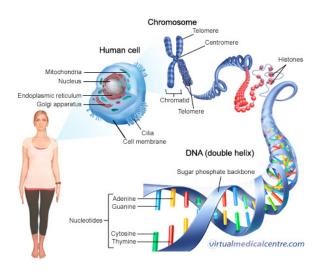
Machine Learning for Personalized Medicine

Jean-Philippe Vert

Genentech, July 24, 2014

What's in your body

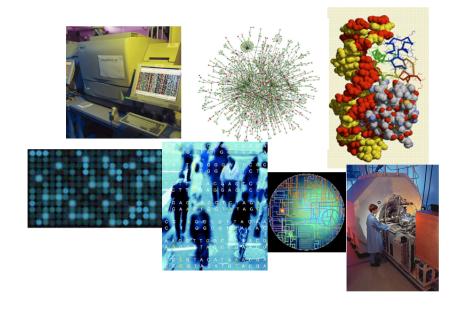


1 body = 10^{14} human cells (and 100x more non-human cells) 1 cell = 6×10^9 ACGT coding for 20,000 genes

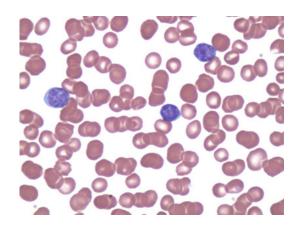
Sequencing revolution



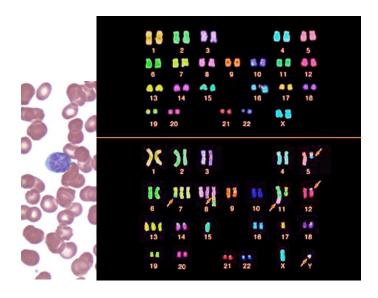
Many various data



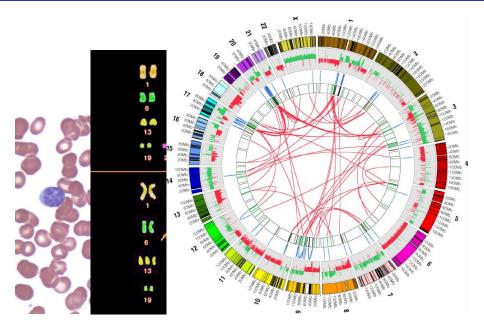
A cancer cell



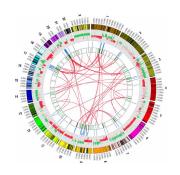
A cancer cell



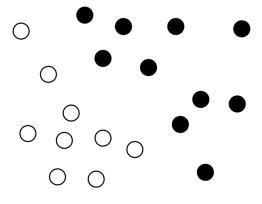
A cancer cell

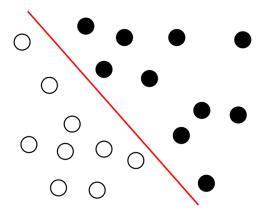


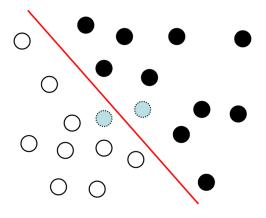
Opportunities

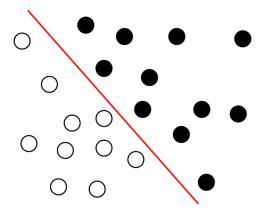


- What is your risk of developing a cancer? (prevention)
- After diagnosis and treatment, what is the risk of relapse? (prognosis)
- What specific treatment will cure your cancer? (personalized medicine)

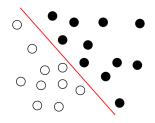








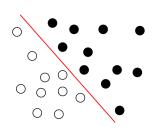
Challenges





- High dimension
- Few samples
- Structured data
- Heterogeneous data
- Prior knowledge
- Fast and scalable implementations
- Interpretable models

