resp. 0) as $n \to +\infty$ if $\sigma^2 < \tilde{\sigma}_{\alpha}^2$ (resp. $\sigma^2 > \tilde{\sigma}_{\alpha}^2$), where

$$\tilde{\sigma}_{\alpha}^{2} = \boldsymbol{p} \bar{\beta}^{2} \frac{(1-\alpha)^{2} (\alpha - \frac{1}{2p})}{\alpha - \frac{1}{2} - \frac{1}{2p}}$$

• correct estimation on $[p\epsilon, p(1-\epsilon)]$ with $\epsilon = \sqrt{\frac{\sigma^2}{2p\beta^2}} + o(p^{-1/2})$.

wrong estimation near the boundaries

Consistency of the weighted TV approximator

$$\min_{\boldsymbol{U}\in\mathbb{R}^{p\times n}} \|\boldsymbol{Y}-\boldsymbol{U}\|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} w_i \|\boldsymbol{U}_{i+1,\bullet}-\boldsymbol{U}_{i,\bullet}\| \leq \mu$$

Theorem

The weighted TV approximator with weights

$$\forall i \in [1, p-1], \quad w_i = \sqrt{rac{i(p-i)}{p}}$$

correctly finds the first change-point with probability tending to 1 as $n \rightarrow +\infty$.

- we see the benefit of increasing n
- we see the benefit of adding weights to the TV penalty

• The first change-point \hat{i} found by TV approximator maximizes $F_i = \|\hat{c}_{i,\bullet}\|^2$, where

$$\hat{\boldsymbol{c}} = ar{\boldsymbol{X}}^{ op} \, ar{\boldsymbol{Y}} = ar{\boldsymbol{X}}^{ op} ar{\boldsymbol{X}} eta^* + ar{\boldsymbol{X}}^{ op} oldsymbol{W} \, .$$

• \hat{c} is Gaussian, and F_i is follows a non-central χ^2 distribution with

$$G_i = \frac{EF_i}{p} = \frac{i(p-i)}{pw_i^2}\sigma^2 + \frac{\bar{\beta}^2}{w_i^2w_u^2p^2} \times \begin{cases} i^2(p-u)^2 & \text{if } i \leq u , \\ u^2(p-i)^2 & \text{otherwise.} \end{cases}$$

• We then just check when $G_u = \max_i G_i$

Consistency for a single change-point

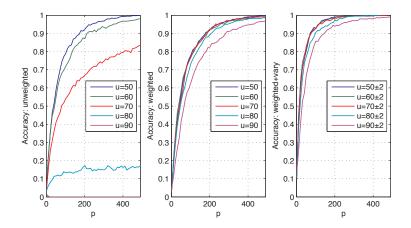


Figure 3: Single change-point accuracy for the group fused Lasso. Accuracy as a function of the number of profiles p when the change-point is placed in a variety of positions u = 50 to u = 90 (left and centre plots, resp. unweighted and weighted group fused Lasso), or: $u = 50 \pm 2$ to $u = 90 \pm 2$ (right plot, weighted with varying change-point location), for a signal of length 100.

Estimation of several change-points

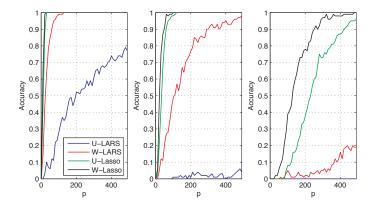
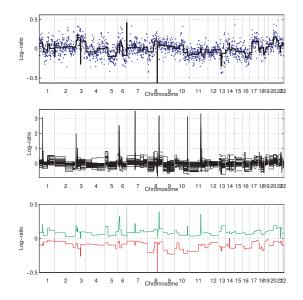


Figure 4: Multiple change-point accuracy. Accuracy as a function of the number of profiles p when change-points are placed at the nine positions $\{10, 20, \ldots, 90\}$ and the variance σ^2 of the centered Gaussian noise is either 0.05 (left), 0.2 (center) and 1 (right). The profile length is 100.

