Flip-Flop: Fast lasso-based isoform prediction from RNA-seq data

Jean-Philippe Vert (joint work with Elsa Bernard, Laurent Jacob, Julien Mairal)

2013 International Workshop on Machine Learning and Applications to Biology, Sapporo, Japan, August 6, 2013

JP Vert	(ParisTech)
---------	-------------

(old) Central dogma

Alternative splicing: 1 gene = many proteins

In human, 28k genes give 120k known transcripts (Pal et al., 2012)

ID Vort	(DariaTach)
JF Veit	(Falls lecil)

Importance of alternative splicing

Opportunities for drug developments...

(Pal et al., 2012)

The isoform identification and quantification problem

Given a biological sample (e.g., cancer tissue), can we:

- identify the isoform(s) of each gene present in the sample?
- Q quantify their abundance?

RNA-seq measures mRNA abundance by sequencing short fragments

Nature Reviews | Genetics

(Wang et al., 2009)

JP Vert (ParisTech)

RNA-seq and alternative splicing

(Costa et al., 2011)

From RNA-seq to isoforms

How to select a small number of paths?

$n \operatorname{exons} \rightarrow \sim 2^n \operatorname{paths/candidate}$ isoforms

 \sim 1000 candidates paths for 10 exons and \sim 1000000 for 20 exons

Cufflink strategy

A two-step approach:

- Find a set of *minimal paths* in the graph (independently from the read abundance value) to identify a good set of isoforms
- estimate isoform abundance using read abundance

(Trapnell et al., 2010)

- Suppose there are *c* candidate isoform (*c* large)
- Let ϕ the unknown *c*-dimensional vector of abundance
- Let L(φ) quantify whether φ explains well the observed read counts (e.g., minus log-likelihood)
- Regularization approach solve a problem:

 $\min_{\phi} L(\phi)$ such that ϕ is sparse.

Pros and cons of both paradigms

Separate identification and abundance estimation

- Find a small set of transcripts which covers all reads, *then* estimate φ.
- Cufflinks, Isolasso.

Simultaneous identification and abundance estimation

- Estimate sparse ϕ over set of all possible transcripts.
- NSMAP, SLIDE, iReckon, Flip-Flop

Pros and cons of both paradigms

Separate identification and abundance estimation

- Find a small set of transcripts which covers all reads, *then* estimate φ.
- Cufflinks, Isolasso.
- Pros : fast.
- Cons : loss of power.

Simultaneous identification and abundance estimation

- Estimate sparse ϕ over set of all possible transcripts.
- NSMAP, SLIDE, iReckon, Flip-Flop
- Pros : More powerful.
- Cons : Exponential complexity (up to $2^n 1$ candidates).

Simultaneous identification and abundance estimation : more power

(Li et al., 2011)

JP Vert (ParisTech)

The isoform deconvolution problem

(Xia et al., 2011)

More formally

e exons, *n* "bins" (exons+junctions) *c* candidate isoforms (up to $2^e - 1$) $\phi \in \mathbb{R}^c_+$ the vector of abundance of isoforms (unknown!) *U* binary matrix:

	exon ₁	•••	exon _e	junction _{1,2}	• • •	junction _{e1,e}
isoform ₁	/ 1		1	1	• • •	1)
isoform ₂	1	•••	0	1	• • •	0
:						
isoform _c	\ o		1	0		0 /

 $U^{\top}\phi$ the abundance of each exon/junction.