Learning with regularization



Learn

$$f_{\beta}(x) = \beta^{\top} x$$

by solving

$$\min_{eta \in \mathbb{R}^p} R(f_eta) + \lambda \Omega(eta)$$

- $R(f_{\beta})$ empirical risk
- $\Omega(\beta)$ penalty

Outline

FlipFlop: fast isoform prediction from RNA-seq data

Learning molecular classifiers with network information

3 Kernel bilinear regression for toxicogenomics

Outline

FlipFlop: fast isoform prediction from RNA-seq data

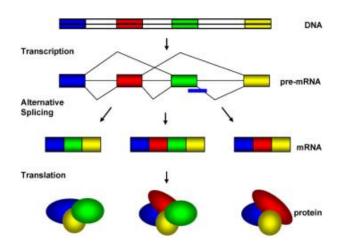
Learning molecular classifiers with network information

Kernel bilinear regression for toxicogenomics

Joint work with...

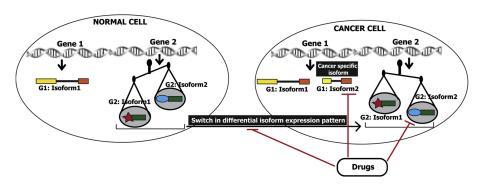
Elsa Bernard (Mines ParisTech / Institut Curie), Laurent Jacob (CNRS / LBBE), Julien Mairal (INRIA)

Alternative splicing: 1 gene = many proteins



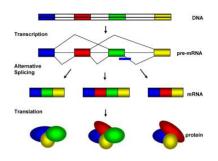
In human, 28k genes give 120k known transcripts (Pal et al., 2012)

Opportunities for drug developments...



(Pal et al., 2012)

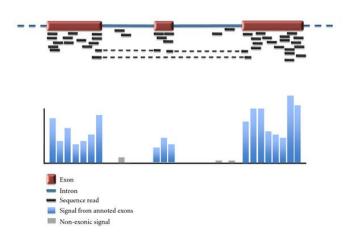
The isoform identification and quantification problem



Given a biological sample (e.g., cancer tissue), can we:

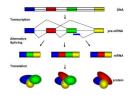
- identify the isoform(s) of each gene present in the sample?
- quantify their abundance?

RNA-seq data



(Costa et al., 2011)

Lasso-based estimation of isoforms

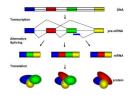


- Let a gene with e exons
- Suppose there are c candidate isoform (c large, up to 2^e)
- Let $\phi \in \mathbb{R}^c$ the unknown c-dimensional vector of abundance
- Let $L(\phi)$ quantify whether ϕ explains well the observed read counts (e.g., minus log-likelihood)
- Find a sparse vector of abundances by solving (e.g., IsoLasso, SLIDE, NSMAP...)

$$\min_{\phi \in \mathbb{R}^c_+} L(\phi) + \lambda \|\phi\|_1$$

Computational problem: Lasso problem with 2^e variables

Lasso-based estimation of isoforms



- Let a gene with e exons
- Suppose there are c candidate isoform (c large, up to 2^e)
- Let $\phi \in \mathbb{R}^c$ the unknown c-dimensional vector of abundance
- Let $L(\phi)$ quantify whether ϕ explains well the observed read counts (e.g., minus log-likelihood)
- Find a sparse vector of abundances by solving (e.g., IsoLasso, SLIDE, NSMAP...)

$$\min_{\phi \in \mathbb{R}_+^c} L(\phi) + \lambda \|\phi\|_1$$

Computational problem: Lasso problem with 2^e variables

Fast isoform deconvolution with the Lasso (FlipFlop)

Theorem (Bernard, Mairal, Jacob and V., 2014)

The isoform deconvolution problem

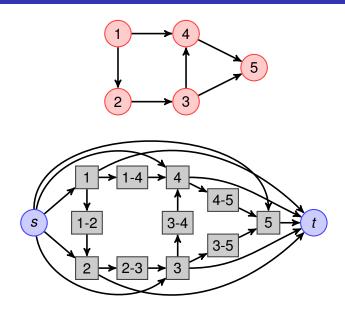
$$\min_{\phi \in \mathbb{R}^{c}_{+}} L(\phi) + \lambda \| \phi \|_{1}$$

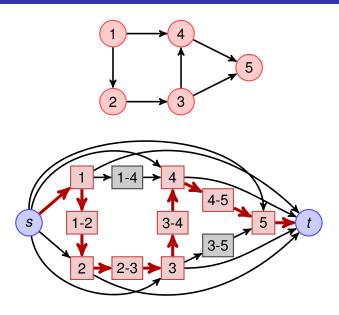
can be solved in polynomial time in the number of exon.

