Machine Learning for Personalized Genomics

Jean-Philippe Vert

Inserm
 Institut national
 de la santéet de la reoheprohe rnédicale

Paris-Saclay Center for Data Science kick-off meeting LAL, Saclay, June 30, 2014

1 body = 100 trillions cells 1 cell $=6$ billions ACGT in DNA
 Chromosome

Human cell

Human genome project (1990-2003)

- Goal: sequence the $3,000,000,000$ base pairs of the human genome
- Consortium of 20 laboratories, 6 countries
- 13 years, $\$ 3,000,000,000$

A flood of omics data

Interactome

Mutations
Structural variations

Transcriptome

Epigenome

Phenome

All cancers are different

Cancer: different views

Big data!

- http://aws.amazon.com/1000genomes/

Opportunities

- New drug targets and therapies
- By analyzing specificities of cancer cells at the molecular level
- Precision medicine
- By developing predictive models for diagnosis, prognosis, response to drugs...

« Understanding cancer »

Finding « cancer genes »

Vogelstein et al. (Science, 2013)
Cancer genome Landscapes

P4. Medicine

- PREDICT • PREVENT • PERSONALIZE • PARTICIPATE

(等) (1) 18

Opportunities

Diagnosis

Response to drugs

Supervised machine learning

Example:

Breast cancer prognostic signature

A Gene-Expression Profiling

> No. AT RISK
$\begin{array}{llllllll}\text { Good signature } & 60 & 57 & 54 & 45 & 31 & 22 & 12\end{array}$ $\begin{array}{llllllll}\text { Poor signature } & 91 & 72 & 55 & 41 & 26 & 17 & 9\end{array}$

B St. Gallen Criteria

No. AT RISK
Low risk High risk
$\begin{array}{ccccccc}22 & 22 & 21 & 17 & 9 & 5 & 2 \\ 129 & 107 & 88 & 69 & 48 & 34 & 19\end{array}$

Two signatures have less than 5\% genes in common...

Gene expression profiling predicts clinical outcome of breast cancer

Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer

Prior knowledge: gene network

Can we «force» the signature to be «coherent» with a known network?

Example: the graph lasso

- Step 1: Using the network, define a subset of « candidate » signatures

- Step 2: Among the candidates, find the best signature to explain the data

Classical signature

The graph lasso signature

Example:
 Pharmacogenomics / Toxicogenomics

Crowd-sourcing initiatives

DREAM8 challenge (jun-sep 2013)

Toxicogenetics Challenge Data

Chemical descriptors 10K attributes

156 chemicals

Our approach

Cell line descriptors (30 kernels)

Chemical descriptors (49 kernels)

- Descriptors of chemical structures
- Multitask kernels
- Empirical correlation
- Integrated kernel

Learning occurs...

Final submission (ranked $2^{\text {nd }}$)

Empirical kernel on drugs

Integrated kernel on cell lines

RECOMB/ISCB Conference on Regulatory and Systems Genomics, with DREAM Challenges 2013

Conclusion

- Lots of data due to technological progress
- Opportunities: precision medicine, quantitative biology
- Challenges:
«small N », weak signal, complex systems