Goal: estimate ϕ from the observed reads on each exon/junction

- The log likelihood of φ ∈ ℝ^c only depends on the abundance of each exon/junction in U^Tφ ∈ ℝⁿ
- Example: Gaussian (IsoLasos, SLIDE) or Poisson (NSMAP, FlipFlop) negative log-likelihood
- Regularization-based approaches try to solve:

 $\min_{\phi \in \mathbb{R}^c} \boldsymbol{R}(\boldsymbol{U}^\top \phi) \quad \text{such that} \quad \phi \text{ is sparse,}$

where $R : \mathbb{R}^n \to \mathbb{R}$ is convex

• This is generally a NP-hard problem, so we use a convex relaxation akin to Lasso regression

The Lasso idea

The ℓ_1 penalty (Tibshirani, 1996; Chen et al., 1998)

If $R(\beta)$ is convex and "smooth", the solution of

$$\min_{\beta \in \mathbb{R}^p} \boldsymbol{R}(\beta) + \lambda \sum_{i=1}^p |\beta_i|$$

JP Vert (ParisTech)

Lasso example

Typically solved in $O(n^3)$

4

Estimate ϕ sparse by solving (IsoLasso, NSMAP, SLIDE):

$$\min_{\phi \in \mathbb{R}_+^c} R(U^{\top} \phi) + \lambda \| \phi \|_1$$

Complexity $O(c^3) = O(2^{3e})...$

Works well BUT computationally challenging to work with all candidate isoforms for large genes!

Fast isoform deconvolution with the Lasso (FlipFlop)

Theorem (Bernard, Mairal, Jacob and V., 2012)

The isoform deconvolution problem

$$\min_{\phi \in \mathbb{R}^{c}_{+}} R(U^{\top}\phi) + \lambda \| \phi \|_{1}$$

can be solved in polynomial time in the number of exon.

Key ideas

- $U^{\top}\phi$ corresponds to a flow on the graph
- Reformulation as a convex cost flow problem (Mairal and Yu, 2012)
- Recover isoforms by flow decomposition algorithm

"Feature selection on an exponential number of features in polynomial time"

A **flow** *f* is a nonnegative function on arcs that respects conservation constraints (Kirchhoff's law)

Combinations of isoforms are flows

(a) Reads at every node corresponding to one isoform.

(b) Reads at every node after adding another isoform.

- Linear combinations of isoforms
- Flow value on every nodes

⇒ Flow Decomposition (linear time algorithm)

Flow value on every nodes Paths with given value/abundance

From isoforms to flow (key trick!)

(a) Reads at every node corresponding to one isoform.

- (b) Reads at every node after adding another isoform.
- $U^{\top}\phi \in \mathbb{R}^{n}$ when $\phi \in \mathbb{R}^{c}$ is the set of flows
- Moreover, $||\phi||_1 = f_t$!

Therefore,

$$\min_{\phi \in \mathbb{R}^{c}_{+}} R(U^{ op}\phi) + \lambda \| \phi \|_{1}$$

is equivalent to

 $\min_{\text{f flow}} R(f) + \lambda f_t$

 $\min_{\phi \in \mathbb{R}^{c}_{+}} R(U^{\top}\phi) + \lambda \| \phi \|_{1}$

- Cufflink : *a priori* selection of isoforms (minimum graph cover)
- IsoLasso : pre-filtering of candidate isoforms using various heuristics
- NSMAP, SLIDE : limit the maximum number of exons
- FlipFlop : exact optimization without pre-filtering in polynomial time, by solving a convex problem in the space of flows (dimension *n*) and recovering path with the flow decomposition algorithm.

Human Simulation: Precision/Recall

hg19, 1137 genes on chr1, 1million 75 bp single-end reads by transcript levels. Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html

30/36

Performance increases with read length

Performance increases with coverage

Extension to paired-end reads OK.

Speed trial

Number of EXONS

JP Vert (ParisTech)

http://cbio.mines-paristech.fr/flipflop

Summmary

- Transcript selection over all possible candidates is hard.
- We show the problem is equivalent to a simpler one.
- With our approach, the full problem is solved as quickly as the more heuristic one (Cufflinks approach).

Future work

- Some loose ends : GC content, decomposition, post-processing...
- Ongoing : abundance estimation comparison.
- Applications : differential expression, classification, clustering.

Acknowledgements

Elsa Bernard (Mines ParisTech / Institut Curie), Laurent Jacob (UC Berkeley / CNRS), Julien Mairal (INRIA)