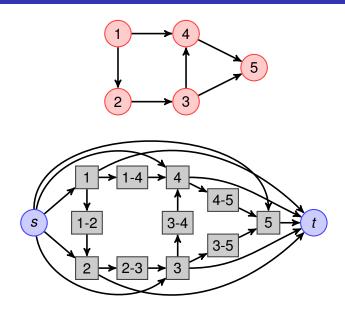
Key ideas

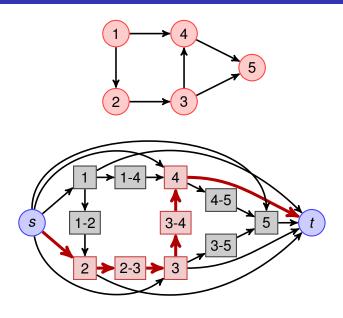
- Reformulation as a convex cost flow problem (Mairal and Yu, 2012)
- Recover isoforms by flow decomposition algorithm

"Feature selection on an exponential number of features in polynomial time"

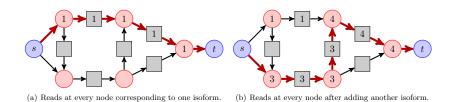








Combinations of isoforms are flows



- $L(\phi)$ depends only on the values of the flow on the vertices
- $||\phi||_1 = f_t$

Therefore,

$$\min_{\phi \in \mathbb{R}_{+}^{c}} L(\phi) + \lambda \| \phi \|_{1}$$

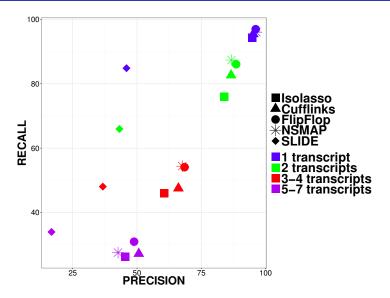
is equivalent to

$$\min_{\mathsf{f} \; \mathsf{flow}} R(\mathsf{f}) + \lambda \mathsf{f}_{\mathsf{f}}$$

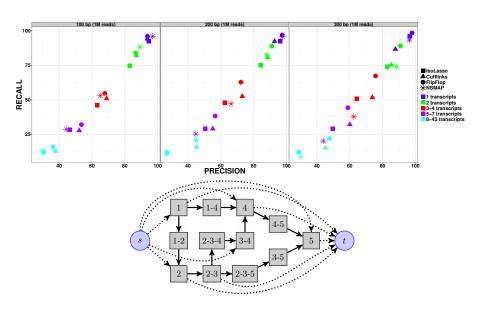
Human Simulation: Precision/Recall

hg19, 1137 genes on chr1, 1million 75 bp single-end reads by transcript levels.

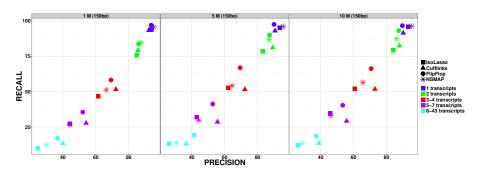
Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html



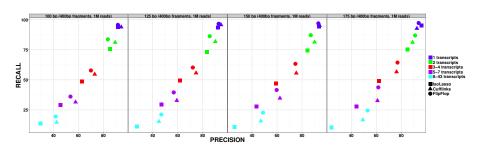
Performance increases with read length



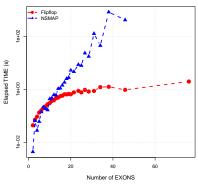
Performance increases with coverage

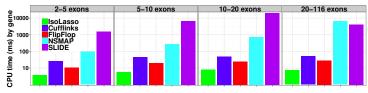


Extension to paired-end reads OK.