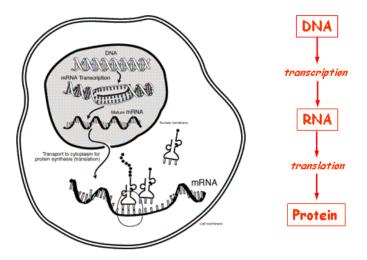
Application: detection of frequent abnormalities



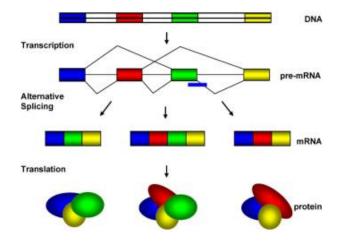
Mapping DNA breakpoints in cancer genomes

Isoform detection from RNA-seq data

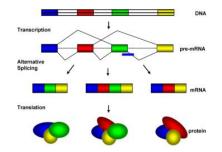
3 Learning molecular classifiers with network information



Alternative splicing: 1 gene = many proteins



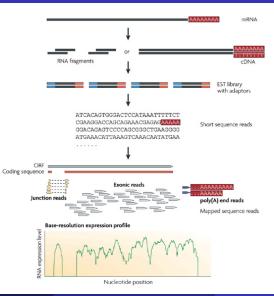
The isoform identification and quantification problem



Given a biological sample (e.g., cancer tissue), can we:

- identify the isoform(s) of each gene present in the sample?
- Q quantify their abundance?

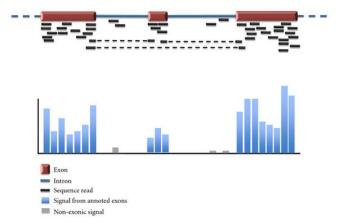
RNA-seq measures mRNA abundance by sequencing short fragments



JP Vert (ParisTech)

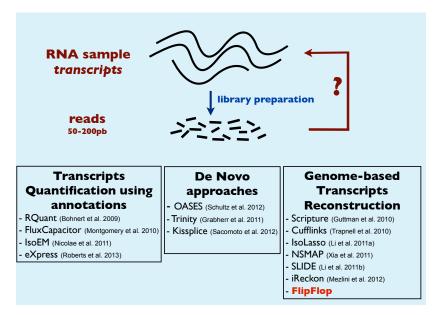
PRIB 2013 39 / 69

RNA-seq and alternative splicing

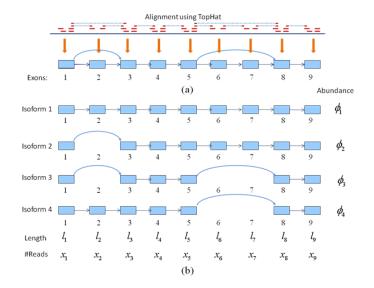


(Costa et al., 2011)

From RNA-seq to isoforms



The isoform deconvolution problem



(Xia et al., 2011)

e exons *c* candidate isoforms (up to $2^e - 1$) $\phi \in \mathbb{R}^c_+$ the vector of abundance of isoforms (unknown!) *U* binary matrix:

	exon ₁	•••	exon _e	junction _{1,2}	• • •	junction _{e1,e}
isoform ₁	(1	•••	1	1	• • •	1)
isoform ₂	1	•••	0	1	•••	0
:						
isoform _c	0	•••	1	0	•••	o /

 $U^{\top}\phi$ the abundance of each exon/junction.

Goal: estimate ϕ from the observed reads on each exon/junction

Estimate ϕ sparse by solving:

$$\min_{\phi \in \mathbb{R}^{c}_{+}} R(U^{ op}\phi) + \lambda \| \phi \|_{1}$$

- IsoLasso (Li et al., 2011)
- NSMAP (Xia et al., 2011)
- SLIDE (Li et al., 2011)

Works well BUT computationally challenging to enumerate all candidate isoforms (up to 2^e) for large genes!

Fast isoform deconvolution with the Lasso

Theorem (Bernard, Mairal, Jacob and V., 2012)

The isoform deconvolution problem

$$\min_{\phi \in \mathbb{R}^{c}_{+}} R(U^{\top}\phi) + \lambda \|\phi\|_{1}$$

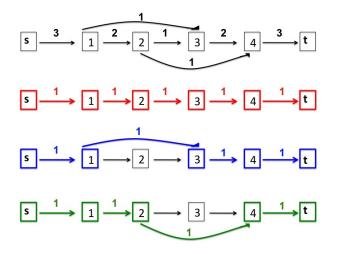
can be solved in polynomial time in the number of exon.

