The group fused Lasso for multiple change-point detection

Jean-Philippe Vert

Inference for Change-Point and Related Processes workshop Isaac Newton Institute for Mathematical Sciences Cambridge, UK, January 14, 2014

Normal vs cancer cells

What goes wrong? How to treat?

Chromosomic aberrations in cancer

Measuring DNA copy number

Motivation

- Comparative genomic hybridization (CGH) data measure the DNA copy number along the genome
- Very useful, in particular in cancer research to observe systematically variants in DNA content
- Progressively replaced by high throughput sequencing techniques

Problem 1: find change-points in one (long) profile

Problem 1: find change-points in one (long) profile

Problem 2: learn to discriminate profiles

Aggressive (left) vs non-aggressive (right) melanoma

Problem 3: Find frequent breakpoints

A collection of bladder tumour copy number profiles.

Outline

(1) Fast fused lasso for change-point detection
(2) Fused SVM for discrimination of profiles
(3) Group fused lasso for multiple frequent change-point detection

Outline

(9) Fast fused lasso for change-point detection

(2) Fused SVM for discrimination of profiles

(3) Group fused lasso for multiple frequent change-point detection

Can we identify breakpoints and "smooth" each profile?

- A classical multiple change-point detection problem
- Should scale to lengths of order $10^{6} \sim 10^{8}$

Can we identify breakpoints and "smooth" each profile?

- A classical multiple change-point detection problem
- Should scale to lengths of order $10^{6} \sim 10^{8}$

An optimal solution

- For a signal $Y \in \mathbb{R}^{p}$, define an optimal approximation $\beta \in \mathbb{R}^{p}$ with k breakpoints as the solution of

$$
\min _{\beta \in \mathbb{R}^{p}}\|Y-\beta\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1} \mathbf{1}\left(\beta_{i+1} \neq \beta_{i}\right) \leq k
$$

An optimal solution

- For a signal $Y \in \mathbb{R}^{p}$, define an optimal approximation $\beta \in \mathbb{R}^{p}$ with k breakpoints as the solution of

$$
\min _{\beta \in \mathbb{R}^{p}}\|Y-\beta\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1} \mathbf{1}\left(\beta_{i+1} \neq \beta_{i}\right) \leq k
$$

- This is an optimization problem over the $\binom{p}{k}$ partitions...

An optimal solution

- For a signal $Y \in \mathbb{R}^{p}$, define an optimal approximation $\beta \in \mathbb{R}^{p}$ with k breakpoints as the solution of

$$
\min _{\beta \in \mathbb{R}^{p}}\|Y-\beta\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1} \mathbf{1}\left(\beta_{i+1} \neq \beta_{i}\right) \leq k
$$

- This is an optimization problem over the $\binom{p}{k}$ partitions...
- Dynamic programming finds the solution in $O\left(p^{2} k\right)$ in time and $O\left(p^{2}\right)$ in memory

An optimal solution

- For a signal $Y \in \mathbb{R}^{p}$, define an optimal approximation $\beta \in \mathbb{R}^{p}$ with k breakpoints as the solution of

$$
\min _{\beta \in \mathbb{R}^{p}}\|Y-\beta\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1} \mathbf{1}\left(\beta_{i+1} \neq \beta_{i}\right) \leq k
$$

- This is an optimization problem over the $\binom{p}{k}$ partitions...
- Dynamic programming finds the solution in $O\left(p^{2} k\right)$ in time and $O\left(p^{2}\right)$ in memory
- But: does not scale to $p=10^{6} \sim 10^{8} \ldots$

Promoting sparsity with the ℓ_{1} penalty

The ℓ_{1} penalty (Tibshirani, 1996; Chen et al., 1998)
If $R(\beta)$ is convex and "smooth", the solution of

$$
\min _{\beta \in \mathbb{R}^{p}} R(\beta)+\lambda \sum_{i=1}^{p}\left|\beta_{i}\right|
$$

is usually sparse.
Geometric interpretation with $p=2$

Promoting piecewise constant profiles penalty

The total variation / variable fusion penalty
If $R(\beta)$ is convex and "smooth", the solution of

$$
\min _{\beta \in \mathbb{R}^{p}} R(\beta)+\lambda \sum_{i=1}^{p-1}\left|\beta_{i+1}-\beta_{i}\right|
$$

is usually piecewise constant (Rudin et al., 1992; Land and Friedman, 1996).