Speed trial





FlipFlop summary

- Fast method for exact Lasso-based isoform detection and quantification
- http://cbio.mines-paristech.fr/flipflop
- Available as an R package
 - > source("http://bioconductor.org/biocLite.R")
 > biocLite("flinfloo")
 - > biocLite("flipflop")
- Reference: E. Bernard, L. Jacob, J. Mairal and J.-P. Vert. Efficient RNA isoform identification and quantification from RNA-seq data with network flows. *Bioinformatics*, 2014.
- Ongoing: extension to multiple samples and differential analysis

Outline

FlipFlop: fast isoform prediction from RNA-seq data

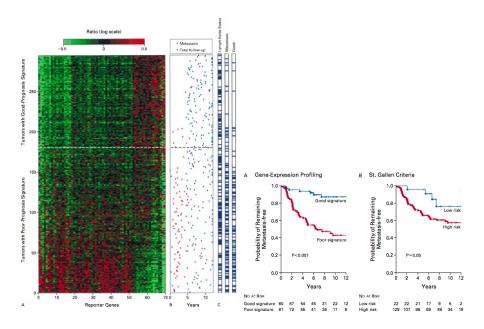
Learning molecular classifiers with network information

Kernel bilinear regression for toxicogenomics

Joint work with...

Franck Rapaport, Emmanuel Barillot, Andrei Zinovyev, Anne-Claire Haury, Laurent Jacob, Guillaume Obozinski

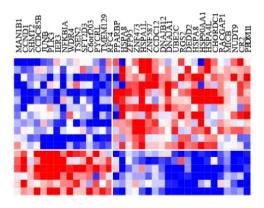
Breast cancer prognosis



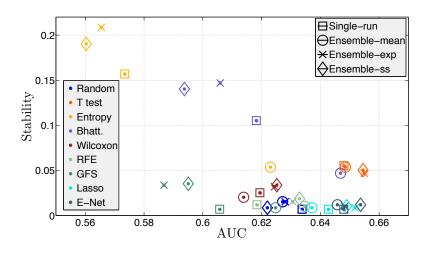
Gene selection, molecular signature

The idea

- We look for a limited set of genes that are sufficient for prediction.
- Selected genes should inform us about the underlying biology

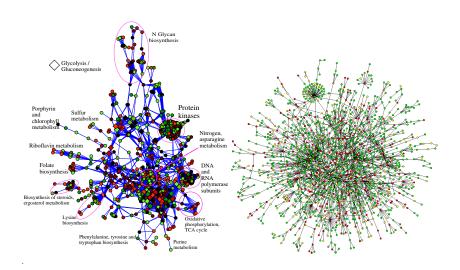


Lack of stability of signatures



Haury et al. (2011)

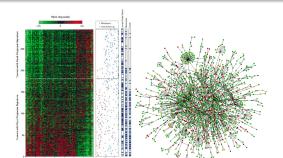
Gene networks



Gene networks and expression data

Motivation

- Basic biological functions usually involve the coordinated action of several proteins:
 - Formation of protein complexes
 - Activation of metabolic, signalling or regulatory pathways
- Many pathways and protein-protein interactions are already known
- Hypothesis: the weights of the classifier should be "coherent" with respect to this prior knowledge



Graph based penalty

$$f_{\beta}(x) = \beta^{\top} x$$
 $\min_{\beta} R(f_{\beta}) + \lambda \Omega(\beta)$

Prior hypothesis

Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)

$$\Omega(\beta) = \sum_{i \sim j} (\beta_i - \beta_j)^2$$

$$\min_{eta \in \mathbb{R}^p} R(f_eta) + \lambda \sum_{i \sim j} (eta_i - eta_j)^2$$

Graph based penalty

$$f_{\beta}(x) = \beta^{\top} x$$
 $\min_{\beta} R(f_{\beta}) + \lambda \Omega(\beta)$

Prior hypothesis

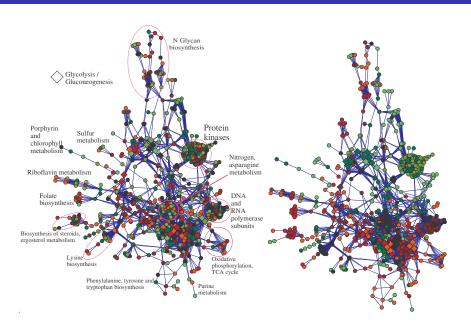
Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)