Key ideas

- $U^{\top}\phi$ corresponds to a flow on the graph
- Reformulation as a convex cost flow problem (Mairal and Yu, 2012)
- Recover isoforms by flow decomposition algorithm

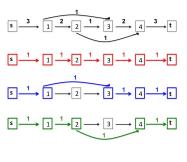
"Feature selection on an exponential number of features in polynomial time"

From isoforms to flows



- Isoforms are paths
- Linear combinations of isoforms are flows

Isoform deconvolution as convex cost flow problem



$$\min_{\phi \in \mathbb{R}^{c}_{+}} R(U^{\top}\phi) + \lambda \| \phi \|_{1}$$

is equivalent to

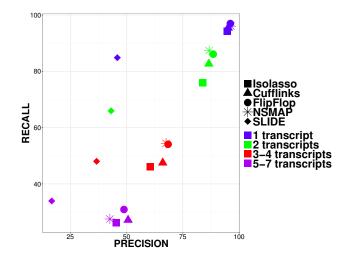
 $\min_{\text{f flow}} R(f) + \lambda f_t$

FlipFlop (Bernard, Jacob, Mairal and V., 2012)

$$\min_{\phi \in \mathbb{R}^{c}_{+}} R(U^{\top}\phi) + \lambda \| \phi \|_{1}$$

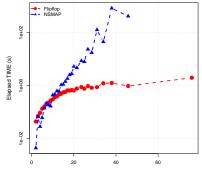
- Cufflink : a priori selection of isoforms (minimum graph cover)
- IsoLasso : pre-filtering of candidate isoforms using various heuristics
- NSMAP, SLIDE : limit the maximum number of exons
- FlipFlop : exact optimization without pre-filtering in polynomial time

Performance in isoform identification

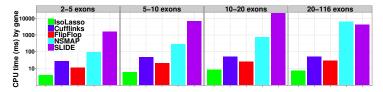


Simulated data (hg19, 1137 genes on chr1, 1million 75 bp single-end reads by transcript levels).

Speed trial



Number of EXONS

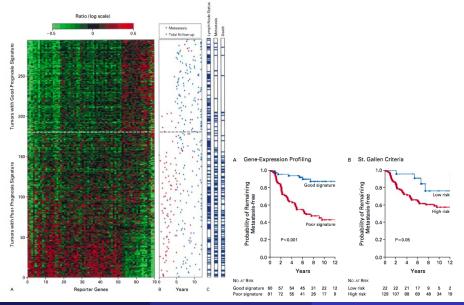


Mapping DNA breakpoints in cancer genomes

Isoform detection from RNA-seq data

3 Learning molecular classifiers with network information

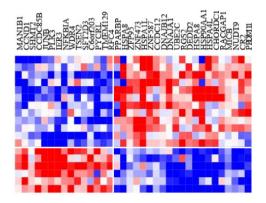
Breast cancer prognosis

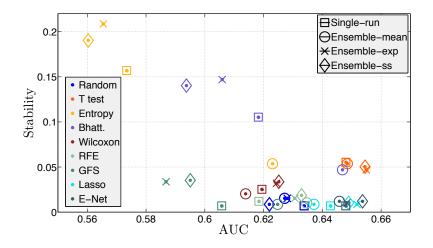


Gene selection, molecular signature

The idea

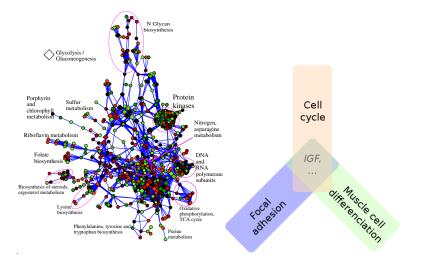
- We look for a limited set of genes that are sufficient for prediction.
- Selected genes should inform us about the underlying biology





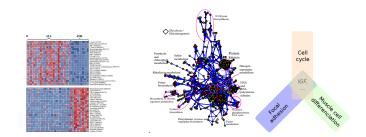
Haury et al. (2011)

Gene networks, gene groups



Structured feature selection

- Basic biological functions usually involve the coordinated action of several proteins:
 - Formation of protein complexes
 - Activation of metabolic, signalling or regulatory pathways
- How to perform structured feature selection, such that selected genes
 - belong to only a few groups?
 - form a small number of connected components on the graph?