Proof:

- Change of variable $u_{i}=\beta_{i+1}-\beta_{i}, u_{0}=\beta_{1}$
- We obtain a Lasso problem in $u \in \mathbb{R}^{p-1}$
- u sparse means β piecewise constant

TV signal approximator

$$
\min _{\beta \in \mathbb{R}^{p}}\|Y-\beta\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1}\left|\beta_{i+1}-\beta_{i}\right| \leq \mu
$$

Adding additional constraints does not change the change-points:

- $\sum_{i=1}^{p}\left|\beta_{i}\right| \leq \nu$ (Tibshirani et al., 2005; Tibshirani and Wang, 2008)
- $\sum_{i=1}^{p} \beta_{i}^{2} \leq \nu$ (Mairal et al. 2010)

Solving TV signal approximator

$$
\min _{\beta \in \mathbb{R}^{\rho}}\|Y-\beta\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1}\left|\beta_{i+1}-\beta_{i}\right| \leq \mu
$$

- QP with sparse linear constraints in $O\left(p^{2}\right)->135 \mathrm{~min}$ for $p=10^{5}$ (Tibshirani and Wang, 2008)
- Coordinate descent-like method $O(p)$? -> 3s s for $p=10^{5}$ (Friedman et al., 2007)
- For all μ with the LARS in $O(p K)$ (Harchaoui and Levy-Leduc, 2008)
- For all μ in $O(p \ln p)$ (Hoefling, 2009)
- For the first K change-points in $O(p \ln K)$ (Bleakley and V., 2010)

Solving TV signal approximator in $O(p \ln K)$

Theorem (V. and Bleakley, 2010; see also Hoefling, 2009)

TV signal approximator is a binary segmentation algorithm

```
Algorithm 1 Greedy dichotomic segmentation
Require: \(k\) number of intervals, \(\gamma(I)\) gain function to split an interval \(I\) into \(I_{L}(I), I_{R}(I)\)
    : \(I_{0}\) represents the interval \([1, n]\)
    \(\mathcal{P}=\left\{I_{0}\right\}\)
    for \(i=1\) to \(k\) do
        \(I^{*} \leftarrow \underset{\arg \max }{\operatorname{ar}}\left(I^{*}\right)\)
        \(\mathcal{P} \leftarrow \mathcal{P} \backslash \stackrel{I \in \mathcal{P}}{\left\{I^{*}\right\}}\)
        \(\mathcal{P} \leftarrow \mathcal{P} \cup\left\{I_{L}\left(I^{*}\right), I_{R}\left(I^{*}\right)\right\}\)
    end for
    return \(\mathcal{P}\)
```

Apparently greedy algorithm finds the global optimum!

Solving TV signal approximator in $O(p \ln K)$

Theorem (V. and Bleakley, 2010; see also Hoefling, 2009)

TV signal approximator is a binary segmentation algorithm
Consequences:

- Good news: very fast methods to find the global optimum of TV approximator
- Good news: we can analyze this greedy method by expressing the solution as the global minimum of an objective function
- Bad news: TV approximator is no more than a binary segmentation method...
Extension to hierarchical clustering: ClusterPath (Hocking et al., ICML 2011)

Technical details

- Represent an interval $[u+1, v]$ by a quadruplet $I=\left(u, v, \sigma_{u}, \sigma_{v}\right)$ where $\sigma_{u}, \sigma_{v} \in\{-1,0,1\}$
- Let $F_{u}=\sum_{i=1}^{u} Y_{u}$, and for $u<k<v, \sigma \in\{-1,1\}$

$$
f_{l}(k, \sigma)= \begin{cases}\sigma A_{k} / 2 & \text { if } \sigma_{u}=\sigma_{v} \neq 0 \\ A_{k} /\left(\sigma-B_{k}\right) & \text { otherwise }\end{cases}
$$

where

$$
\begin{aligned}
& A_{k}=-F_{k}+\frac{(v-k) F_{u}+(k-u) F_{v}}{v-u} \\
& B_{k}=\frac{(v-k) \sigma_{u}+(k-u) \sigma_{v}}{v-u}
\end{aligned}
$$

Technical details (cont.)