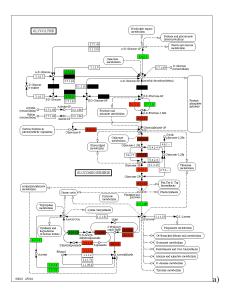
$$\Omega(\beta) = \sum_{i \sim j} (\beta_i - \beta_j)^2,$$

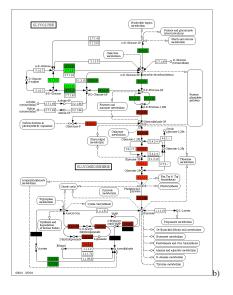
$$\min_{\beta \in \mathbb{R}^p} R(f_{\beta}) + \lambda \sum_{i \sim i} (\beta_i - \beta_j)^2.$$

Classifiers



Classifier





Spectral penalty as a kernel

Theorem

The function $f(x) = \beta^{\top} x$ where β is solution of

$$\min_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \ell\left(\beta^\top \mathbf{x}_i, \mathbf{y}_i\right) + \lambda \sum_{i \sim j} \left(\beta_i - \beta_j\right)^2$$

is equal to $g(x) = \gamma^{T} \Phi(x)$ where γ is solution of

$$\min_{\gamma \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \ell\left(\gamma^{\mathsf{T}} \Phi(\mathbf{x}_i), \mathbf{y}_i\right) + \lambda \gamma^{\mathsf{T}} \gamma,$$

and where

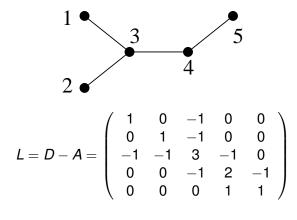
$$\Phi(x)^{\top}\Phi(x') = x^{\top}K_Gx'$$

for $K_G = L^*$, the pseudo-inverse of the graph Laplacian.

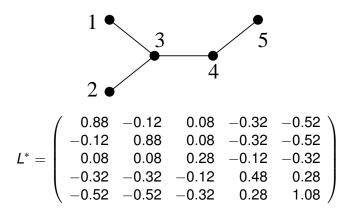
Graph Laplacian

Definition

The Laplacian of the graph is the matrix L = D - A.



Pseufo-inverse of the Laplacian



Other penalties with kernels

$$\Phi(x)^{\top}\Phi(x') = x^{\top}K_Gx'$$

with:

• $K_G = (c + L)^{-1}$ leads to

$$\Omega(\beta) = c \sum_{i=1}^{p} \beta_i^2 + \sum_{i \sim j} (\beta_i - \beta_j)^2.$$

The diffusion kernel:

$$K_G = \exp_M(-2tL)$$
.

penalizes high frequencies of β in the Fourier domain.

Other penalties without kernels

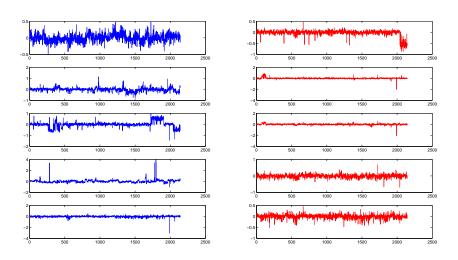
• Gene selection + Piecewise constant on the graph

$$\Omega(\beta) = \sum_{i \sim j} |\beta_i - \beta_j| + \sum_{i=1}^p |\beta_i|$$

Gene selection + smooth on the graph

$$\Omega(\beta) = \sum_{i \sim j} (\beta_i - \beta_j)^2 + \sum_{i=1}^{p} |\beta_i|$$

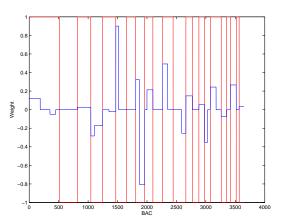
Example: classification of DNA copy number profiles



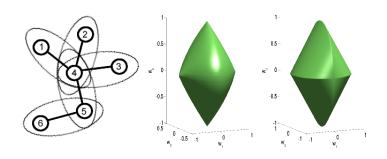
Aggressive (left) vs non-aggressive (right) melanoma