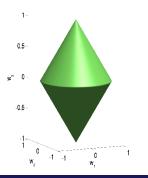


Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the ℓ_1/ℓ_2 -norm induces sparse solutions *at the group level*:

$$\Omega_{group}(w) = \sum_{g} \|w_g\|_2$$

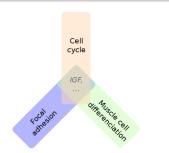


$$\Omega(w_1, w_2, w_3) = \|(w_1, w_2)\|_2 + \|w_3\|_2$$

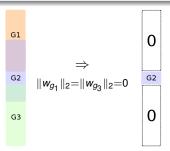
Group lasso with overlapping groups

Idea 1: shrink groups to zero (Jenatton et al., 2009)

- $\Omega_{group}(w) = \sum_{g} \|w_{g}\|_{2}$ sets groups to 0.
- One variable is selected ⇔ all the groups to which it belongs are selected.



 $\begin{array}{l} \text{IGF selection} \Rightarrow \text{selection of} \\ \text{unwanted groups} \end{array}$



Removal of *any* group containing a gene \Rightarrow the weight of the gene is 0.

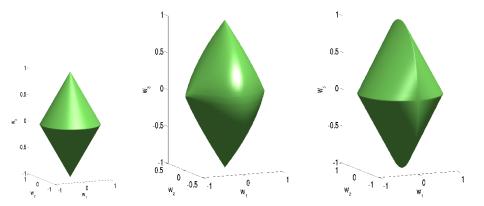
Group lasso with overlapping groups

Idea 2: latent group Lasso (Jacob et al., 2009)

Properties

- Resulting support is a *union* of groups in *G*.
- Possible to select one variable without selecting all the groups containing it.
- Equivalent to group lasso when there is no overlap

Overlap and group unity balls



Balls for $\Omega_{\text{group}}^{\mathcal{G}}(\cdot)$ (middle) and $\Omega_{\text{latent}}^{\mathcal{G}}(\cdot)$ (right) for the groups $\mathcal{G} = \{\{1,2\},\{2,3\}\}$ where w_2 is represented as the vertical coordinate. Left: group-lasso ($\mathcal{G} = \{\{1,2\},\{3\}\}$), for comparison.

Theoretical results

Consistency in group support (Jacob et al., 2009)

- Let \bar{w} be the true parameter vector.
- Assume that there exists a unique decomposition \bar{v}_g such that $\bar{w} = \sum_g \bar{v}_g$ and $\Omega^{\mathcal{G}}_{\text{latent}}(\bar{w}) = \sum \|\bar{v}_g\|_2$.
- Consider the regularized empirical risk minimization problem $L(w) + \lambda \Omega_{\text{latent}}^{\mathcal{G}}(w)$.

Then

- under appropriate mutual incoherence conditions on X,
- as $n \to \infty$,
- with very high probability,

the optimal solution \hat{w} admits a unique decomposition $(\hat{v}_g)_{g\in\mathcal{G}}$ such that

 $ig\{ g\in \mathcal{G}|\hat{v}_g
eq 0ig\} =ig\{ g\in \mathcal{G}|ar{v}_g
eq 0ig\} \,.$

Theoretical results

Consistency in group support (Jacob et al., 2009)

- Let \bar{w} be the true parameter vector.
- Assume that there exists a unique decomposition \bar{v}_g such that $\bar{w} = \sum_g \bar{v}_g$ and $\Omega_{\text{latent}}^{\mathcal{G}}(\bar{w}) = \sum \|\bar{v}_g\|_2$.
- Consider the regularized empirical risk minimization problem $L(w) + \lambda \Omega_{\text{latent}}^{\mathcal{G}}(w)$.