Then the functions $\gamma(I), I_{L}(I)$ and $I_{R}(I)$ are respectively given by:

$$
\begin{aligned}
\gamma(I) & =\underset{k \in[u+1, v-1], \sigma \in\{-1,1\}}{ } \max _{l}(k, \sigma), \\
\left(k^{*}, \sigma^{*}\right) & =\underset{k \in[u+1, v-1], \sigma \in\{-1,1\}}{\operatorname{argmax}} f_{l}(k, \sigma), \\
I_{L}(I) & =\left(u, k^{*}, \sigma_{u}, \sigma^{*}\right), \\
I_{R}(I) & =\left(k^{*}, v, \sigma^{*}, \sigma_{v}\right) .
\end{aligned}
$$

Proof (sketch)

- Homotopy method (LARS)
- Similar to Harchaoui and Levy-Leduc (2008), removing superfluous computations
- The next breakpoint in a segment, and the μ where it appears, is independent of events in other segments

Speed trial : 2 s . for $K=100, p=10^{7}$

Speed for $K=1,10$, 1e2, 1e3, 1e4, 1e5

Application

BIOINFORMATICS

APPLICATIONS NOTE

Genome analysis
Control-free calling of copy number alterations in deep-sequencing data using GC-content normalization
Valentina Boeva ${ }^{1,2,3,4, *}$, Andrei Zinovyev ${ }^{1,2,3}$, Kevin Bleakley ${ }^{1,2,3}$, Jean-Philippe Vert ${ }^{1,2,3}$, Isabelle Janoueix-Lerosey ${ }^{1,4}$, Olivier Delattre ${ }^{1,4}$ and Emmanuel Barillot ${ }^{1,2,3}$
${ }^{1}$ Institut Curie, ${ }^{2}$ INSERM, U900, Paris, F-75248, ${ }^{3}$ Mines ParisTech, Fontainebleau, F-77300 and ${ }^{4}$ INSERM, U830, Paris, F-75248 France

Outline

(1) Fast fused lasso for change-point detection

(2) Fused SVM for discrimination of profiles
(3) Group fused lasso for multiple frequent change-point detection

Extension: cancer prognosis

Aggressive (left) vs non-aggressive (right) melanoma

The problem

- $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ the n profiles of length p
- $y_{1}, \ldots, y_{n} \in[-1,1]$ the labels
- We want to learn a function $f: \mathbb{R}^{p} \rightarrow[-1,1]$

Prior knowledge

- Sparsity : not all positions should be discriminative, and we want to identify the predictive region (presence of oncogenes or tumor suppressor genes?)
- Piecewise constant : within a selected region, all probes should contribute equally

Fused lasso for supervised classification (Rapaport et al., 2008)

Find a linear predictor $f(Y)=\beta^{\top} Y$ that best discriminates the aggressive vs non-aggressive samples, subject to the constraints that it should be sparse and piecewise constant:

$$
\min _{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n} \ell\left(y_{i}, \beta^{\top} x_{i}\right)+\lambda_{1}\|\beta\|_{1}+\lambda_{2}\|\beta\|_{T V}
$$

where ℓ is, e.g., the hinge loss $\ell(y, t)=\max (1-y t, 0)$.

implementation

- When ℓ is the hinge loss (fused SVM), this is a linear program ->
\square
- When ℓ is convex and smooth (logistic, quadratic), efficient

$$
\text { implementation with proximal methods }->\text { up to } p=10^{8} \sim 10^{9}
$$

Fused lasso for supervised classification (Rapaport et al., 2008)

Find a linear predictor $f(Y)=\beta^{\top} Y$ that best discriminates the aggressive vs non-aggressive samples, subject to the constraints that it should be sparse and piecewise constant:

$$
\min _{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n} \ell\left(y_{i}, \beta^{\top} x_{i}\right)+\lambda_{1}\|\beta\|_{1}+\lambda_{2}\|\beta\|_{T V}
$$

where ℓ is, e.g., the hinge loss $\ell(y, t)=\max (1-y t, 0)$.

Implementation

- When ℓ is the hinge loss (fused SVM), this is a linear program -> up to $p=10^{3} \sim 10^{4}$
- When ℓ is convex and smooth (logistic, quadratic), efficient implementation with proximal methods $->$ up to $p=10^{8} \sim 10^{9}$

Example: prognosis in melanoma

Outline

(1) Fast fused lasso for change-point detection

(2) Fused SVM for discrimination of profiles

(3) Group fused lasso for multiple frequent change-point detection

Can we detect frequent breakpoints?

A collection of bladder tumour copy number profiles.