Fused lasso solution (Rapaport et al., 2008)

$$\Omega(\beta) = \sum_{i \sim j} |\beta_i - \beta_j| + \sum_{i=1}^{p} |\beta_i|$$



Graph-based structured feature selection

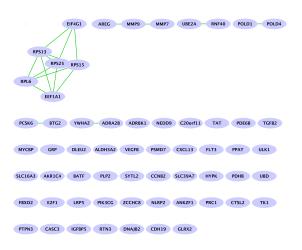


Graph lasso(s)

$$\Omega_1(eta) = \sum_{i>j} \sqrt{eta_i^2 + eta_j^2}$$
, (Jenatton et al., 2009)

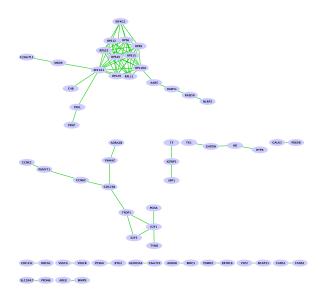
$$\Omega_2(\beta) = \sup_{\alpha \in \mathbb{R}^p: \forall i \sim j, \|\alpha_i^2 + \alpha_j^2\| \leq 1} \alpha^\top \beta. \quad \text{(Jacob et al., 2008)}$$

Lasso signature (accuracy 0.61)



Breast cancer prognosis

Graph Lasso signature (accuracy 0.64)

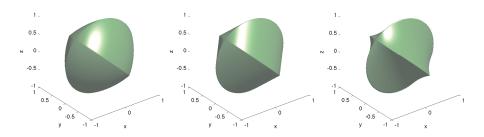


Breast cancer prognosis

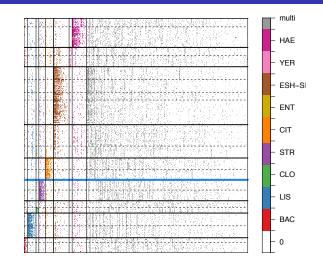
Disjoint feature selection (Vervier, d'Aspremont, Mahé, Veyrieras and V., 2014)

$$W = (w_i)_{i \in V} \in \mathbb{R}^{p \times V}$$

$$\Omega(W) = \min_{-H \leq W \leq H} \sum_{i \sim j} K_{ij} \mid h_i^\top h_j \mid$$



Example: multiclass classification of MS spectra



Features

(Vervier et al, 2013, unpublished)

Outline

FlipFlop: fast isoform prediction from RNA-seq data

Learning molecular classifiers with network information

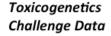
3 Kernel bilinear regression for toxicogenomics

Joint work with...

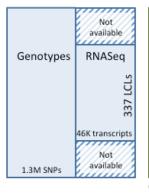
Elsa Bernard, Erwan Scornet, Yunlong Jiao, Véronique Stoven, Thomas Walter

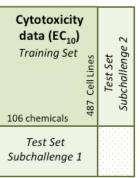
Pharmacogenomics / Toxicogenomics

DREAM8 Toxicogenetics challenge



Chemical descriptors 10K attributes





884 Ce

156 chemicals

Genotypes from the 1000 genome project RNASeq from the Geuvadis project

Bilinear regression

- Cell line X, chemical Y, toxicity Z.
- Bilinear regression model:

$$Z = f(X, Y) + b(Y) + \epsilon,$$

Estimation by kernel ridge regression:

$$\min_{f \in \mathcal{H}, b \in \mathbb{R}^p} \sum_{i=1}^n \sum_{j=1}^p (f(x_i, y_j) + b_j - z_{ij})^2 + \lambda ||f||^2,$$