Then

- under appropriate mutual incoherence conditions on X,
- as $n \to \infty$,
- with very high probability,

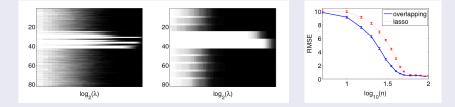
the optimal solution \hat{w} admits a unique decomposition $(\hat{v}_g)_{g\in\mathcal{G}}$ such that

$$ig\{ oldsymbol{g} \in \mathcal{G} | \hat{oldsymbol{v}}_{oldsymbol{g}}
eq 0 ig\} = ig\{ oldsymbol{g} \in \mathcal{G} | oldsymbol{ar{v}}_{oldsymbol{g}}
eq 0 ig\}.$$

Experiments

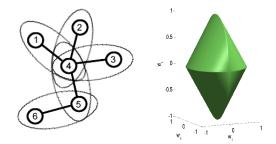
Synthetic data: overlapping groups

- 10 groups of 10 variables with 2 variables of overlap between two successive groups :{1,...,10}, {9,...,18},...,{73,...,82}.
- Support: union of 4th and 5th groups.
- Learn from 100 training points.



Frequency of selection of each variable with the lasso (left) and $\Omega^{\mathcal{G}}_{\text{latent}}(.)$ (middle), comparison of the RMSE of both methods (right).

Graph lasso



Two solutions

$$\begin{split} \Omega^{\mathcal{G}}_{\text{group}}\left(\beta\right) &= \sum_{i \sim j} \sqrt{\beta_i^2 + \beta_j^2} \,, \\ \Omega^{\mathcal{G}}_{\text{latent}}\left(\beta\right) &= \sup_{\alpha \in \mathbb{R}^{p}: \forall i \sim j, \|\alpha_i^2 + \alpha_j^2\| \leq 1} \alpha^\top \beta \,. \end{split}$$

Breast cancer data

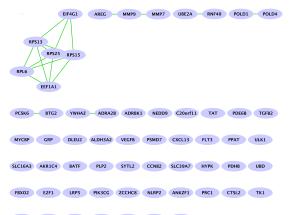
- Gene expression data for 8, 141 genes in 295 breast cancer tumors.
- Canonical pathways from MSigDB containing 639 groups of genes, 637 of which involve genes from our study.

Метнор	ℓ_1	$\Omega_{\text{latent}}^{\mathcal{G}}(.)$
Error	$\textbf{0.38} \pm \textbf{0.04}$	$\textbf{0.36} \pm \textbf{0.03}$
Mean ♯ path.	130	30

• Graph on the genes.

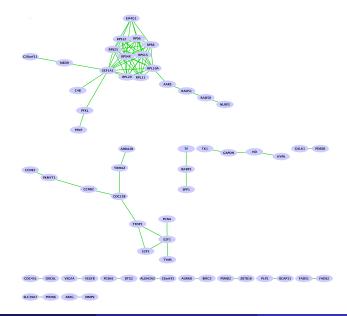
Метнор	ℓ_1	$\Omega_{graph}(.)$
Error	0.39 ± 0.04	0.36 ± 0.01
AV. SIZE C.C.	1.03	1.30

Lasso signature



PTPN3 CASC3 IGFBP5 RTN3 DNAJB2 CDH19 GLRX2

Graph Lasso signature



- Convex sparsity-inducing penalties as a way to incorporate prior knowledge
- Specific implementations for specific problems:
 - greedy dichotomic segmentation for fused lasso
 - fast group Lasso for joint segmentation
 - network flow optimization of lasso over the paths of a graph
 - efficient proximity operator computation of latent group lasso
- Often, feature selection is consistent (although we pay a price when features are very correlated), stability selection may help
- Numerous applications in bioinformatics and beyond!

Kevin Bleakley (INRIA), Laurent Jacob (UC Berkeley) Guillaume Obozinski (INRIA), Anne-Claire Haury (ParisTech), Julien Mairal (UC Berkeley/INRIA), Elsa Bernard (ParisTech), Fantine Mordelet (Duke), Paola Vera-Licona (Institut Curie)

Post-docs available in Paris!