The problem

The problem

"Optimal" segmentation by dynamic programming

- Define the "optimal" piecewise constant approximation $\hat{U} \in \mathbb{R}^{p \times n}$ of Y as the solution of

$$
\min _{U \in \mathbb{R}^{p \times n}}\|Y-U\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1} 1\left(U_{i+1, \bullet} \neq U_{i, \bullet}\right) \leq k
$$

- DP finds the solution in $O\left(p^{2} k n\right)$ in time and $O\left(p^{2}\right)$ in memory
- But: does not scale to $p=10^{6} \sim 10^{8} \ldots$

Selecting pre-defined groups of variables

Group lasso (Yuan \& Lin, 2006)

If groups of covariates are likely to be selected together, the ℓ_{1} / ℓ_{2}-norm induces sparse solutions at the group level:

$$
\Omega_{\text {group }}(w)=\sum_{g}\left\|w_{g}\right\|_{2}
$$

$$
\begin{aligned}
\Omega\left(w_{1}, w_{2}, w_{3}\right) & =\left\|\left(w_{1}, w_{2}\right)\right\|_{2}+\left\|w_{3}\right\|_{2} \\
& =\sqrt{w_{1}^{2}+w_{2}^{2}}+\sqrt{w_{3}^{2}}
\end{aligned}
$$

GFLseg (Bleakley and V., 2011)

Replace

$$
\min _{U \in \mathbb{R}^{p \times n}}\|Y-U\|^{2} \text { such that } \sum_{i=1}^{p-1} \mathbf{1}\left(U_{i+1, \bullet} \neq U_{i, \bullet}\right) \leq k
$$

by

$$
\min _{U \in \mathbb{R}^{p \times n}}\|Y-U\|^{2} \text { such that } \sum_{i=1}^{p-1} w_{i}\left\|U_{i+1, \bullet}-U_{i, \bullet}\right\| \leq \mu
$$

GFLseg = Group Fused Lasso segmentation

Questions

- Practice: can we solve it efficiently?
- Theory: does it recover the correct seamentation?

GFLseg (Bleakley and V., 2011)

Replace

$$
\min _{U \in \mathbb{R}^{p \times n}}\|Y-U\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1} \mathbf{1}\left(U_{i+1, \bullet} \neq U_{i, \bullet}\right) \leq k
$$

by

$$
\min _{U \in \mathbb{R}^{p \times n}}\|Y-U\|^{2} \quad \text { such that } \quad \sum_{i=1}^{p-1} w_{i}\left\|U_{i+1, \bullet}-U_{i, \bullet}\right\| \leq \mu
$$

GFLseg = Group Fused Lasso segmentation

Questions

- Practice: can we solve it efficiently?
- Theory: does it recover the correct segmentation?

GFLseg as a group Lasso problem

- Make the change of variables:

$$
\begin{aligned}
\gamma & =U_{1, \bullet} \\
\beta_{i, \bullet} & =w_{i}\left(U_{i+1, \bullet}-U_{i, \bullet}\right) \quad \text { for } i=1, \ldots, p-1
\end{aligned}
$$

- TV approximator is then equivalent to the following group Lasso problem (Yuan and Lin, 2006):

$$
\min _{\beta \in \mathbb{R}^{(p-1) \times n}}\|\bar{Y}-\bar{X} \beta\|^{2}+\lambda \sum_{i=1}^{p-1}\left\|\beta_{i, \bullet}\right\|
$$

where \bar{Y} is the centered signal matrix and \bar{X} is a particular $(p-1) \times(p-1)$ design matrix.

TV approximator implementation

$$
\min _{\beta \in \mathbb{R}^{(p-1) \times n}}\|\bar{Y}-\bar{X} \beta\|^{2}+\lambda \sum_{i=1}^{p-1}\left\|\beta_{i, \bullet}\right\|,
$$

Theorem

The TV approximator can be solved efficiently:

- approximately with the group LARS in $O(n p k)$ in time and $O(n p)$ in memory
- exactly with a block coordinate descent + active set method in $O(n p)$ in memory

Proof: computational tricks... (from Zaid Harchaoui)

Although \bar{X} is $(p-1) \times(p-1)$:

- For any $R \in \mathbb{R}^{p \times n}$, we can compute $C=\bar{X}^{\top} R$ in $O(n p)$ operations and memory
- For any two subset of indices $A=\left(a_{1}, \ldots, a_{|A|}\right)$ and $B=\left(b_{1}, \ldots, b_{|B|}\right)$ in $[1, p-1]$, we can compute $\bar{X}_{\bullet, A}^{\top} \bar{X}_{\bullet, B}$ in $O(|A||B|)$ in time and memory
- For any $A=\left(a_{1}, \ldots, a_{|A|}\right)$, set of distinct indices with $1 \leq a_{1}<\ldots<a_{|A|} \leq p-1$, and for any $|A| \times n$ matrix R, we can compute $C=\left(\bar{X}_{\bullet, A}^{\top} \bar{X}_{\bullet, A}\right)^{-1} R$ in $O(|A| n)$ in time and memory

Speed trial

Figure 2: Speed trials for group fused LARS (top row) and Lasso (bottom row). Left column: varying n, with fixed $p=10$ and $k=10$; center column: varying p, with fixed $n=1000$ and $k=10$; right column: varying k, with fixed $n=1000$ and $p=10$. Figure axes are log-log. Results are averaged over 100 trials.