Solving in $O(max(n, p)^3)$

Theorem 1. Let $Z \in \mathbb{R}^{n \times p}$ be the response matrix, and $K_X \in \mathbb{R}^{n \times n}$ and $K_Y \in \mathbb{R}^{p \times p}$ be the kernel Gram matrices of the n cell lines and p chemicals, with respective eigenvalue decompositions $K_X = U_X D_X U_X^{\top}$ and $K_Y = U_Y D_Y U_Y^{\top}$. Let $\gamma = U_X^{\top} \mathbf{1}_n$ and $S \in \mathbb{R}^{n \times p}$ be defined by $S_{ij} = 1/\left(\lambda + D_X^i D_Y^j\right)$, where D_X^i (resp. D_Y^i) denotes the i-th diagonal term of D_X (resp. D_Y). Then the solution (f^*, b^*) of (2) is given by

$$b^* = U_Y Diag \left(S^\top \gamma^{\circ 2} \right)^{-1} \left(S^\top \circ \left(U_Y^\top Z^\top U_X \right) \right) \gamma \tag{3}$$

and

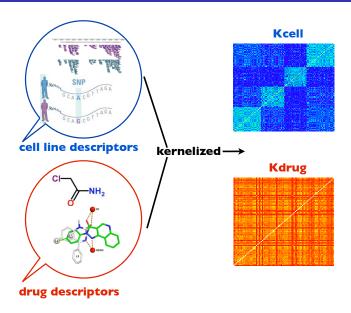
$$\forall (x,y) \in \mathcal{X} \times \mathcal{Y}, \quad f^*(x,y) = \sum_{i=1}^n \sum_{j=1}^p \alpha_{i,j}^* K_X(x_i, x) K_Y(y_i, y),$$
 (4)

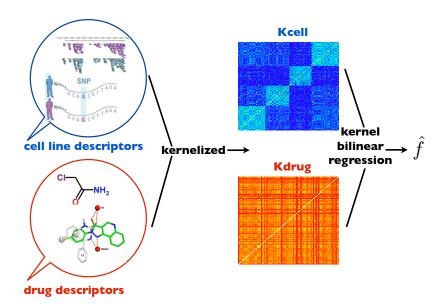
where

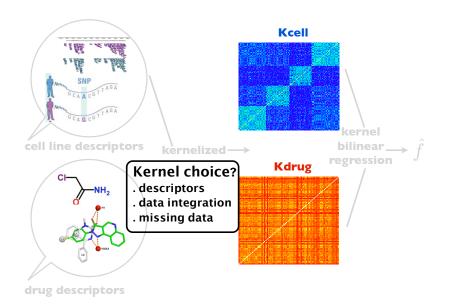
$$\alpha^* = U_X \left(S \circ \left(U_X^\top \left(Z - \mathbf{1}_n b^{*\top} \right) U_Y \right) \right) U_Y^\top.$$
 (5)

cell line descriptors

drug descriptors







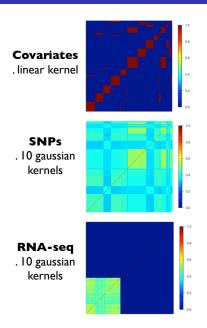
Kernel choice

- K_{cell}:
 - ⇒ 29 cell line kernels tested
 - ⇒ 1 kernel that *integrate all information*
 - ⇒ deal with missing data
- 2 K_{drug}:
 - 48 drug kernels tested
 - \Longrightarrow multi-task kernels

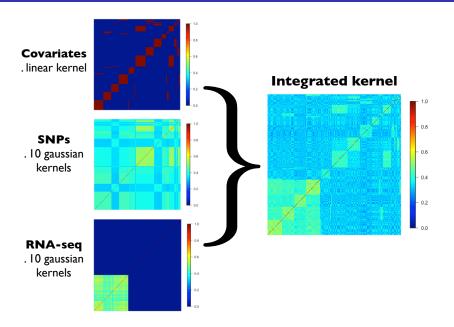
Kernel choice

- K_{cell}:
 - ⇒ 29 cell line kernels tested
 - ⇒ 1 kernel that integrate all information
 - → deal with missing data
- K_{drug}:
 - → 48 drug kernels tested
 - ⇒ multi-task kernels

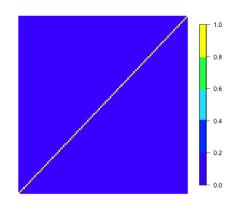
Cell line data integration



Cell line data integration

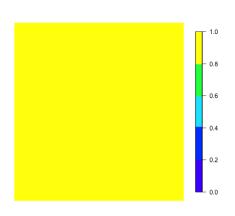


- Multi-Task
- Feature-based
- Empirical
- Integrated



independent regression for each drug

- Dirac
- Multi-Task
- Feature-based
- Empirical
- Integrated



sharing information across drugs

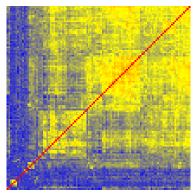
- Dirac
- Multi-Task
- Feature-based
- Empirical
- Integrated

Linear kernel and 10 gaussian kernels based on features:

- CDK (160 descriptors) and SIRMS (9272 descriptors)
- Graph kernel for molecules (2D walk kernel)
- Fingerprint of 2D substructures (881 descriptors)
- Ability to bind human proteins (1554 descriptors)

Empirical correlation

- Dirac
- Multi-Task
- Feature-based
- Empirical
- Integrated



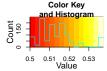
- Dirac
- Multi-Task
- Feature-based
- Empirical
- Integrated

$$K_{int} = \sum_{i} K_{i}$$

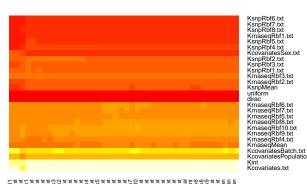
Integrated kernel:

Combine all information on drugs

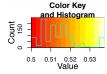
29x48 kernel combinations: CV results



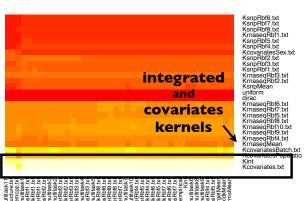
CI



29x48 kernel combinations: CV results

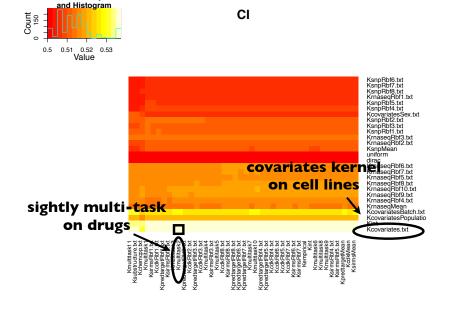


CI

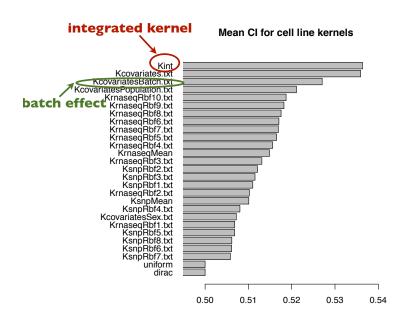


29x48 kernel combinations: CV results

Color Key

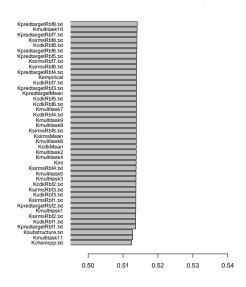


Kernel on cell lines: CV results

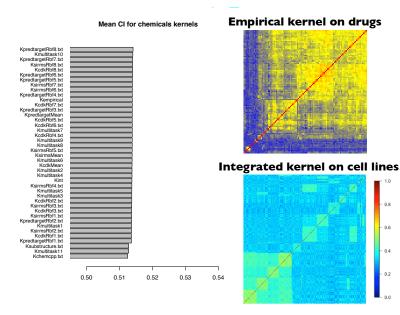


Kernel on drugs: CV results

Mean CI for chemicals kernels



Final Submission (ranked 2nd)



Conclusion

- Many new problems and lots of data in computational genomics
- Computational constraints ⇒ fast sparse models (FlipFlop)
- Small n large $p \implies$ regularized models with prior knowledge
- ◆ Heterogeneous data integration ⇒ kernel methods
- Personalized medicine promising but difficult!

Thanks

Alexandre d'Aspremont, Emmanuel Barillot, Anne-Claire Haury, Laurent Jacob, Pierre Mahé, Julien Mairal, Guillaume Obozinski, Franck Rapaport, Jean-Baptiste Veyrieras, Andrei Zynoviev ... and all CBIO@Mines

European Research Coun