Consistency

Suppose a single change-point:

- at position $u=\alpha p$
- with increments $\left(\beta_{i}\right)_{i=1, \ldots, n}$ s.t. $\bar{\beta}^{2}=\lim _{k \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \beta_{i}^{2}$
- corrupted by i.i.d. Gaussian noise of variance σ^{2}

Does the TV approximator correctly estimate the first change-point as p increases?

Consistency of the unweighted TV approximator

$$
\min _{U \in \mathbb{R}^{p \times n}}\|Y-U\|^{2} \quad \text { such that } \sum_{i=1}^{p-1}\left\|U_{i+1, \bullet}-U_{i, \bullet}\right\| \leq \mu
$$

Theorem

The unweighted TV approximator finds the correct change-point with probability tending to 1 (resp. 0) as $n \rightarrow+\infty$ if $\sigma^{2}<\tilde{\sigma}_{\alpha}^{2}$ (resp. $\left.\sigma^{2}>\tilde{\sigma}_{\alpha}^{2}\right)$, where

$$
\tilde{\sigma}_{\alpha}^{2}=p \bar{\beta}^{2} \frac{(1-\alpha)^{2}\left(\alpha-\frac{1}{2 p}\right)}{\alpha-\frac{1}{2}-\frac{1}{2 p}}
$$

- correct estimation on $[p \epsilon, p(1-\epsilon)]$ with $\epsilon=\sqrt{\frac{\sigma^{2}}{2 p \bar{\beta}^{2}}}+o\left(p^{-1 / 2}\right)$.
- wrong estimation near the boundaries

Consistency of the weighted TV approximator

$$
\min _{U \in \mathbb{R}^{\mathbb{P}} \times}\|Y-U\|^{2} \text { such that } \sum_{i=1}^{p-1} w_{i}\left\|U_{i+1}, \bullet-U_{i, \bullet}\right\| \leq \mu
$$

Theorem

The weighted TV approximator with weights

$$
\forall i \in[1, p-1], \quad w_{i}=\sqrt{\frac{i(p-i)}{p}}
$$

correctly finds the first change-point with probability tending to 1 as $n \rightarrow+\infty$.

- we see the benefit of increasing n
- we see the benefit of adding weights to the TV penalty

Proof sketch

- The first change-point \hat{i} found by TV approximator maximizes $F_{i}=\left\|\hat{c}_{i, \bullet}\right\|^{2}$, where

$$
\hat{c}=\bar{X}^{\top} \bar{Y}=\bar{X}^{\top} \bar{X} \beta^{*}+\bar{X}^{\top} W .
$$

- \hat{c} is Gaussian, and F_{i} is follows a non-central χ^{2} distribution with

$$
G_{i}=\frac{E F_{i}}{p}=\frac{i(p-i)}{p w_{i}^{2}} \sigma^{2}+\frac{\bar{\beta}^{2}}{w_{i}^{2} w_{u}^{2} p^{2}} \times \begin{cases}i^{2}(p-u)^{2} & \text { if } i \leq u \\ u^{2}(p-i)^{2} & \text { otherwise }\end{cases}
$$

- We then just check when $G_{u}=\max _{i} G_{i}$

Consistency for a single change-point

Figure 3: Single change-point accuracy for the group fused Lasso. Accuracy as a function of the number of profiles p when the change-point is placed in a variety of positions $u=50$ to $u=90$ (left and centre plots, resp. unweighted and weighted group fused Lasso), or: $u=50 \pm 2$ to $u=90 \pm 2$ (right plot, weighted with varying change-point location), for a signal of length 100.

Estimation of several change-points

Figure 4: Multiple change-point accuracy. Accuracy as a function of the number of profiles p when change-points are placed at the nine positions $\{10,20, \ldots, 90\}$ and the variance σ^{2} of the centered Gaussian noise is either 0.05 (left), 0.2 (center) and 1 (right). The profile length is 100 .

Application: detection of frequent abnormalities

Conclusion

- Convex norms with singularities at piecewise-constant profiles
- Global optimum of fused lasso found by binary segmentation
- Efficient proximal methods for optimization with general loss functions (supervised classification, regression, ...)
- Benefit of increasing the number of profiles

Some questions

- Theoretical results for K change-points in n profiles of length p
- What if just a few profiles have a change-point?
- What about time series on a network?
- How to choose the number of change-points?

Acknowledgements

Kevin Bleakley (INRIA)

ANR
European Research Council

